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Diagnostic assays that rapidly identify bloodstream patho-
gens have the potential to improve patient outcomes and an-
tibiotic stewardship efforts. Current tests are based on the
detection of nucleic acids that are specific to a targeted path-
ogen or based on organism identification using mass spec-
trometry. Most rapid assays require a positive blood culture
as their sample input and expedite pathogen identification by
24–72 hours. For those assays that also report detection of
drug resistance markers, information on antimicrobial resis-
tance is expedited by 48–96 hours. This learning unit reviews
the basic principles of rapid microorganism identification
assays for bloodstream infections with the aim of assisting
clinicians in the interpretation and optimal utilization of
test results.
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A 57-year-old man is admitted to the medical intensive care
unit (ICU) for evaluation and management of septic shock.
The microbiology laboratory’s automated blood culture incuba-
tion system detected microbial growth at 16 hours in blood cul-
ture bottles inoculated in the emergency department. An initial
Gram stain result was issued stating “Gram positive cocci in

clusters,” and 2 hours later the laboratory reports “Staphylococ-
cus aureus was detected by a FDA-approved molecular method.
The MecA gene was not detected.” An inpatient pharmacist
calls you to inform you of the result, and he recommends you
consider tailoring the patient’s empiric vancomycin therapy to
cefazolin or nafcillin for treatment of methicillin-sensitive
S aureus bacteremia.
How do you interpret these findings? Can you trust the or-

ganism identification and prediction of methicillin susceptibil-
ity provided by the nucleic acid detection assay your hospital
laboratory recently began to run on positive blood culture bot-
tles? Is this information actionable or should you wait 48 hours
until the laboratory determines the organism identification and
susceptibility pattern by conventional methods?
This learning unit aims to update clinicians on recent labo-

ratory developments for the diagnosis of bacterial or fungal
bloodstream infections. In this report, we focus on the current
US Food and Drug Administration (FDA)-approved tests, with
a review of their clinical utility and suggested optimal use for
patient care.

THE NEED FOR MORE RAPID IDENTIFICATION
OF BLOODSTREAM PATHOGENS

Delays in establishing a microbiologic diagnosis and in institut-
ing effective antimicrobial therapy for bloodstream infections
lead to poor clinical outcomes. For example, a >48-hour delay
in instituting effective therapy for enterococcal bacteremia car-
ried a 5-fold increased risk in 14-day mortality [1], whereas a
>12-hour delay in effective therapy for candidemia carried a
2-fold increase in hospital mortality [2]. Organism identifica-
tion by conventional methods (ie, culture on solid media fol-
lowed by biochemical identification) can take 12–48 hours
after growth is first detected in the blood culture bottle. In ad-
dition, standard phenotypic antimicrobial susceptibility testing
typically requires an additional 24–36 hours after organism iso-
lation. Molecular and proteomic methods have held great prom-
ise for expediting organism identification and drug resistance
detection. Although rapid pathogen detection directly from a
blood specimen remains the ideal approach for septicemia diag-
nostics, most assays have lacked the analytic sensitivity required
for direct detection [3]. To date, only 1 assay has been approved
by the FDA for pathogen detection and identification directly
from blood (see T2Candida test below). Alternatively, there are
now multiple assays that enable rapid organism identification
by testing aliquots from positive blood culture bottles. We will
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review these new technologies in 2 methodological group-
ings: nucleic acid-based detection tests and proteomic-based
methods using mass spectrometry (MS). We then conclude
with a brief summary of the available clinical outcomes data
that demonstrate the utility and cost-effectiveness of these
approaches.

RAPID PATHOGEN IDENTIFICATION BY
NUCLEIC ACID DETECTION

Table 1 summarizes currently available FDA-approved diagnos-
tic assays that utilize nucleic acid detection (ie, molecular diag-
nostic tests) and their performance characteristics. Peptide

Table 1. US Food and Drug Administration-Approved Diagnostic Assays That Utilize Nucleic Acid Detection for the Rapid Identification
of Bloodstream Pathogens

Assay (Manufacturer) Pathogens Targeted/Reported
Resistance
Detection

Clinical
Accuracya

Sensitivity (SN)
Specificity (SP)

Turnaround
Time (Hours)b References

PNA FISH (AdvanDx)c

Staphylococcus aureus/
CNS

S aureus vs Coagulase-negative Staphylococcus
spp

No 97% SN 97%/SP
100%

1.5 4

GNR Traffic Light Escherichia coli, Klebsiella pneumoniae,
Pseudomonas aeruginosa

No 99% SN 99%/SP
98%

1.5 5

Enterococcus faecalis/
OE

E faecalis vs other Enterococci spp No 100% SN 100%/SP
100%

1.5 6

Yeast Traffic Lightd Candida albicans, Candida glabrata, Candida
tropicalis

No 96% SN 98%/SP
83%

1.5 7

GeneOhm (BD)

StaphSR S aureus mec insertion
site

97% SN 99%/SP
97%

2 8, 9

XPert

(Cepheid) MRSA/SA BC S aureus mecA, attB 99% SN 99%/SP
99%

1 9, 10

Verigene (Nanosphere)

Gram-positive blood
culture test (BC-GP)

S aureus, Staphylococcus epidermidis,
Staphylococcus lugdunensis, Staphylococcus
anginosus Group, Staphylococcus agalactiae,
Staphylococcus pneumoniae, Staphylococcus
pyogenes, E faecalis, Enterococcus faecium,
Listeria spp, Micrococcus spp,e

Staphylococcus spp, Streptococcus spp

mecA, vanA,
vanB

95% SN 86%–

100%/SP
99%–100%

2.5 11–15

Gram-negative blood
culture test (BC-GN)

E coli, K pneumoniae, Klebsiella oxytoca,
P aeruginosa, Staphylococcus marcescens,e

Acinetobacter spp, Citrobacter spp,
Enterobacter spp, Proteus spp

CTX-M, IMP,
KPC, NDM,
OXA, VIM

95% SN 88%–

100%/SP
99%–100%

2 17–19

FilmArray (Biofire)

Blood Culture
Identification Panel

Listeria monocytogenes, S aureus, S agalactiae,
S pyogenes, S pneumoniae, Enterococcus
spp, Staphylococcus spp, Streptococcus spp,
Acinetobacter baumanii, Enterobacter
cloacae, E coli, Haemophilus influenzae,
K oxytoca, K pneumoniae, Neisseria
meningitidis, P aeruginosa, S marcescens,
Proteus spp, Enterobacteriaciae, C albicans,
C glabrata, Candida krusei, Candida
parapsilosis, C tropicalis

mecA, vanA/B,
KPC

94% SN 83%–

100%/SP
99%–100%

1.2 20–23

T2MR (T2 Biosystems)

T2Candida Panel C albicans, C glabrata, C krusei, C parapsilosis,
C tropicalis

No 97% SN 91%/SP
99%

3–5 25

Abbreviations: BC, blood culture; CNS, Coagulase-negative Staphylococci; FDA, US Food and Drug Administration; OE, other enterococci; PNA FISH, peptide nucleic
acid fluorescence in situ hybridization.

(Note: Contents of this table are not intended to be an exhaustive list, and reader should note that several additional platforms not listed here are seeking or pending
FDA approval. Performance of resistance marker detection is not included in this Table. For the multiplex assays, both polymicrobial and monomicrobial culture
results are included in these calculations.)
a Accuracy defined as agreement (concordance) with blood culture result.
b Time is the assay run time on the instrument.
c AdvanDx also now offer QuickFISH product line for many of the following PNA FISH assays. QuickFISH have reported turnaround time of 20 minutes.
d PNA FISH also have FDA-approved assays for rapid identification of C albicans and C albicans vs C glabrata.
e Micrococcus spp is not an FDA-approved analyte on the Verigene BC-GP panel, and S marcescens is not an FDA-approved analyte on the Verigene BC-GN
panel.
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nucleic acid fluorescence in situ hybridization (PNA FISH) was
one of the first methods deployed in the clinical laboratory for
the identification of organisms detected on the Gram stain from
a positive blood culture bottle. Peptide nucleic acid FISH utiliz-
es a DNA probe that specifically hybridizes to target pathogen
ribosomal RNA [4]. Compared with conventional identification
methods, the AdvanDx (Woburn, MA) PNA FISH tests have
demonstrated excellent clinical accuracy for Staphylococcus
aureus [4], Pseudomonas aeruginosa, Klebsiella pneumoniae,
Escherichia coli [5], Enterococcus faecalis, and other Enterococci
[6] as well as Candida albicans, Candida glabrata, and Candida
tropicalis [7] (Table 1). Of note, PNA FISH test results must be
determined by a trained technologist’s review of a stained slide
under a fluorescent microscope, and these assessments can be
subject to interreader variability in visual discrimination of
color fluorescence.
There are also 2 FDA-approved real-time polymerase chain

reaction (PCR) assays that detect S aureus and methicillin-
resistant S aureus from positive blood cultures: the GeneOhm
StaphSR (BD, Sparks, MD) and the Xpert MRSA/SA (Cepheid,
Sunnyvale, CA) assays. Compared with blood culture, both tests
have clinical accuracy >97% for detection of S aureus and differ-
entiation of methicillin-resistance (Table 1) [8–10].
The Verigene assay (Nanosphere, Northbrook, IL) automates

nucleic acid extraction from positive blood culture broth fol-
lowed by pathogen detection via hybridization onto a microar-
ray containing complementary nucleic acid targets for multiple
bacterial pathogens. Verigene has a Gram-positive microarray
panel (Gram-positive blood culture [BC-GP]) that includes de-
tection of mecA for Staphylococci and vanA/vanB for Entercocci
as well a Gram-negative microarray panel (Gram-negative
blood culture [BC-GN]) that likewise includes genotypic detec-
tion of drug resistance (Table 1). The clinical laboratory selects
which panel to test based on the Gram stain morphology ob-
served from the blood culture bottle. The BC-GP has demon-
strated robust concordance with conventional identification
methods [11, 13–15]. However, multiple studies have described
misidentifications of various Streptococcus species (spp) as
Streptococcus pneumoniae (ie, false-positive for S pneumoniae)
[11, 14, 16]. The BC-GN has demonstrated robust concordance
with conventional identification methods in 3 of the larger
representative studies (Table 1) [17–19]. Polymicrobial blood-
stream infections pose a challenge for current rapid diagnostics.
The BC-GP and BC-GN typically detect at least 1 organism in
mixed infections, and they identify all organisms in approxi-
mately 60%–76% [11, 13, 14] and 55%–57% of polymicrobial
broths, respectively [17, 18]. Regarding resistance detection,
BC-GP has demonstrated accuracy of 97%–100% for mecA de-
tection and 96%–100% accuracy for detection of vanA/vanB
[11, 13, 14, 16]. The BC-GN showed 94%–100% sensitivity
and >99.9% specificity for the 6 resistance genes included in

the panel when compared with laboratory-developed PCR
and bidirectional sequencing [18].
The FilmArray Blood Culture Identification Panel ([BCID]

Biofire Diagnostics, Salt Lake City, UT) uses a pouch-based
platform to perform a closed system multiplex PCR. The posi-
tive blood culture broth sample undergoes fully automated nu-
cleic acid extraction, followed by PCR amplification using a pool
of nucleotide primers for the >24 pathogens targeted by the
assay (Table 1). Like the other platforms, the FilmArray BCID
also has demonstrated robust clinical accuracy compared with
conventional identification methods [20–22]. In cases of poly-
microbial bloodstream infection, BCID usually detects at least
1 organism in the mixture and may correctly identify all organ-
isms 50%–80% of the time [21–23]. The BCID has demonstrat-
ed high accuracy of resistance detection of mecA (94%–100%)
and vanA/vanB (100%), but kpc-harboring organisms have
not been well represented in the published assessments to
date [20–23].
The T2Dx platform’s T2Candida test (T2 Biosystems, Lex-

ington, MA) is the first FDA-approved assay for rapid identi-
fication of bloodstream infections that detects the pathogen
directly from patient whole blood specimens, without requir-
ing incubation in blood culture broth. This platform detects
the 5 most common Candida spp (Table 1) and integrates au-
tomated DNA extraction followed by PCR amplification of
Candida-specific ribosomal RNA targets. The amplified nu-
cleic acid product is detected by a novel method involving am-
plicon-induced agglomeration of supermagnetic particles that
is measured by T2 magnetic resonance relaxation [24]. The as-
say’s limit of detection for Candida spp is comparable with
blood culture (ie, 1 colony-forming unit [CFU]/mL for
C tropicalis and Candida krusei, 2 CFU/mL for C albicans
and C glabrata, and 3 CFU/mL for Candida parapsilosis). In
a prospective clinical trial, assay sensitivity was 91% and spe-
cificity was >99% [25].
As with any laboratory test, the impact of T2Candida results

on clinician management should depend upon the prevalence
of the condition in a given patient population. Figure 1 demon-
strates how even with a highly sensitive and specific test, the
negative and positive predictive values of a test result depend
upon disease prevalence among a given patient population. If
the prevalence of candidemia is 3% in a typical ICU [26],
then the positive predictive value of the T2Candida test
(ie, the probability that the disease is present when the test
is positive) is close to 80%. Alternatively, a negative T2Candi-
da result has a much higher negative predictive value
(≈99.7%). In the 3% prevalence scenario, a positive test re-
quires confirmation, and negative results could potentially in-
form a decision to withhold empiric antifungal therapy. Such
considerations are crucial to proper utilization of these rapid
identification platforms.
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RAPID PATHOGEN IDENTIFICATION BY MASS
SPECTROMETRY

In the past 10 years, organism identification in the clinical micro-
biology laboratory has been revolutionized by methods that utilize
MS to identify a microbe’s unique ribosomal protein profiles. The
most widely adopted MS approach in clinical microbiology is
matrix-assisted laser desorption ionization, time-of-flight MS
(MALDI-TOFMS, reviewed in [27]).The most common applica-
tion of MALDI-TOF MS is the identification of pure microbial
isolates grown by culture. Protein pattern matching by MALDI-
TOF MS is more accurate than conventional biochemical pheno-
typic testing and is faster and less expensive than 16S DNA
sequencing [28]. TwoMALDI-TOF instruments are currently ap-
proved by the FDA for the identification of bacterial isolates from
conventional culture on solid media (Microflex Biotyper; Bruker
Daltonics, Billerica, MA) and Vitek Mass Spectrometry System
(Vitek MS2; bioMerieux, Lille, France).
Although not an FDA-approved application, numerous stud-

ies have shown that MALDI-TOF MS can be applied to broth
media from a positive blood culture bottle, with a diagnostic
yield approximately 80% (range, 74%–98%) and a turnaround
time of 20–60 minutes [29–33]. Of note, the identification of
yeast in positive blood culture broth by MALDI-TOF MS has
been more challenging than identification of bacteria [34], al-
though some studies show yeast identification can be optimized
with more involved protein extraction protocols [35]. Regarding

performance in the setting of polymicrobial bloodstream infec-
tions, MALDI-TOFMS often detects at least 1 of the organisms,
but it rarely (<10% of cases) detects all organisms [23, 29–32].
Although current MALDI-TOF MS systems cannot directly

detect antimicrobial resistance, MALDI-TOF MS can assess for
β-lactamases by incubating a cultured isolate with a given anti-
biotic and then measuring drug metabolites of β-lactamase-
mediated antibiotic degradation [36, 37]. The MALDI-TOF
MS has also been incorporated into rapid antimicrobial suscept-
ibility testing algorithms. In these laboratory-developed proto-
cols, centrifuged pellets [38]or filtered lysates [39] of broth from
a positive blood culture are processed for MS identification and
simultaneously inoculated into an FDA-approved automated
susceptibility instrument.

COST-EFFECTIVENESS AND CLINICAL
OUTCOMES DATA

Adoption of the above-mentioned rapid diagnostic assays re-
quires a considerable capital investment for the clinical labora-
tory, and the cost-per-test of the nucleic acid detection assays is
typically higher than the cost of conventional microbiologic
methods. Despite these differences, cost savings are potentially
derived from targeted de-escalation of empiric broad-spectrum
antimicrobial therapy (ie, a decrease in pharmacy costs) [40–42]
and from decreased hospital length of stay [41, 43].Most studies
demonstrating cost savings have systematically integrated rapid
pathogen identification into an antimicrobial stewardship pro-
gram [41, 43]. In fact, a recent randomized study showed im-
proved antimicrobial de-escalation with FilmArray BCID
coupled to real-time stewardship compared with FilmArray
BCID coupled to standard laboratory results reporting alone
[44]. Although more clinical outcomes data are needed, at
least 2 studies have demonstrated a mortality benefit for rapid
pathogen identification direct from positive blood culture
[6, 45], and this is consistent with the mortality benefit of expe-
dited diagnosis of Gram-negative bacteremia using MALDI-
TOF on blood culture isolates [46].

CONCLUSIONS

Rapid identification of bloodstream pathogens is now a reality
with the various laboratory systems discussed in this review.
Most of these modalities still require growth detection in an in-
cubated blood culture, but novel FDA-approved nanotechnolo-
gies, such as the T2Dx, or other technologies on the horizon,
such as PCR-electrospray ionization MS and NanoString,
hold promise for the detection of bloodstream pathogens
directly from whole blood patient samples. More patient out-
comes data are needed to assess the clinical impact of rapid
identification systems, but studies to date show these assays
are cost-effective and are associated with a mortality benefit

Figure 1. Predictive values of T2Candida test by function of disease
prevalence in the tested patient population. Using the published clinical
sensitivity (91%) and specificity (99%) of the T2Candida test, this graph
plots the variation of the negative predictive value (NPV [triangle plots])
and positive predictive value (PPV [square plots]) across a range of disease
prevalence.
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when formally integrated into antibiotic stewardship programs
that act on the test results in near real-time.
Returning to the 57-year-old patient with methicillin-sensitive

S aureus bacteremia detected from his positive blood culture by
the hospital laboratory’s rapid molecular identification plat-
form: given the documented test performance for both organ-
ism identification and resistance detection of the currently
FDA-approved tests, these results are clinically actionable, and
tailoring his antimicrobial therapy from empiric vancomycin to
cefazolin or nafcillin is indicated [47].
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