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Automated rock mass condition 
assessment during TBM tunnel 
excavation using deep learning
Liang Chen1, Zhitao Liu1, Hongye Su1, Fulong Lin2 & Weijie Mao1*

Rock mass condition assessment during tunnel excavation is a critical step for the intelligent control 
of tunnel boring machine (TBM). To address this and achieve automatic detection, a visual assessment 
system is installed to the TBM and a lager in-situ rock mass image dataset is collected from the water 
conveyance channel project. The rock mass condition assessment task is transformed into a fine-
grain classification task. To fulfill the task, a self-convolution based attention fusion network (SAFN) 
is designed in this paper. The core of our method is the discovery and fusion of the object attention 
map within a deep neural network. The network consists of two novel modules, the self-convolution 
based attention extractor (SAE) module and the self-convolution based attention pooling algorithm 
(SAP) module. The former is designed to detect the intact rock regions generating the attention map, 
and the latter is designed to improve the performance of classifier by fusing the attention map that 
focuses on the intact rock regions. The results of SAFN are evaluated from aspects of interpretability, 
ablation, accuracy and cross-validation, and it outperforms state-of-the-art models in the rock mass 
assessment dataset. Furthermore, the dynamic filed test show that our assessment system based on 
the SAFN model is accurate and efficient for automated classification of rock mass.

The tunnel boring machine (TBM) is widely used in tunnel construction owing to its advantages in security, 
higher efficiency and environmental friendliness over conventional drill and blast  methods1. Nevertheless, TBM 
performance is greatly affected by a wide range of geological conditions. Figure 1 illustrates that the TBM driv-
ing process. The TBM driver usually optimizes operational performance with the help of real-time operational 
parameters between the actuator (i.e., the cutting head) and control systems and the geological condition from 
the geological report. However, the geological condition in the geological investigation report is sparse density 
and always different from the actual rock mass  types2. Suppose the wrong judge of the geological condition during 
TBM excavation, it will undoubtedly introduce serious severe challenges to the tunnel construction, such as low 
TBM utilization, high additional cost and even safety  problems3,4. Therefore, to make sure about the efficient and 
safe tunneling process of TBM, it is very important to ensure the rock mass online  assessment5. 

Over the last decades, there have been many works on the rock mass recognition. These methods for rock 
mass recognition can be typically categorized into two classes: indirect prediction and direct detection.

The correlation of the TBM performance, operational parameters, and rock mass conditions substantially 
reflect the TBM-rock interaction mechanism. Many researchers utilize this correlation to assess rock mass 
conditions by numerical simulation with TBM field data. Hassanpour et al. in 2009,  20116,7 propose a clustering 
algorithm with the field penetration index (FPI) and torque penetration index (TPI) from the data collected dur-
ing the normal process to classify the condition of the rock mass. Adoko and  Yagiz8 have established a FPI model 
via fuzzy inference systems which could be used to quantify the relationship between the rock mass properties 
and the TBM cutter load. Liu et al.9 developed a hybrid algorithm that combines artificial neural network (ANN) 
and simulated annealing (SA) for the prediction of rock mass parameters. Although these studies have made 
achievements for obtaining surrounding rock information from field data, there are some challenges for those 
methods. First, it is difficult to extract effective data from large-scale field data for those data-driven algorithms. 
Second, the low accuracy, stability and time consuming also limit the development of this technology.

For the direct detection, Song et al.10 and Su et al.11 propose the mechanics deduction to identify the rock mass 
mechanism. The stress cells should be buried in the model ground to monitor the rock stress, which is not suit-
able for real-time data collection during tunnel excavation. Computer vision  method12 is one of the solutions for 
this problem. The convolution neural network model (CNN) is an efficient method to monitor the infrastructure 
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health in civil  engineering13 in an end-to-end multilayer fashion. Chen et al.14 obtain the rock tunnel face image to 
classify the rock structure of tunnel face. However, this method can only be used in manual drilling and blasting 
methods because the narrow space between the TBM cutterhead and tunnel face. In addition, deep learning is 
dependent on huge training  samples15 and there is scarce research on the tunnel rock image at present.

In this paper, we classify the rock mass through the direct detection method. We monitor the rock excavated 
by the tunnel boring machine and collect a rock mass assessment dataset. This dataset is the first attempt to 
classify the excavated rock during TBM tunnel excavation. To fulfill the rock assessment task, we propose an 
assumption that if the model recognizes significant image areas and amplifies their effects while suppressing 
irrelevant and potentially confusing information in other regions, the classification task will benefit. Based on this 
assumption, the self-convolution based attention fusion network (SAFN) is proposed. The core of our method 
is the discovery and fusion of the object attention map within a deep neural network. We focus on the attention 
map not only for the region of interest (ROI) extraction, but also for improving the performance of CNN by 
fusing it that focuses on the in-tact rock regions in an image. The monitoring results of the system intuitively 
show the different types of rocks under the surface, which can provide a scientific reference for TBM control 
 research16 As the first attempt to use CNNs for classification of rock mass structures captured from the excavated 
rock during tunnel excavation, this research made the following two contributions. First, it paves the way for 
other researchers to apply a higher accuracy and efficiency framework in order to classify the rock structure 
during tunnel excavation. Secondly, it confirms that the proposed image technique significantly improves the 
efficiency of conventional overall recognition.

This paper is organized as follows. The rock assessment dataset is described briefly in “Rock assessment 
dataset”. “Rock assessment model” describes the SFAN for rock mass assessment. “Experiment results” provides 
the experiment. Finally, the conclusion of this paper is drawn in “Conclusion and future work”.

Rock assessment dataset
In general, rock mass assessment is operated by the trained TBM drivers. However, the manual operation comes 
at a high cost in labor and time, but the assessment results are not recorded continuously in real-time. Therefore, 
it is necessary to construct an automated visual assessment system to provide a reliable assessment. The sche-
matic diagram of the assessment system is shown in Fig. 2a, which includes an area-array camera, light sources, 
a trigger unit, a conveyor group, and a data processing server.

The camera is HIKVISION MV-CA013-21UM with a focal length of 8 mm. The work distanced between 
the array camera and excavated rock is 1000 mm by shooting the cameras in the vertical orientation. The hori-
zontal and vertical viewing angles are 55.6◦ and 47.6◦ , respectively. The monitoring region covers a region of 
1000mm× 800mm in the conveyor belt. When the conveyor belt runs at a speed of 5 m/s, the system can capture 
images at a speed of 30 frames per  second17. If the captured image has no "ghosting" details, the exposure time 
should be set to 200 ms. Then, the captured image is sent to the server via Ethernet and classified by the deep 
learning network. According to the results of the rock mass assessment, the control system of TBM can get the 
accurate rock mass parameters for geological adaptive control. As shown in Fig. 2b, the visual monitoring system 
is installed in the conveyor belt behind the segment erector, approximately 20 m away from the nose of TBM.

This research team spent three months collecting the excavated rock images built in different rock mass tunnel 
excavation field in Hangzhou Second Source Water Conveyance Channel Project (Shanling section, Jiangnan 
Route), Hangzhou, China. This project, with a total length of 13.21 km, had been designed to convey and divert 
water from Xianlin Reservoir to Hangzhou. The size of rock images was set at 1024× 1024 . In this study, 12,600 
nine types of rock images were collected: granite porphyry (GP), conglomeratic sandstone (CS), medium fine 
sandstone (MFS), argillaceous siltstone (AS), silty mudstone (SM), tectonic breccia (TB), cryptoexplosive breccia 
(CB), argillaceous silty limestone (ASL) and bioclastic limestone (BL) as shown in Fig. 3.

Figure 1.  An overview of TBM driving.
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Rock assessment model
This section focuses on designing assessment network for the rock mass. There are three challenges for our rock 
feature discovery.

1. Prior knowledge of the rock mass. The relatively intact rock regions retain prior knowledge of the rock 
veins and structure compared to the clast. It should be incorporated to learn in the classification task. The main-
stream classification network can be divided into mask-guide18,19 methods, attention-based20,21 methods and 
global-feature-based22,23 methods. The mask-guided methods and the attention-based method can utilize the 
object information. However, the mask-guided method should label the image in large-scale collections, which 
is unrealistic in industry applications. We choose the attention-based method to complete the classification task, 
which involves an attention mechanism to extract additional prior knowledge features.

2. Attention mechanism fusion to CNN. The attention map has long been used for visual  explanation24. 
The high response value is the attention location in image recognition. Few studies are attempt to improve the 

Figure 2.  The visual assessment system. (a) Schematic diagram of the system. (b) Field test.

Figure 3.  Datasets. (a) Granite porphyry (GP). (b) Conglomeratic sandstone (CS). (c) Argillaceous siltstone 
(AS). (d) Medium fine sandstone (MFS). (e) Silty mudstone (SM). (f) Tectonic breccia (TB). (g) Cryptoexplosive 
breccia (CB). (h) Argillaceous silty limestone (ASL). (i) Bioclastic limestone (BL).
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performance of CNN by fusing attention mechanism. We propose the SAP module integrated the attention map 
into the classification network.

3. Real-time requirement. The proposed visual system is used to assist TBM driving. The classification result of 
the rock mass is the input of the geological adaptive control. The real-time performance is critical for our system. 
In the existing methods, the branch structure network is widely used to extract the attention map. Our method 
improves the real-time performance by self-convolution operation instead of the branch deep neural network.

Overall flow. We propose the self-convolution based attention fusion network (SAFN) for rock mass assess-
ment. The attention-based network architecture is highly similar to the human body consisting of three parts 
illustrated in Fig. 4: the baseline, extracting hidden information from the image; the limb, extracting the atten-
tion map of ROI by the self-convolution operation; and the head, fusing the attention feature to the backbone by 
SAP and making correct judgments on the basis of rigorous analysis.

The overall flowchart of the SAFN is depicted in Fig. 4. Our task is to predict an attention map A and a cat-
egory C for each image. Given the image I, its proposals Ri by selective search and the image label B, the feature 
map of the I is firstly extracted by the CNN baseline. Then, our model obtains the attention map A about the 
intact rock region by the self-convolution attention extractor. At last, the SAP distance is obtained by the self-
convolution based attention pooling algorithm and applied to the classification network.

Feature extractor. In the attention-based network, the baseline network is the  basic25. The deep residual 
learning framework (ResNet)26 is proposed for the degradation problem of the increased number of convolu-
tional layers, which is one of the most popular models at present. The ResNet-50 framework is depicted in Fig. 5, 
which can be divided into 5 stages. The ResNet framework addressed this problem through shortcut connec-
tions, skipping one or more layers, and simply performing identity mapping. The residual block fits the residual 
function (1).

where x is the identity mapping; H(x) is arbitrary desired mapping. Since the output of multiple nonlinear layers 
F(x) degrades to zero, the adverse effect of the vanishing gradients can be ignored.

Self-convolution based attention extractor module. In the traditional image field, self-convolution 
operation is an important method to calculate the similarity between two images. We aim to obtain the atten-
tion map about the intact rock region. To solve this problem, the self-convolution operation between the feature 
maps of the image I and the feature maps of proposals Ri has been introduced in this part. The feature map of 
proposals is the convolution kernel, while the feature maps of the image is the region to be convolved. It can help 
us get the attention map because of the two factors:

1. The value of the feature map to be convoluted. The response value will be larger when the value of the con-
volution kernel and the region to be convolved is larger.

2. The similarity between original image I and proposals region. The response value will be larger when the 
similarity is higher.

In general, the feature map value of conveyor belt and the clast region have small, and the similarity with the 
intact rock region is low. So we can get the more accurate attention map about the intact rock region.

First of all, around 150 region proposals are extracted by the selective  search27 on the original image (The 
selective search’s “fast mode” is utilized in this method on the original image (Fig. 6a) as shown in Fig. 6b. This 

(1)H(x) = F(x)+ x,

Figure 4.  Illustration of the overall flowchart.
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method is implemented in two steps. First, the original image is initialized to get the small scale area by the seg-
mentation method based on the graph theory. Then the large size area is merged considering the characteristics 
such as color, texture and computational complexity. The results show that the Mean Average Best Overlap is 
over 0.879.

The result of removing the repeat regions which the covered area between the region proposals are over 90% 
is shown in Fig. 6c.

First, an original image I and its N proposals Ri are inputted into the CNN baseline to get the corresponding 
feature map FI and FR , with FI ⊂ R

C×K×K and FR ⊂ R
C×Hi×Wi . Where the Hi(K),Wi(K), C indicate its rows, 

Figure 5.  The framework of the ResNet-50.

Figure 6.  Selective search results. (a) Original image. (b) Selective search. (c) Repetition removal.
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columns and channels of the feature map, respectively. Then, we choose the xi ∈ FR as convolution kernel, while 
the FI is the region to be convolved. For any convolution kernel, the response map is calculated as follow:

where * is the self-convolution operation, which can be done with standard convolution. Figure 7 illustrates this 
proceed. For example, the yellow box region in Fig. 7 is the roller of the conveyor belt, so when the features of 
the yellow box region are used as the convolution kernel to deconvolve FI , the response value of the roller region 
in the figure has a very high response value. While the red and green box regions are the intact rock region, it is 
easy to find that the focal regions of the response map are the intact rock regions. At the same time, because the 
red and green boxes correspond to rocks of different sizes, respectively, the response values of the response map 
obtained are also different for rock regions of different sizes.

Finally, there are N response maps after self-convolution operation. However, each response map can repre-
sent the results of only one local region. We should fuse all response map xi to obtain the final attention map A.

where S = 1
N

∑N
i=1 Si , � is the normalized hyperparameters of the softmax. The softmax normalization is to 

smooth the contribution of each region attention map.

Self-convolution based attention pooling algorithm module. The attention map A is provided 
through the self-convolution operation in the previous section. In order to make the classification task more 
accurate, we proposed the self-convolution based attention pooling algorithm (SAP) as shown in Fig. 8.

First of all, the SAP utilizes the global average pooling to obtain the global average features of the image, and 
performs L2 normalization on the global average pooling. Then the distance between local features is calculated 
as follows:

Then the weight vector V = {v1, v2, v3, . . . , v9} of the local feature is obtain by the global average pooling of 
attention map A. To the classification task, we can simply and directly take the local feature and weight vector 
progressive multiplication as the final classification distance vector. But this approach is problematic in dealing 
with the classification issue. The result gap in the final classification distance matrix becomes smaller. Therefore, 
we introduce the idea of residual to obtain SAP distance vector.

Finally, the SAP distance vector is used to complete the classification task. The local feature of the intact rock 
regions is higher than other region. Because the response value of the attention map A is higher. Thus the effect 
of the intact rock area in the SAP distance is effectively enhanced.

(2)Si = xi ∗ FI , i = 1, 2, . . . ,N ,

(3)A =
e�S

∑

e�S
,

(4)dj =
∥

∥

∥
FI − F

j
C

∥

∥

∥

2

2
, j ∈ (1, 2, 3, . . . , 9).

(5)Dj = vjdj + dj , j ∈ (1, 2, 3, . . . , 9)

Figure 7.  SAE module.
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In this paper, our proposed SFAN method includes two modules. The modules are integrated into the baseline 
network without breaking the baseline framework, making the modules easier to fuse with other deep learning 
networks.

Experiment results
In this section, we first evaluate the performance of SAFN from aspects of interpretability, ablation, accuracy 
and cross-validation in the rock mass assessment dataset. Moreover, we conduct the dynamic test to analyze the 
assessment system based on SAFN model effective and real-time performance further.

Dataset and implementation detail. Based on the assessment system, we select 12,600 images on nine 
types of rock to construct the rock mass assessment dataset. There are 900 train images and 500 value images in 
each category of the rock mass. The size of the input image is uniformly scaled to 448× 448 pixels. We use stand-
ard mini-batch SGD, and adopt learning rate warm up as in Ref.28. The minimizing cross-entropy loss is select 
for classification task. In general, deep learning only works when there are a lot of data available. The change of 
camera angle and light intensity also require many samples. To enlarge the scale of the dataset, we adopt the data 
augmentation including random crop operation, random horizontal flip operation and etc.

Evaluation metrics. We employed the accuracy (A), precision (P), recall (R), and F1-score  (F1)29 for the 
online classification tasks, which are three widely used criteria to evaluate the superiority and applicability in 
pattern recognition.

where true positive (TP) is the number of correct classified samples in the positive class, true negative(TN) is 
the number of false samples in the positive class, false positive (FP) is the number of false samples in the positive 
class, false negative (FN) is the number of false samples in the negatives class.

(6)A =
TP+TN

TP+TN + FP + FN
,

(7)P =
TP

TP + FP
,

(8)R =
TP

TP + FN
,

(9)F1 =
2× P × R

P + R
,

Figure 8.  SAP module.
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Interpretability results of the attention map. In this section, we visualize the attention map and eval-
uate the Bbox localization error to evaluate the interpretability results of the self-convolution operation.

First, the visualized results of the attention map are shown in Fig. 9. We select the five types (GP, CS, MFS, 
AS, SM) rock as examples. Each line represents three same type rock mass original images and its attention map.

1. For the convolution kernel of the intact rock regions, its attention map can focus on the highly similar regions 
in the original image.

2. In the clast region or the background region, the response value of its attention map is suppressed. However, 
since the roller or other objects can be found by the selective search operation. There are some localization 
errors in the attention map.

These results indicate that the self-convolution operation can enable visual explanation that takes into account 
the rock information.

Then, we evaluate the bounding box (Bbox) localization error. The localization metric is suggested in Ref.30. 
In detail, if the Intersection-over-Union (IoU) of the rock mass is observed to be greater than 50% in the over-
lapped area between predicted Bbox and ground truth Bbox, the image bounding box can be considered as a 
correctly predicted label.

As shown in Table 1, we select the latest methods of  GAP31 and  CCAM32 to evaluate the Bbox localization 
errors. GAP utilizes the class activation map (CAM) to obtain target object regions. CCAM observes the activa-
tion maps from the highest to the lowest probability classes, and utilizes this attribute to suppress the background 
region, so as to achieve accurate object localization. Our model is achieving a 20.4% and 5.9% error reduction 
compared with GAP and CCAM, respectively. These qualitative results show that our model is able to select the 
intact rock regions for attribute recognition.

Ablation experiment. In this paper, our proposed SFAN method includes two modules. One is the self-
convolution based attention extractor module and the other is the self-convolution based attention pooling 
algorithm module. To investigate the influence of every module on rock mass assessment, we conduct the abla-
tion test. We perform an ablation analysis of SAFN on the rock mass assessment dataset to evaluate how differ-

Figure 9.  Example of attention map.
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ent components affect the detection performance. Table 2 shows the experimental results. First, the baselines 
are comparing in the 1st row (VGG  network33) and the 4th row (ResNet network), the self-convolution based 
attention extractor module dramatically improves the accuracy as shown in the 2nd and 5th row. Also, there is 
no extra time introduced to the system. We find that our module makes the accuracy of ResNet-50 and VGG-19 
improve at least 17.3% and 16.3%, respectively.

Then, we verify the effectiveness of the SAP module. The accuracy of SAFN improves by 4.8% and 4.3%, as 
shown in the 3rd and 6th row. These results indicate that the SAP is slightly more accurate than SAE operation, 
which proves that the self-convolution based attention pooling algorithm can improve the model performance.

Accuracy evaluation. In this section, we compare the accuracy results of ResNet-50 baseline with other 
state-of-the-art methods. The average accuracy and time cost per image on the rock mass assessment data-
set are shown in Table 3. The most representative and advanced method are selected for the accuracy evalua-
tion:  WSCPM34,  ABN35, ResNet-10126. The WSCPM detects the object part in a weakly supervised manner to 
build the complementary part. The classification task is complete by the local feature. The ABN introduces an 
attention-based branch structure to the classification network. The classification accuracy of WSCPM, ABN, 
ResNet-101 achieves 80.3%, 84.7% and 78.4%, respectively. Our model improves the accuracy by at least 7.8%. 
Compare with the state-of-art methods. We use the self-convolution operation instead of the network branch 
structure in WSCPM and ABN. Our method has better advantages in terms of time.

Cross-validation of rock mass assessment dataset. To further explore the SAFN model, the confu-
sion matrix is used to evaluate the classification results. The confusion matrix is a widely used index for recogni-
tion evaluation. Each column represents the predicted category, and the total number of each column represents 
the number of data classified into categories. Each row represents the actual category to which the data belongs, 
and the total number of data in each row represents the number of data instances of that category. The confusion 
matrix is calculated by summing up the total number of observation accuracy values of the false and correct 
categories in the statistical recognition model. Table 4 shows the confusion matrix obtained in the rock mass 
assessment dataset using the SFAN model. GP is with an accuracy of 95.77%, which is the easiest to be accurately 
identified in the rock mass assessment, followed by SM, CB, AS, BL, CS, TB, ASL and MFS with accuracies of 
94.72%, 93.18%, 92.42%, 92.12%, 91.8% 91.29%, 91.05%, 90.05%, respectively. Furthermore, it can be inferred 
that among the 9 categories, TB is easy to be misclassified as CB, since its size and distribution of rock mass is 
located closer to CB.

Table 1.  Result of the Bbox localization errors.

Method Localization error (%)

GAP 45.1

CCAM 30.6

SFAN 24.7

Table 2.  Result of the ablation experiment.

Method Network Average of accuracy (%) Time/image

VGG-19 VGG 68.6 56 ms

+ SAE VGG 85.9 59 ms

SAFN VGG 90.7 60 ms

ResNet-50 ResNet 71.9 51 ms

+ SAE ResNet 88.2 53 ms

SAFN ResNet 92.5 53 ms

Table 3.  Result of the accuracy evaluation.

Method Average of accuracy (%) Time/image

WSCPM 80.3 110 ms

ABN 84.7 167 ms

ResNet-50 71.9 51 ms

ResNet-101 78.4 59 ms

SAFN 92.5 53 ms
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Additionally, the comparison experiment between the four methods for different categories rock mass is 
shown in Fig. 10. It can be seen that all the evaluation metrics of CNN models present a similar trend. Overall, 
the values of the metrics from the highest to the lowest appear in this trend: SM, CB, BL, CS, TB, MFS, AS, and 
ASL. Since the texture features and distinct appearance of the GP images, it makes the all the methods corre-
sponding more prominent in GS identification. The ASL and AS images in the dataset have many similar features. 
Therefore, the classification of ASL and AS images suggest relatively poor performance. However, our method 
focuses on the intact rock details and has better performance at distinguishing AS from ASL. This also proves 
that our method has great advantages in the classification of similar rocks.

Dynamic test for the assessment system. To verify the performance of the SAFN model in applica-
tion, the classification dynamic test with the assessment system based on the SAFN model are conducted in the 
section of D5 + 650 to D5 + 655 in Hangzhou Second Source Water Conveyance Channel Project (Shanling sec-
tion, Jiangnan Route), Hangzhou, China as shown in Fig. 11. There are 400 online samples in the three types of 
geological conditions during this section: MFS, SM and AS. The real-time classification results for the dynamic 
test are shown in Fig. 12.

The classification results are shown in Table 5. The precision of the MFS, SM and AS reached to 94.8%, 94.7% 
and 96.7%, respectively. Overall, the dynamic test indicates that our system is efficient for automated rock mass 
classification.

Analysis of real-time performance. The real-time performance is crucial for the assessment system 
based on SAFN model. We evaluate the inference speed of the system. This experiment was implemented on 
one NVIDIA GeForce RTX 3090 GPU. The data upload time is 300 ms. The inference speed of the SAFN model 
under image resolution of 1024× 1024 achieves 132 ms, under image resolution of 448× 448 achieves 53 ms 
and under image resolution of 224× 224 achieves 17 ms. In general, the mean run time of a rock image is less 
than 1 s.

Table 4.  Confusion matrix of classification results by SAFN model.

Rock structure type GP CS MFS AS SM TB CB ASL BL

Granite porphyry (GP) 95.77% 0.84% 1.27% 0.42% 0.12% 0.07% 0.10% 0.47% 0.94%

Conglomeratic sandstone (CS) 0.76% 91.80% 3.58% 1.04% 1.28% 0.26% 0.18% 1.08% 0.02%

Medium fine sandstone (MFS) 0.82% 3.08% 90.05% 3.17% 1.19% 0.05% 0.11% 1.21% 0.32%

Argillaceous siltstone (AS) 0.47% 1.95% 2.56% 92.42% 1.24% 0.45% 0.66% 0.14% 0.11%

Silty mudstone (SM) 0 0.95% 1.04% 3.06% 94.72% 0.02% 0 0 0.21%

Tectonic breccia (TB) 1.34% 0.42% 0.26% 0.81% 0.31% 91.29% 3.41% 0 2.16%

Cryptoexplosive breccia (CB) 0.73% 0.04% 0.14% 0.05% 0.03% 4.82% 93.18% 0 1.01%

Argillaceous silty limestone (ASL) 0.08% 1.05% 1.84% 0.32% 1.21% 0.13% 0.08% 91.05% 4.24%

Bioclastic limestone (BL) 1.37% 0.24% 0.32% 0.13% 0.59% 1.04% 1.56% 2.63% 92.12%

Figure 10.  Geological distribution of the sampling site.
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Conclusion and future work
In this research, we construct a visual assessment system, install it on the TBM. Then, we collect a larger in-situ 
rock mass image dataset from the construction site of the TBM. It includes around 12,600 rock mass images 
covering nine different rock types. This dataset is the first attempt to classify the excavated rock during TBM 
tunnel excavation. To assess the rock mass, we have presented a self-convolution based attention fusion network 
for rock mass assessment. The core of our method is the discovery and fusion of the object attention map within 
a deep neural network. We focus on the attention map not only for the region of interest (ROI) extraction, but 
also for improving the performance of CNN by fusing it that focuses on the intact rock regions in an image. 
First, SAFN detects the intact rock regions in the image by the SAE module. Then, the SAP module is proposed 
in the classifier, which is trainable for image recognition in an end-to-end manner. We integrate a region-based 
part attention map into the deep network through the SAP module.

To evaluate the SAFN model, we conduct extensive experiments to indicate the accuracy, interpretability and 
efficiency of the SFAN model in the rock mass assessment dataset. Moreover, the dynamic test shows that our 
assessment system based on the SAFN model is accurate and efficient for automated classification of rock mass 
during TBM tunnel excavation. However, establishing an automatic driving system for TBM based on the rock 
mass assessment proposed in this paper remains a challenging task.

Figure 11.  Geological distribution of the sampling site.

Figure 12.  Classification results for the dynamic test.

Table 5.  Result of the dynamic test.

Precision Recall F1

Medium fine sandstone (MFS) 94.8% 91% 92.9%

Silty mudstone (SM) 94.7% 97% 95.8%

Argillaceous siltstone (AS) 96.7% 88% 92.1%
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