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In recent years, cancer immunotherapy experienced remarkable developments and it is
nowadays considered a promising therapeutic frontier against many types of cancer,
especially hematological malignancies. However, in most types of solid tumors,
immunotherapy efficacy is modest, partly because of the limited accessibility of
lymphocytes to the tumor core. This immune exclusion is mediated by a variety of
physical, functional and dynamic barriers, which play a role in shaping the immune infiltrate
in the tumor microenvironment. At present there is no unified and integrated
understanding about the role played by different postulated models of immune
exclusion in human solid tumors. Systematically mapping immune landscapes or
“topographies” in cancers of different histology is of pivotal importance to characterize
spatial and temporal distribution of lymphocytes in the tumor microenvironment, providing
insights into mechanisms of immune exclusion. Spatially mapping immune cells also
provides quantitative information, which could be informative in clinical settings, for
example for the discovery of new biomarkers that could guide the design of patient-
specific immunotherapies. In this review, we aim to summarize current standard and next
generation approaches to define Cancer Immune Topographies based on published
studies and propose future perspectives.

Keywords: immune topography, solid tumors, immune exclusion, imaging techniques, deep learning, single-
cell analysis
INTRODUCTION TO CANCER IMMUNE TOPOGRAPHIES

Cancer Immunotherapy in Hematological and Solid Tumors
The first application of immunotherapy was reported in 1891, when Dr. William B. Coley saved a
patient with inoperable multiple advanced tumors by infecting him with streptococcal bacteria. The
immune reaction produced caused shrinkage of the malignant tumor. However, the advent of
radiation and chemotherapy resulted in a dismissal of Coley’s approach. This changed in the last
decades leading in 2013 editors of the Science magazine to elect cancer immunotherapy as the
“Breakthrough of the Year.” In 2018, the Nobel Prize in physiology or medicine was awarded to two
cancer immunotherapy researchers, J. P. Allison and T. Honjo, for their discovery of immune
org January 2021 | Volume 11 | Article 6049671
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checkpoints (1). Today, cancer immunotherapy is considered a
promising therapeutic strategy against a variety of hematological
and solid malignancies (2–4). Immune checkpoint inhibitors and
chimeric antigen receptor (CAR) T-cells can induce durable
remissions in many cancers and are clinically accepted as
standard treatments for several cancers.

Significant clinical responses have been observed in
hematological malignancies, using CAR-T-cells engineered to
recognize CD19 molecules on B-cells (2, 5, 6). Treatments with
checkpoint blocking antibodies have also been approved by the
FDA for melanoma, lung cancer, breast cancer, kidney cancer and
many other solid tumor types (7–15). Despite this progress, only a
limited subset of patients responds favorably to the treatment and
some tumors, such as prostate cancer and most gastrointestinal
malignancies, have been proven to be particularly resistant to
checkpoint inhibition, particularly when used as single agent (16–
19). In general, solid tumors present various challenges to the
applicability of immunotherapy, including the selection of the
antigen to target, the infiltration of T-lymphocytes into the tumor
core and the highly immunosuppressive tumor microenvironment
(TME), which are all hallmarks of solid tumors (20). Solid tumors
are heterogeneous ecosystems and they can contain different
immunological niches in different regions of the same lesion.
Systematic documentations of this phenomenon are scarce with
the exception of a recent study which used computational image
analysis inspired by geospatial data to quantify the heterogeneity of
topographies in lung cancer (21). In some types of cancer, such as
colorectal cancer (CRC), specific Immune phenotypes are linked to
specific genotypes. For example, highly immune-infiltrated tumors
are associated with hypermutation, which are mostly due to specific
genetic features such as microsatellite instability or mutations in
POLD1 or POLE genes in CRC (22).

Immune Topographies in Solid Tumors:
Hot, Cold, and Immune Excluded Tumors
For decades, the gold standard method for diagnosing and
subtyping almost any type of solid tumor has been visual
examination of histopathology slides of tumor tissue. These
slides are unspecifically stained with hematoxylin and eosin
(H&E) which allows pathologists to discern cellular and
subcellular structures. In spite of the technological progress in
molecular biology assays, subjective evaluation of histopathology
slides remains the backbone of solid tumor diagnostics. Although
H&E staining dyes do not selectively bind to specific cell types,
the visual characteristics of different cells allow a reproducible
classification of cells into tumor cells, lymphoid immune cells,
granulocytes, fibroblasts and other groups of cells in the tumor
microenvironment. In particular, tumor-associated lymphocytes
(including tumor-infiltrating and peritumoral lymphocytes) can
be easily spotted due to their unique size, morphology and
staining characteristics. Historically, the presence of such
lymphocytes in or around tumor tissue has been regarded as
an epiphenomenon of malignant tumor growth. However,
mounting evidence supports the notion that the presence of
these lymphocytes reflects an adaptive anti-tumor immune
response by the host immune system and is a prognostic
Frontiers in Immunology | www.frontiersin.org 2
biomarker as well as a predictive biomarker of response to
immunotherapy (23).

Systematic analyses of the distribution of lymphocytes in
histopathology specimen have allowed to classify solid tumors
according to three distinct Immune Topographies (24): a) Hot
tumors, infiltrated by lymphocytes, i.e. lymphocytes are mixed
with tumor cells in the tumor core (Figure 1A); b) Cold tumors,
characterized by an absence of lymphocytes, i.e. almost no
lymphocytes can be seen on histological slides (Figure 1B);
c) Immune-excluded tumors characterized by an abundance of
lymphocytes at the invasive edge of the tumor, but few to no
lymphocytes in the tumor core (Figure 1C).

Hot tumors present a homogeneous infiltration of T
lymphocytes together with the accumulation of pro-inflammatory
cytokines, and usually respond better to immunotherapy (25).
Immune excluded tumors embody a unique ecosystem, differing
from hot tumors, as they display gradients of T-cell exclusion (26).
Such gradients are specific to each tumor environment and not
present in cold tumors, where T-cells are completely absent. This
trichotomy can be detected across most solid tumors and is directly
associated with clinical outcome and response to immunotherapy
(24, 27–30).

However, few published studies have systematically
quantified the trichotomous Immune Topography in solid
tumors beyond histopathological description (24). At present,
there is only a limited understanding about how cellular
mechanisms of immune exclusion may relate to each other in
shaping this peculiar phenotype in human cancers, either
through converging biological pathways or from a causative
standpoint. Compelling data collected through high-
throughput analysis would shed light on the spatial and
temporal dynamics in which such determinants are involved,
allowing for the creation of a harmonized ‘Theory of Everything’
(31, 32). Moreover, mapping the spatial distribution of immune
cells in solid tumors also provides quantitative information
potentially informative in clinical settings, allowing for the
design of combinatorial approaches aimed at improving
immunotherapy efficacy.

Tertiary Lymphoid Structures and Other
Second-Order Topographies
Hot, cold and immune-excluded tumors are among the most
striking patterns that can be observed in histopathology images.
However, in addition to this trichotomy, immune cells in cancer
tissue can form additional patterns which have been quantified
and linked to biologically and/or clinically meaningful
endpoints. These “second-order” Immune Topographies do
not rely on pre-defined compartments within the tumor and
around the tumor. For example, one such pattern of lymphoid
cells observable in histopathology images of cancer is a tertiary
lymphoid structure (TLS, Figure 1D). These structures are
composed of lymphocyte conglomerates organized to resemble
lymph node germinal centers and can be observed outside of (33)
or within (34) the tumor tissue. The presence and number of
these TLS is positively correlated to survival (35) and
immunotherapy response (36) in a number of cancer types.
January 2021 | Volume 11 | Article 604967
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However, systematic analyses of association with TLS
count and other types of Immune Topographies are still
lacking. In summary, it is still not entirely clear how different
Immune Topography patterns are correlated to one another and,
collectively, to clinical outcome. Large-scale studies in thousands
of patients treated with immunotherapy and annotated with
clinical outcomes are needed to validate and reconcile these
findings in the future. Another approach was recently described
by Saltz and coworkers by an unbiased, computational approach
to cluster tumors according to their spatial patterns of
lymphocyte infiltration (37). In particular, this approach
considered the notion of clustered (Figure 1E) and dispersed
(Figure 1F) lymphocyte infiltration and the authors could
demonstrate a link between the observed lymphocyte patterns
and patient survival, the ultimate clinically relevant end point.
However, this large-scale analysis was limited to a single
multicenter dataset, the Cancer Genome Atlas (TCGA), which
might suffer from batch effects and other sourcing bias (38).

In this review, we aim to summarize the current knowledge in
standard and next generation techniques to define Cancer
Immune Topographies, including the performed studies,
outcomes and future perspectives.
BIOLOGICAL MECHANISMS OF IMMUNE
TOPOGRAPHIES

Barriers to an Effective Immune Response
in Solid Tumors
Determinants of immune exclusion can be classified into three
groups: physical, functional or dynamic barriers. Physical
barriers represent a category where T-cells do not come in
direct contact with cancer cells, due to mechanical separations.
Therefore, activation of the immune effector gene signature is
not observed (30). However, T lymphocytes can also engage
with cancer cells, but functional determinants block their
Frontiers in Immunology | www.frontiersin.org 3
migration, expansion, function and/or survival within
the tumor core. Functional barriers consist of constitutive
metabolic interactions among immune cells, cancer cells and
cells in the TME. Finally, dynamic barriers include functional
barriers, which may be induced only when a contact between T-
cells and cancer cells occurs, preventing further infiltration,
activation and/or survival of immune cells. Dynamic barriers
may not be present in baseline conditions (39–41). Here, we will
give a brief overview of these determinants, as it is beyond the
scope of this review to describe them in more detail.

Physical Barriers
Physical barriers include the remodeling of the extracellular
matrix (ECM), cancer cell coating factors and changes in
vascular accessibility (Table 1). In tumor tissues, the most
frequent alteration of the ECM includes increased collagen
deposition and a rearrangement of its geometry; this leads to
cancer-associated fibrosis and possibly to a physical barrier to T-
cell penetration (115–120). A variety of chemokines are
responsible for this process, which requires the activation of
recruited and resident fibroblasts, myofibroblasts, cancer-
associated fibroblasts (CAFs) and cancer-associated
mesenchymal stem cells (42–44, 121–123). CAFs have also
been shown to be responsible for the biosynthesis of CXCL12,
which binds and shields cancer cells (64–66).

Another mechanism involved in the physical exclusion of
T-cells may be related to tumor angiogenesis. As cellular
proliferation outgrows blood supply, most solid tumors
experience hypoxic conditions (124). In hypoxia, genes
involved in angiogenesis are upregulated, including the
vascular endothelial growth factor family (VEGF) (125, 126).
Tumor angiogenesis often produces blood vessels with aberrant
morphology and this could result in T-cell exclusion (87, 88,
127). Additionally, VEGF not only plays a prominent role in
mediating T-cells infiltration into tumors, but also in regulating
their function (59, 60, 92).
A B
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FIGURE 1 | Immune topographies of cancer. (A–C) First-order immune topographies. (D–F) Second-order immune topographies.
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Functional Barriers
Functional barriers consist in metabolic alterations of the TME,
immune suppressive soluble factors, danger sensing molecules
and tumor cell-intrinsic signaling (Table 1). Cancer cell
metabolism often leads to the reshaping of TME conditions,
depleting it of amino acids (i.e. glutamine), which are essential
for proper T-cell function (67, 128–133). Moreover, TME often
presents increased concentration of lactate, due to the shift
toward glycolytic metabolism of cancer cells (Warburg effect)
and increased concentration of ions and other immune
suppressive components, such as extracellular adenosine (134–
137). Therefore, low pH, low glucose and reduced amino acid
presence in the TME collectively lead to T-cell dysfunction.

T-Cell Signaling
A complex signaling network is responsible for the impaired
function of T-cells, leading to lymphocytes that are exhausted,
anergic, senescent or presenting stem features. Stem-cell-like T-
cells possess the ability to proliferate and persist, but they are
unable to mature (81, 138). Recent evidence showed that an
overabundance of potassium in the TME triggers suppression of
T-cell effector function, while preserving stemness (138). This
happens through metabolic remodeling as a result of caloric
restriction and a T-cell starvation.

Interestingly T-cell stemness can also enhance the effectiveness
of immunotherapy: the generation of CD19-specific CAR-modified
CD8+memory stem cells led to long-lasting antitumor response and
increased T-cell fitness, in a human acute lymphoblastic leukemia
xenograft model (82, 139, 140).

A variety of chemokines have been implicated in the
recruitment of T-cells into the tumor nest. In immune excluded
tumors, it is possible that gradients of chemokines exist from the
periphery to the center. However, additional repulsive mechanisms
may limit the propulsion of T-cells, counterbalancing and
Frontiers in Immunology | www.frontiersin.org 4
overpowering attractive signals and reducing the chemo-
attractive infiltration. In addition, stressed or dying cancer cells
may inhibit proinflammatory signals, thereby affecting the
efficiency of the immune response (Table 1) (141–143).

Dynamic Barriers in the Tumor
Microenvironment
Finally, dynamic barriers represent a category of impediments
absent in baseline conditions, but which arise as a consequence of
the interaction between T-cells and cancer cells. This hints to a
dynamic crosstalk between the two, at early stages. An example is
the inducible activation of PDL-1 triggered by the production of
IFN-g by T-cells (Table 1) (39–41).

It is unclear if a predominant biology is responsible for most
immune excluded cases or if an indiscriminate contribution of
factors could better explain this complex phenomenon. Moreover,
at present studies have not investigated if a correlation exists
between immune exclusion mechanisms and tumor type or stage.
HOW TO QUANTIFY IMMUNE
TOPOGRAPHIES

In Vivo and Ex Vivo Approaches
Over the years, studies have demonstrated the existence of a
plethora of determinants playing a role in the immune excluded
phenotype. Modern high-throughput techniques allow us to create
pan-cancer Immune Topographies, characterizing spatial and
temporal distribution of T-cells in the TME (24). Mapping ex
vivo immune cells and correlating such distributions with
determinants of immune exclusion and morphological
parameters, would provide mechanistic insights into the dynamic
organization of factors responsible for this phenomenon. It is
TABLE 1 | Determinants of immune exclusion.

References

Mechanical barriers: physical impediments to a direct contact between T cells and cancer cells
ECM remodeling Cancer-associated fibrosis (42–48)

Epithelial-to mesenchymal transition (49–55)
Filaggrin, desmosomal proteins, endothelin B receptor (30, 56–58)

Vascular accessibility HIF-1 and HIF-2 driven angiogenesis (59–63)
Cancer cell coating CXCL12 (64–66)
Functional barriers: determinants limiting migration, function, and/or survival of T cells
Metabolic alterations TME Decrease in amino acids in the TME (67–72)

Warburg effect (increase in lactate) (73–76)
Increase in extracellular adenosine (77–80)
Increase in potassium (62, 81, 82)
Altered lipid metabolism (83)
Cyclooxygenase and prostaglandin metabolism (84–86)
Hypoxia (87–91)

Soluble factors VEGF-a (59, 60, 92–94)
Cytokines mediated immune suppressive mechanisms (42, 43, 95–98)

Danger sensing molecules TAM receptors (99–102)
don’t eat me signals (103–105)
Tolerogenic cell death/absent immunogenic cell death (106–108)

Tumor cell signaling STAT-3, PI3K, NF-kB, Wnt/b-catenin, MAPK, p53 (109–114)
Dynamic barriers: barriers arising after interaction between T cells and cancer cells

Checkpoint/ligand interactions (39–41)
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possible that specific determinants of immune exclusion could
correlate with some tumor types or with the tumor stage, rather
than appearing randomly and chaotically.

In vivo studies offer information to design effective
personalized combinatorial immunotherapies and clinical
monitoring. Finally, it may be possible to integrate the data
obtained from in vivo and ex vivo techniques, for the different
determinants of immune exclusion. Such a comprehensive
analysis might lead to the understanding of a common biology
at the basis of the immune excluded phenotype.

Histology Images
Histopathology images are a versatile and well established method
to analyze the tumor microenvironment and Immune
Topographies in solid tumors. Histological specimens are
routinely generated from preclinical tumor models and are
available for almost any patient with a solid tumor in the clinic.
The standard staining method for histopathology slides is
hematoxylin and eosin (H&E) which allows for a rough
classification of cells in the TME. By visually looking at
histopathology slides or digitized whole slide images, pathologists
can quantify patterns of antitumor immune response.

Although hot, cold and immune-excluded Immune
Topographies can be visually determined just by looking at
H&E stained histopathology slides, two methods have enabled
a more quantitative description of these topographies:
Immunohistochemistry and computer-based analysis.

Immunohistochemistry and Multiplex
Imaging Techniques
Immunohistochemistry (IHC) methods can be used to selectively
label certain immune cell subtypes in histology images, allowing
for a more nuanced definition of Immune Topographies. IHC
uses antibodies which are directly or indirectly coupled to certain
dyes, allowing it to highlight markers specific to certain cell types.
For example, cytotoxic lymphocytes are defined by a presence of
the CD8 protein on their cell membrane. IHC methods have
recently inspired a whole range of more sophisticated multiplex
methods, allowing to characterize the expression of multiple
proteins in one image. Multiplex fluorescence imaging (144),
multiplex brightfield imaging (145) are among the most widely
used methods to deeply characterize tumor-associated immune
cells in a spatially resolved way. However, these methods are
much more expensive, time-consuming and complex than H&E
staining and usually require access to specialized and costly
equipment. Thus, the advantages of these deeper methods need
to be balanced against the simplicity of classical H&E
histopathology, which allows for a broader characterization of
thousands of patient samples in larger cohorts. Accordingly,
most studies which have analyzed H&E histopathology images
include a much higher number of patients than studies adopting
more specialized methods.

Hypoxia-Associated Proteins
As previously mentioned, hypoxia is a key player in the immune
excluded phenotype. Hypoxia is responsible for a dramatic
reshaping of cellular transcriptional programs, through the
Frontiers in Immunology | www.frontiersin.org 5
activity of specific transcription factors called Hypoxia
Inducible Factor 1 and 2 (HIF-1 and HIF-2). These proteins
are responsible for the upregulation of a subset of genes essential
to ensure adaptation, survival and proliferation in hypoxic
conditions (146–148). Common hypoxic markers used in IHC
include: CAIX, VEGF-A, EPO, GLUT-1 and GLUT-3,
osteopontin, BNIP3, PDK1, LDHA, and LOX (149–153). These
proteins are transcriptionally induced by HIF-transcription
factors. HIF-1 can also be directly assessed in IHC, but
correct sample handling is essential. The half-life of HIF-1 at
20% oxygen is approximately 5 min while other markers (i.e.
VEGF-A and CAIX) are more stable (147, 154–156). Therefore,
it is crucial to select the most appropriate proteins to test, based
on sample processing procedures. Exogenously administered
compounds can also be used to detect hypoxic regions in IHC.
A nitroimidazole molecule called pimonidazole and a
pentafluorinated derivative of the 2-nitroimidazole etanidazole,
called EF5, are the most widely used (157–159). These non-toxic
compounds are administered from a few hours to 48 h prior to
biopsy and immunochemical detection is then performed.
Pimonidazole directly correlates with the severity of hypoxia,
and IHC has been successfully used to assess tumor hypoxia in
patients with cervical carcinoma, prostate cancer and head and
neck carcinoma (150, 157, 160). EF5 is also routinely employed
to detect gradients of hypoxia as shown in studies on patients
with head and neck tumors and uterine cervix cancer (161, 162).
EF5 has also been used to detect hypoxia in atherosclerotic
plaques in mice and in xenograft models of human colorectal
carcinoma and sarcoma (163, 164).

Digital Pathology Approaches
Digital pathology, i.e. computer-based processing of digitized
histopathology slides, has been used to automatically detect and
count tumor-associated immune cells. Such approaches can be
used to automate detection of Immune Topographies and to
establish quantitative thresholds for classification of a given
sample in either class. In the early days of digital pathology,
the sheer size of scanned whole slide images (WSI) has been an
obstacle for many researchers to analyze such data. Nowadays,
however, more widespread availability of digital slide scanners,
cheaper storage media and the emergence of easily usable open
source software such as QuPath (165) enables almost any
researcher at academic institutions to use computer-based
approaches for quantitative analysis of pathology slides. These
quantitative analyses can be performed with H&E stained
images, single-immunostained images or multiplex images.
One way of quantifying hot-cold-excluded topographies by
means of digital pathology is with the “Immunoscore” (166),
which has been extensively validated in large-scale studies
(28). While the original “Immunoscore” protocol relies on
proprietary software marketed by a commercial entity, the
underlying principle can be re-built based on publicly available
information (167).

Deep Learning-Based Image Analysis
Medical image data, and particularly digitized histopathology
slides contain a large amount of information which is not entirely
January 2021 | Volume 11 | Article 604967
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used. In particular, human observers, who visually analyze
histopathology slides cannot objectively and quantitatively
extract all relevant information. Deep learning is a method
from the realm of artificial intelligence, which in recent years
has revolutionized computer-based image analysis in non-
medical and medical domains alike. Specifically, when applied
to digital whole slide histology images, deep learning can extract
biologically and clinically relevant information. In particular,
immune-related features can be extracted from histopathology
images. For example, gene expression signatures of cancer-
infiltrating immune cells can be detected solely from H&E
images in multiple types of solid tumors (168, 169).

Genome Sequencing Technologies
A comprehensive mechanistic insight regarding the correlation of
functional, physical and dynamic barriers with morphological
parameters in human cancer could be achieved thanks to last
advances in high throughput analysis. These techniques are laying
the foundation for a pan-cancer comprehension of the complexity
of factors orchestrating the immune response in the TME. Recent
studies profiled the TME of several cancer types including lung
cancer, hepatocellular carcinoma, medulloblastoma, melanoma,
head and neck cancer, pancreatic cancer and glioma (170–176).

Current developments in automated, multiplexed platforms
to detect biomarkers and the increasing number of spatially
resolved profiles of transcripts and metabolic products, could be
important to provide an integrated landscape of molecular
determinants driving the phenomenon of immune exclusion.
Obtaining correlations between markers of different types of
barriers, degree of immune infiltration/activity and tumor type/
stage would allow us to investigate if one or multiple pathways
are prevalent in human cancer or if these pathways just overlap
indiscriminately. Such information, accumulated in a large
cohort of human cancers, would be pivotal to improve
diagnostic strategies and to predict the response to treatments.

Transcriptional profiling of “immune-mediated, tissue-specific
destruction (TSD)” events led to the creation of an immune
signature called immunologic constant of rejection (ICR) (31,
177–179). ICR is a 20-gene signature and characterizes a
convergent pathway leading to TSD, also called immune rejection.
Such signature can be observed in a variety of immune events:
tumor regression, autoimmunity, clearance of pathogens and
allograft rejection (179). ICR expression was correlated with a
better prognosis in breast cancer patients and was validated as a
prognostic predictive parameter in a pan-cancer cohort of patients
treated with an anti-CTLA4 immune checkpoint inhibitor (109,
180, 181). The tumor inflammation signature (TIS) is considered as
another immune predictive biomarker and it is an 18-gene signature
(182, 183). TIS has been shown to be enriched in patients
responding to anti-PD1 treatment and the expression patterns
were conserved among tumor types (182).

Bioinformatics studies have been performed during the years,
to investigate immune signatures in different types of tumors.
These analyses rely on data from public cancer databases and
provide a coarse evaluation of T lymphocytes functional status in
bulk tumor samples. Computational deconvolution analysis on
bulk RNA-seq data can be used to infer infiltrating cell types.
Frontiers in Immunology | www.frontiersin.org 6
Such analysis is limited by the existence of specific gene
signatures, relative to cell types (184–187). However, no spatial
or temporal resolution can be obtained from bulk bioinformatic
studies. In order to achieve more detailed information about T-
cell populations within the tumor mass and their functional state,
single-cell techniques were developed and experienced
tremendous progress in the past few years.

Single-Cell RNA Sequencing
Single-cell RNA sequencing (scRNA-seq) allows the investigation of
the expression of hundreds of genes in a single experiment, enabling
systematic identification of cell populations in a tissue. This
technique provides insights into tumor heterogeneity and it has
been used to assess both abundance and functional state of tumor
associated cell types (188–193). ScRNA-seq has been increasingly
employed due to a reduction in costs (sequencing and cell isolation)
and improvement in throughput.

The most common scRNA-seq technologies rely on
microfluidic devices which use patterned microwells for single-
cell isolation or aqueous droplets in a continuous oil phase. Once
isolated, cells are lysed and a whole transcriptome approach can
be performed (i.e. Smart-seq2, MATQ-seq, SUPeR-seq) (194–
196). Alternatively 3’-end or 5’-end sequencing technologies are
available (i.e. Drop-seq, CEL-seq, Seq-Well, MARS-seq,
Chromium, Quartz-seq, DroNC-seq, STRT-seq, etc.) (197–
206). These two categories present different transcript coverage
and each protocol has specific features, benefits and drawbacks.

Unfortunately, single-cell techniques require monodisperse cells,
leading to loss of spatial information during cell isolation.Moreover,
tumor solid biopsies could lead to biases and failure to identify the
whole transcriptional profile or the truthful tumor-associated cell
infiltration landscape. This can be due to the sampling location and
to the fact that, only a small fraction of cells from the biopsy, can be
sequenced (207–209). LCM microdissection is a method of sample
dissection which consents the preservation of spatial information
and partially rescues the technical limitation mentioned above. Cells
from the region of interest are collected using laser pressure
catapulting or through a near-IR laser, after being microscopically
identified (210–212). Experimental or computational spatial
reconstruction can also be obtained via immunohistochemistry,
laser scanning microscopy, fluorescent in situ RNA sequencing
(FISSEQ) or with anchor genes, through single molecule
fluorescence in situ hybridization (smFISH) (213–217).

Single cell analysis allowed the investigation of the heterogeneity
of tumor cells and tumor-infiltrating immune cells in breast cancer,
clear cell renal cell carcinoma, colorectal, glioblastoma multiforme,
melanoma, liver, ovary, non-small-cell lung carcinoma,
nasopharyngeal cancer, squamous cell carcinoma of the head and
neck and gastric cancer (168, 188–192, 218–222). The immune cells
prevalently identified in most of these tumors were T lymphocytes;
however myeloid cells, B cells and natural killer cells were also
present at lower frequencies.

Immune cell subtypes were transcriptionally characterized, and
their ontogeny wasmapped, together with cell trafficking to different
tissues or tumors (223). Clonotype expansion and migration was
monitored by barcoding V(D)J recombination at the T-cell
receptors (TCR) and B cell receptors (BCR) loci (224–226). V(D)J
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recombination occurs during T and B cell maturation, resulting in
the diverse repertoire of TCR and BCR present in the lymphocyte
population. Gene expression signature of T-cell clusters reflects a
specific functional status and such diversity is crucial in clinical
settings, to predict immunotherapy response. Indeed, T-cell
populations with lower exhaustion levels were associated with a
better prognosis in a variety of different cancer types (227–229). A
study on gastric cancer reported that the interferon regulatory
factor-8 transcription factor (IRF-8) was downregulated in CD8+
tumor infiltrating lymphocytes (TILs), leading to an exhausted
phenotype. Patients with lower IRF-8 levels in CD8+ lymphocytes
tended to have worse prognosis (230). A recent publication showed
that, in early-stage triple-negative breast cancer, among CD8+ TILs,
tissue resident memory cells display high expression of cytotoxic
molecules, inhibitory checkpoint and genes associated with
proliferation. This study suggests that T-cell exhaustion is a
gradual process (231, 232). In clear cell renal cell carcinoma, PD-
1 was found widely expressed in both CD8+ and CD4+ T-cell
populations, while other inhibitory molecules were present only in a
subset of PD-1 positive T-cells (189). Studies on the functional state
of T-cells were also performed in melanoma and non-small-cell
lung carcinoma patients, allowing the characterization of
dysfunctional T-cells in the TME (191, 233). Xiao et al. (222)
developed a computational pipeline to investigate the metabolic
landscape of the tumor, at single cell resolution. They analyzed
metabolic gene expression profiles of more than 9000 single cells
from melanoma and squamous cell carcinoma of the head and
neck. Metabolic pathways in tumor cells were found to generally be
more plastic and, interestingly, glycolysis and oxidative
phosphorylation both correlated with hypoxia at the single cell
level. Metabolic features of immune cells were also identified and
found to be altered. Characterizing the metabolic landscape in the
tumor core could provide insights into the organization and
prevalence of functional barriers.

Interactions among cells play a central role in shaping
the TME altering cell metabolism, immune response and
creating barriers to lymphocytes infiltration or activity (234,
235). Despite the study of cell interactions using single cell
approaches is at early stages, a new publicly available
repository of curated receptors, ligands and their interactions is
available. CellPhoneDB (www.cellphonedb.org) takes into
account the subunit architecture of both ligands and receptors
and, coupled to scRNA-seq data, is a powerful tool to infer cell-
cell communication networks (236, 237). Recently, scRNA-seq
coupled to CellPhoneDB has been used to reveal interactions
between Th2 and mesenchymal cells, in asthmatic human
donors (238). ProximID is another strategy to create a cellular
network based on scRNA-seq data. ProximID can be used to
discover new niches interactions in different tissues, via
microdissection of small interacting cell clusters and inference
of the cell types present in the dissected entity through scRNA-
seq. Boisset et al. (239) used ProximID to study mouse bone
marrow and found specific interactions between megakaryocytes
and mature neutrophils and between plasma cells and
myeloblasts and/or promyelocytes. Moreover, they identified
stem cell interactions in small intestine crypts.
Frontiers in Immunology | www.frontiersin.org 7
Single cell analysis is not confined to the investigation of the
transcriptome and, recently, the combination of multiple
measurements (DNA, RNA, proteins) has been suggested as a
comprehensive strategy to understand the TME complexity (223,
240). Innovative techniques such as G&T-seq and DR-seq allow
to sequence both DNA and RNA, from single cells (241, 242).
Genomic DNA and full-length mRNA are captured and
physically divided before amplification and library preparation.
These techniques, despite allowing for the comparison of gene
expression data and corresponding genomic data in the same
cell, increase the risk of sample loss or contamination and
present a moderate reduction in coverage distribution.

Another combination of multi-omics techniques, which
provides information about the transcriptional status of cells,
consists of coupling ATAC-seq with RNA-seq. ATAC-seq can be
considered a technique to assess genome-wide chromatin
accessibility (243–245) and it relies on a genetically engineered
hyperactive Tn5 transposase (246). Such transposase allows
fragmentation of chromatin and integration of NGS adapters
into open chromatin regions (247, 248). ATAC-seq coupled with
RNA-seq was used to identify potential gene regulatory regions
in glucagon-secreting a-cells and insulin-secreting b-cells (249)
and to unravel disruptions of transcriptional regulations and
gene expression in lung cancers (250).

Quantification of proteins and mRNAs simultaneously
in individual cells can be obtained through different
methodologies: Cellular Indexing of Transcriptomes and
Epitopes by Sequencing (CITE-seq), RNA Expression and
Protein Sequencing (REAP-seq) and Antibody sequencing (Ab-
seq) (251–254). The workflow includes the creation of a pool of
barcoded antibodies againsT-cell surface proteins of interest.
Then, cells bind to barcoded antibodies and are encapsulated
within a droplet, as single cells. Finally, the scRNA-seq libraries
are prepared and sequenced. Such an approach overcomes the
lack of correlation that sometimes is found between mRNA and
protein levels, providing a more accurate characterization of the
cellular phenotype.

The integration of different layers of information could be
pivotal to provide insights into signaling networks regulating the
immune excluded phenotype. However, as mentioned before, a
primary drawback of single cell techniques is the loss of spatial
information, which occurs during sample processing. In order to
create systematic Immune Topographies, it is of crucial importance
to characterize spatial and temporal distribution of lymphocytes in
the TME. Therefore, technologies permitting simultaneous
transcriptional assessment and preservation of tumor morphology
or restoration of spatial information are preferable.

Spatial Transcriptomic Methodologies
New spatial transcriptomic (ST) methodologies exploit spatially
barcoded oligo-deoxythymidine microarrays, allowing for
unbiased mapping of transcripts (Figure 2) (255). ST has been
performed to investigate prostate cancer, gingival tissue, breast
cancer, pancreatic ductal adenocarcinoma, melanoma, adult
human heart tissue, mouse, human and mouse spinal cord
tissue and mouse olfactory bulb (221, 256–262). ST does not
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provide a high resolution as each area resolves the transcriptome
of 10-200 cells (~ 100 µm), depending on the tissue context.

Moncada et al. combined microarray-based ST with scRNA-
Seq generated from the same sample, to identify enrichments of
specific cell types and subpopulations across spatially-defined
regions of pancreatic tumors (221). Berglund et al. assessed the
transcriptomes of nearly 6,750 tissue regions through ST from a
patient with prostate cancer. They extracted different expression
profiles for stroma, immune cells, and cancer cells (Figure 3)
(257). Another example is Thrane et al., who applied the ST
technology to melanoma lymph node biopsies. The
transcriptomes of over 2,200 tissue domains was sequenced,
revealing a detailed landscape of melanoma metastases (259).
Nanostring technologies recently developed a high-plex panel to
be used with the GeoMx™ Digital Spatial Profiler (DSP). This
panel includes more than 1,400 genes to spatial profile tumor and
immune pathways, including checkpoint inhibitors, intrinsic
cancer cell pathways and predictive markers (263).

ST protocols usually achieve a quite low resolution, however
an implementation of this technique called Slide-seq can spatially
resolve maps of histological sections at 10 µm resolution (264).
Slide-seq substitutes the barcoded oligo-deoxythymidine with
DNA-barcoded beads, harboring probes to trap the RNA. This
technique was performed to map individual cell types, physically
and functionally, in brain cryosections.

Other spatial techniques of interest include fluorescence in
situ hybridization (FISH), NICHE-seq technology and spatially-
resolved transcript amplicon readout mapping (STARmap).
FISH allows to achieve a highly multiplexed single-molecule
visualization of transcripts. In particular, multiplexed error-
robust single-molecule fluorescent in situ hybridization
(MERFISH) enables RNA imaging of individual cells using
Frontiers in Immunology | www.frontiersin.org 8
physically imprinted error-robust barcodes for individual RNA
species. Subsequent rounds of imaging allow to measure these
barcodes (265–269). Xia et al. (266) measured RNA species from
∼10,000 genes in different subcellular compartments. He also
observed transcriptionally distincT-cell states and revealed
spatial patterning, in U-2 OS cultured cells.

NICHE-seq technology allowed isolation and sorting of
immune cells from a visually selected niche in model animals,
expressing a photoactivatable green fluorescent protein (215,
270). ScRNA-seq was performed on sorted cells. This technique
preserves the cell states and allows the investigation of the TME
influence on immune cells. NICHE-seq was performed to
identify T and B cells in mouse lymph nodes and spleens, after
virus infection (215). It also revealed niche-specific expression
programs and changes in immune localization, in melanoma and
naïve inguinal lymph nodes in mouse models (Figure 4).
However, due to the two-photon laser scanning microscopy
which is required to perform this technique, application of
NICHE-seq is currently limited to preclinical research.

Three-dimensional distribution of transcripts in mouse
model was achieved via STARmap. This technique integrates
hydrogel-tissue chemistry, targeted signal amplification, and in
situ sequencing (271, 272). STARmap was used to map 160 to
1,020 genes in 3D-intact tissue from brain mice. It successfully
revealed molecularly defined gradient distribution and clustering
of neuron subtypes (271).

Emerging Technologies for Multiplexed
Molecular Profiling of the TME
The development of targeted therapies that may be efficacious in
reprogramming the host immune response to recognize and
eliminate tumor cells requires accurate identification of the
A B

DC

FIGURE 2 | Spatial transcriptomics workflow including the downstream analysis. (A) Histological tumor sections are annotated by a pathologist and sections of
interest are stained with hematoxylin and eosin before permeabilization. (B) The sections are placed on glass slides containing RT-primers arrayed as spots that
correspond to tissues domains. The RT-primers at each spot have a unique spatial ID barcode, which is sequenced along with the transcript to enable trace-back to
a specific tissue domain. (C, D) After sequencing, gene expression profiles and factor activity maps are created.
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various inflammatory cells and the special relationships between
them within the TME. While currently established techniques
enable routinely interrogation for up to two protein markers and
evaluate their expression by visual examination, there is a growing
need to reliably query many more targets (including both proteins
and mRNAs) simultaneously in a given tissue specimen, in order
to more precisely characterize the TME within and between
tumors. Three new technologies (i.e not based on IHC or IF
platforms) aimed at achieving these goals, including multiplexed
ion beam imaging (MIBI), codetection by indexing (CODEX) and
digital special profiling (DSP) are discussed below.

Multiplexed Ion Beam Imaging (MIBI) is a new technology
platform, based on the CYTOF technique that preceded it, with
the capability to detect and visualize a large number of protein in
situ using secondary mass spectrometry to image antibodies
tagged with isotopically pure elemental reporters (273).
In contrast to standard multiplexed IHC protocols, sample
preparation involves one-step, rather than sequential,
application of a cocktail of elementally tagged antibodies (274).
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Samples are subsequently subjected to a rasterized oxygen
duoplasmatron primary ion beam which liberates the
lanthanide adducts of the bound antibodies as secondary ions
and recorded by a TOF-MS. For each physical pixel in the
analyzed tissue a mass spectrum is recorded and reflects the
abundance of the queried antigens in that location. Recent
publications (275) showed that the high-parameter capability,
sensitivity and resolution of MIBI are well suited to
understanding the complex tumor immune landscape including
the spatial relationships of immune and tumor cells and
expression of immunoregulatory proteins.

Co-Detection by Indexing (CODEX) is another novel
technology for highly multiparametric in situ analysis of
protein expression using tissue sections. One of the benefits of
this technique is its use of a standard fluorescence microscope
rather than an ion bean coupled to a mass spectrometer. But
unlike the other platforms, published reports involving CODEX
have only utilized frozen tissue cut onto glass slides rather than
formalin fixed, paraffin embedded (FFPE) tissue sections. Like
January 2021 | Volume 11 | Article 604967
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FIGURE 3 | Example of spatial transcriptomic analysis on three prostate cancer biopsies: histology and gene expression factors (257). (A) Annotated brightfield
images of tissue sections of interest, stained with hematoxylin and eosin. (B) Factor activity maps for morphological features (normal glands, PIN glands, stroma and
cancer cells) and for inflamed regions (reactive stroma, immune profile).
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the other multiplexing methods, multiple antibodies are applied
to a single tissue section for visualization simultaneously;
however, the antibodies are tagged with unique DNA
oligonucleotides, rather than fluorophores or rare metal
elements and then crosslinked to their cellular targets. The
process typically involves a single step of immunostaining with
up to 40 antibodies each label with a distinct oligonucleotide tag.
Visualization of a tissue-bound antibody requires specific PCR-
based extension of each antibody bound oligo followed by
annealing to a complementary strand of DNA coupled with
specific fluorophore. This process is totally automated. However,
since the analysis typically involves imaging two to five DNA
tagged antibodies at the time a complete analysis of a single tissue
requires approximately 30 h to image a 1 cm2 at 400 nm
resolution. At the end of the multicycle rendering protocol
each group of antibodies is visualized at a known predefined
cycle of the indexing protocol and the multiplexed image is
reconstructed (276).

The above mentioned techniques all use antibody-based
methods to detect antibody-protein complexes in a tissue
section. By contrast, digital special profiling (DSP) is a
technology platform which allows, in a non-destructive
manner, to profile multiple proteins and RNA from a wide
variety of samples types including FFPE tissue sections (263,
Frontiers in Immunology | www.frontiersin.org 10
277). Briefly, the method uses antibodies or mRNA probes
coupled with UV photocleavable oligo tags for the digital
detection of specific proteins and transcripts, respectively. After
probe hybridization to slide-mounted tissue, UV light exposure
is used to liberate the oligo-tags within a small predefined region
of interest (ROI) (278–280). The probes are then automatically
collected and quantified on a standard nCounter systems (for up
to 800-plex profiling or mRNAs or proteins) or sequenced on
NGS platform (potentially for unlimited multiplexing) and
counts are mapped back to the tissue location, thus producing
a spatially resolved digital profile of analyte (protein or mRNA)
abundance within each ROI (278–280). Since the UV light is
projected into the sample using two digital micromirror devices
containing one-million semi-conductor-based micromirrors, a
complete flexibility in the pattern of light utilized for high-plex
digital profiling of the tissue can be reached. This mechanism
results in diverse, automatically configurable, ROI profiles
including 1) tumor only; 2) tumor microenvironment only; 3)
unique cell types and rare cell features; 4) spatial gradient around
cell features; 5) simple hand-selected geometric areas or a
combination of the above methods (277). Furthermore the
technology does not destroy the sample thus allowing for
multiple profiling cycles of the same tissue section or
subsequent DNA sequencing of the same section.
A

B C

FIGURE 4 | Example of NICHE-seq, assessing the cellular composition of defined niches (215). (A) Two-photon laser scanning microscopy (TPLSM) images of
naïve inguinal lymph nodes from PA-GFP host mice before and after photoactivation (green). In red, adoptively transferred cells and cyan marks the T-cell area and
the B follicles, respectively. (B) Expression profile from photoactivated B follicles (cyan) or T-cell areas (red). (C) Relative enrichment of different T-cell types [(B), CD4,
CD8low, CD8high and CD8 Activated] in each subregion. *p < 0.05.
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Reports of application of this technology to immuno-
oncology clinical trial samples are emerging (278, 279).
Immuno-oncology clinical trial samples examined using DSP
have already provided key insights into the mechanism of action
of combination therapy in melanoma (278, 279). While such
sophisticated approaches to tissue evaluation of biomarkers hold
tremendous promise they are nonetheless in their infancy and
therefore come with one or more caveats at this time including
costs, lack of standardization across labs, time and labor
intensive protocols and lack of widespread availability.

In Vivo Imaging and Functional Imaging
In vivo imaging of T-cell distribution could be a powerful strategy to
provide dynamic and spatial information regarding immune
exclusion in tumors, during preclinical studies and in a clinical
setting. Non-invasive cell tracking would allow us to monitor and
quantify cellular delivery and effectiveness of immunotherapeutic
approaches. A robust technique would also allow the selection of an
appropriate dosing regimen. Over the years, significant
developments in imaging immune cells were made and a variety
of techniques is currently available for preclinical or clinical use.

Optical detection includes fluorescence or bioluminescence
imaging and is mainly performed in preclinical settings, due to
its limited depth of penetration. However, numerous whole-body
techniques are routinely used in health care and can also be a
valid tool to monitor immune cell kinetics: positron emission
tomography (PET), single photon emission computed
tomography (SPECT), computed tomography (CT) and
magnetic resonance imaging (MRI). These techniques require
in-vitro or in-vivo labeling of T-cells (281). During in-vitro
labeling, cells are harvested, processed, and then infused back
into the model organism or patient. Labeling procedures can be
classified into two types: direct and indirect (282). Direct labeling
is easy to perform and radiotracers, MRI-based contrast agents
or fluorophores are internalized by the immune cells. This
technique does not allow long term monitoring of cells as
mitotic events result in the dilution of the signal. Tracer
uptake, retention capacity and changes in cellular features, due
to the internalization of the probe, are further drawbacks of
direct labeling (281, 283).

Indirect labeling requires genetic modification via stable
transfection of cells with a reporter gene such as luciferases or
fluorescent proteins, which do not require an additional tracer.
Other reporter genes such as sodium iodide symporter (NIS), or
herpes simplex virus–thymidine kinase (HSV-TK), require
further probes for imaging. This approach is preferred for long
term imaging because the reporter gene is inherited, but genetic
manipulation raises safety concerns (284–287).

In vivo labeling occurs directly in the organism and requires
the injection of radiolabeled antibodies into the body, to target
immune cells. A two-step approach has also been developed,
where bispecific antibodies, containing a binding domain for the
epitope and one for the tracer, are injected into the organism.
Labeled probes are then injected, in order to bind the previously
administered antibody. This method allows the use of safer
isotopes, with a faster radioactive decay (281, 282).
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Optical Detection Techniques
Intravital microscopy includes a variety of approaches that allow
one to distinguish individual cells from tissues and, therefore,
investigate immune cell kinetics in vivo (288, 289). Optical
probes allow for repeated scanning of tissues, providing a
spatial and temporal dimension to cellular interactions. For
example, intravital microscopy enabled visualization of the
dynamic interactions between cancer cells and immune cells in
the TME (290). It has also been used to decipher the behavior of
B-cells and T-cells in germinal centers of lymph nodes (291).

Currently, the two main tools for intravital microscopy are the
confocal microscope and the multiphoton microscope. Despite
their potential for high-resolution and low phototoxicity, optical
detection techniques are used exclusively in preclinical studies
because of their low penetration depth (1–2 mm) and risk of
photobleaching. Confocal microscopes have reduced costs
but increased autofluorescence and scattering, therefore the
imaging depth is in the range of 20 to 50 µm (289, 292). Tavri
et al. (293) used fluorescence microscopy to track fluorophore-
labeled, tumor-targeted natural killer cells to human prostate
cancer xenografts.

In contrast, multilaser scanning microscopy uses tunable
titanium-sapphire lasers that operate in the near infrared range
(NIR), allowing for superior tissue penetration (200 – 300 µm).
Increased imaging depths (500 µm) can also be obtained in brain
and cleared tissues (294, 295). Two-photon laser scanning
microscopy (TPLSM) requires simultaneous excitation by two
photons with longer wavelengths than the emitted light. This
particular type of excitation suppresses the background noise
and reduces photobleaching. Moreover, using NIR for excitation
also minimizes scattering in the tissue (296–298).

TPLSM was used to visualize the effects of anti-CD19 CAR-T
treatment on intracranial primary central nervous system
lymphoma (PCNSL), in the same animal over weeks (291).
CAR-T-cells infiltrated the tumor inducing regression of
PCNSL and increased long term survival. Multiphoton
intravital microscopy was also used in lymph nodes, to show
import dynamics of the nuclear factor of activated T-cells
(NFAT) in the cells. A fluorescently labeled NFAT reporter
was used in combination with the nuclear marker histone
protein histone 2B (H2B) (299). Stoll et al. (300) developed a
protocol for extended four-dimensional confocal imaging of T-
cells and dendritic cells, reporting dynamic visualization of
antigen-specific T-cells interacting with dendritic cells within
intact explanted mouse lymph nodes. Two-photon laser
microscopy was also performed to investigate the dynamic
behavior of individual T-cells within intact lymph nodes (301,
302) (Figure 5). Finally, Bousso et al. (303), performed real-time
analysis of the cellular contacts made by developing thymocytes
undergoing positive selection in a three-dimensional thymic
organ culture.

Bioluminescence (BLI) enables long-term cell tracking,
through reporter enzymes such as firefly luciferase, renilla
luciferase or bacterial luciferase (304, 305). BLI has higher
sensitivity than fluorescence imaging due to the absence of
autofluorescence generated by excitation light. BLI and
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multilaser scanning microscopy were successfully adopted to
investigate small populations of T-cells: less than 10.000 cells in
live animals (306). Chewning et al. (307) created a novel
transgenic mouse model for in vivo tracking of CD4+ T-cells,
using a human CD2 mini-gene to direct luciferase expression
specifically to T-cell compartments. Kim et al., used BLI to show
that tumor-specific T-cells upregulate IL-2 expression in hypoxic
conditions in a model of human B cell lymphoma (308). BLI was
also used to track migration of immune cells to sites of
inflammation (306, 309).

Cerenkov luminescence imaging (CLI) is based on the detection
of visible photons emitted by Cerenkov radiation. Cerenkov
luminescence is emitted when a charged particle traverses a
dielectric medium with a velocity greater than the phase velocity
of light in the medium (310–312). CLI has been performed to
optically monitor the biodistribution of 32P-ATP labeled T
lymphocytes, in small rodents, in vivo (313, 314). Results were
comparable to those obtained with radioluminescence imaging and
T-cell localization in the tumor mass was definitively confirmed by
flow cytometry (313).
CLINICALLY APPLICABLE DETECTION
TECHNIQUES

Digital Histopathology
Histopathology slides are available for almost any patient with a
solid tumor, but immune topographies are currently not assessed in
clinical routine. While subjective visual examination of tissue slides
can be used to roughly quantify, computer-based approaches are
ultimately much more scalable and objective. In several countries,
digitization efforts for routine histopathology are underway (315).
Once this digital infrastructure is established, development and
refinement of histopathology-based Immune Topography
biomarkers could be accelerated and in turn, clinical rollout of
these biomarkers would be markedly facilitated.
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Magnetic Resonance Imaging
MRI is a routinely used, non-invasive diagnostic technique that
provides soft tissue contrast with high anatomical resolution. It is
considered safer than PET, as it does not use ionizing radiation.
Drawbacks of MRI include high instrumentation costs and
relatively low sensitivity (316, 317).

MRI can complement PET imaging, co-registering soft-tissue
anatomy and multimodal imaging for T-cell tracking is
becoming more common. Multimodal imaging allows different
imaging methods to be combined simultaneously, providing a
multi-layered and complete information regarding the dynamics
of immune cells (281, 318, 319).

Standard MRI is based on the detection of signals emitted by
protons (1H) that are part of the water present in human tissues.
Due to the molecular composition of tissue, absorption of a
specific electromagnetic impulse generates signals of different
intensities. In addition to 1H, MRI can be performed on other
isotopes such as 31P, 15N, 13C, 23Na and 19F (317, 320). In some
cases these methods are considered less efficient because of the
low abundance of these chemical elements in vivo, leading to
poor signal intensity. 19F MRI is gaining more interest as a tool to
investigate cell behavior, driven by advances in MRI technology
and scan protocols. Indeed, 19F MRI provides images with high
signal-to-noise ratio and current 1H MRI instruments require
minimal hardware upgrades to acquire 19F-based images (321,
322). However, 19F MRI has a detection limit of approximately
103 – 105 cells per voxel in vivo (323).

Magnetic nanoparticles (i.e. iron oxides, gadolinium and
manganese chelates) can label cells by entering the cytoplasm,
binding to the membrane or to reporter proteins. Labeled
immune cells have been used to monitor cell interactions in
vivo and to dissect immunological processes in deep tissue areas.
One of the most extensively used nanoparticles in the study of T
lymphocytes behavior is superparamagnetic iron oxide (SPIO)
(324, 325). The long-term recruitment of cytotoxic T-cells to
tumors was studied using a dextran coated SPIO particle,
A B

FIGURE 5 | Intravital two photon imaging of naïve T-cells in lymph nodes (302). (A) 3D reconstruction representing 85 x 120 x 75 mm of the T-cell area.
Fluorescently labeled T-cells (green) are observed in the proximity of presumptive high endothelial venules (red), identified by i.v. injection of tetramethylrhodamine
dextran. Scale bar 30 mm in all axes. (B) Video-rate imaging of a T-cell flowing in a small vessel within a T-cell region of the node. Image is a superposition of nine
consecutive video frames and shows progression of a single labeled T-cell traveling at about 0.03 cm/s within a blood vessel. Scale bar 25 mm. Copyright (2003)
National Academy of Sciences, U.S.A.
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derivatized with a peptide sequence from the HIV-tat protein
(326). Wu et al. have developed negatively charged
superparamagnetic iron oxide (PAsp‐PCL/SPIO) nanoclusters
to monitor the migration of dendritic cells into lymphoid tissues
in vivo and correlated this with immunotherapy results in mice
(327). Tremblay et al., used CD8+ cytotoxic T-cells, regulatory T-
cells and myeloid derived suppressor cells labeled with SPIO
particles, to monitor the efficacy of DepoVax in mice implanted
with HPV-based cervical cancer (328).

Cell labeling probes, based on perfluorocarbon nanoemulsions
paired with 19F MRI detection, have also been widely used to
monitor immune cells. Fluorine-dense perfluorocarbon
(PFC) nanoemulsions display hydrophobic and lipophobic
characteristics and have been engineered to be endocytosed, even
by non-phagocytic cells in culture (329). Commonly used PFC
include perfluoropolyether (PFPE), perfluoro-15-crown-5-ether
(PCE) and perfluorooctyl bromide (PFOB) (323, 330). Despite a
lack of evidence supporting the exocytosis or degradation of
PFCs, once internalized in the cells, mitotic events lead to the
dilution of the signal limiting long- term studies. Nanoparticles are
usually cleared by the reticuloendothelial system, in particular from
the Kupffer cells in the liver (331, 332).

Chapelin et al. used 19F MRI to monitor CAR-T biodistribution
and immunotherapy efficacy on immunocompromised mice
bearing subcutaneous human U87 glioblastomas (333). Another
example includes the study performed by Gonzales et al., whereby
T-cells were labeled with PFC in vitro and their distribution detected
by 19F MRI in vivo, in melanoma-bearing mice (334). A clinical trial
was performed in 2014 to investigate the use of a PFC
nanoemulsion in the detection of immunotherapeutic dendritic
cells delivered to colorectal adenocarcinoma patients. Composite
19F/1H overlay images were created and showed that, despite the
lack of treatment efficacy, 19F MRI enabled visualization of injected
cells in patients using a clinical scanner within acceptable scan
times (335).

Immuno-PET
Immuno-PET is a sensitive and non-invasive method used to
investigate immune cell interactions in clinical settings, allowing
quantification of T-cell dynamics. Indeed, immuno-PET can
quantify viability and retention of T-cells in the primary tumor
mass and secondary lesions, which may provide insights into
immunotherapy efficacy. Clinical imaging could be used to
monitor steps of T-cell proliferation, trafficking and infiltration
and give insights into mechanistic aspects of the process and
effectiveness of induced T-cell response. Although PET and
SPECT possess excellent signal-to-noise ratio and unlimited depth
penetration, they provide limited anatomical information
(336, 337).

Immuno-PET combines antibody specificity against immune
cells with PET, which uses radioactive tracers to visualize human
tissues. Antibodies recognizing specific features of immune cells
are coupled with radioactive isotopes such as 11C, 18F, 68Ga, 44Sc,
64Cu, 89Zr, 124I. Radionuclides need to be covalently bound to the
antibody and remain kinetically and thermodynamically stable,
in order to obtain good quality images. Therefore, their chemical
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properties and half-lives are fundamental parameters to consider
when designing a study (338, 339).

Using monoclonal antibodies in immuno-PET produces
images of optimal quality but, due to their size (~150 kDa), it
can take up to a week to reach the imaging site after injection
(Figure 6) (340, 341). Due to slower circulation and clearance
times, radionuclides with longer half-lives are required for the
labeling of monoclonal antibodies (89Zr, 124I). Although
radionuclides can provide information over long periods of
time, they constitute a biohazard as patients are exposed to
higher radiation doses. Moreover, the size of monoclonal
antibodies exceeds the clearance cut-off value of glomerular
filtration (60 kDa), therefore their clearance occurs in the liver,
thus precluding its imaging. Smaller molecules have been
developed over the years (minibodies, diabodies, single-chain
variable region fragments, nanobodies, affibodies), which still
retain the specificity of the antibodies and have more desirable
pharmacokinetic properties and deeper tissue penetration
(Figure 6).

Adverse reactions to non-human antibodies are rare but they
comport a safety risk for the patient, therefore it is pivotal to
ensure that tracking antibodies have minimal pharmacological or
toxicological effects. To minimize the risk of adverse reactions,
antibodies of camelids, cartilaginous fish or human are often
used (342, 343). Camelid antibodies are significantly smaller than
standard antibodies and only consist of IgG heavy chains (344).
Smaller antibodies can be conjugated with shorter-lived nuclides
such as 18F, 64Cu, 44Sc and 68Ga. Antibody fragments contain
only the targeting and binding components with their sizes
ranging from 7 to 100 kDa. Another category includes
affibodies, which are constituted of three alpha helices (~6–7
kDa) resulting in high contrast PET images that can be obtained
within hours of their administration (339, 345, 346).

Diabodies labeled with 89Zr or 64Cu were used in specific
targeting of CD4+ and CD8+ receptors resulting in targeting of T
lymphocytes in vivo (347, 348). Tavare et al. showed that
engineered anti-CD8+ minibodies were applicable for immuno-
PET imaging of endogenous CD8+ T-cells in a murine model
system (349). Nanobodies were also used to investigate the
distribution of intratumoral CD8+ T-cells and CD11b+ myeloid
cells in a colorectal mouse adenocarcinoma model. Response to
anti-PD-1 treatment was assessed and showed the difference in
CD8+ and CD11b+ cells infiltration, in responding and non
responding tumors. Only the tumors that were completely
infiltrated by CD8+ T-cells went into full remission (350).
Larimer et al., synthesized an anti-CD3 imaging agent labeled
with 89Zr, to predict tumor response to anti-CTLA-4 treatment
in a murine tumor xenograft model of colon cancer. Higher
presence of CD3+ TILs, revealed by an increased uptake of the
radiotracer, correlated with responsive tumors (351).

Reporter genes provide another strategy to target antibodies
for immuno-PET. Reporter genes are transfected or transduced
into cultured cells and they encode for a protein specifically
targeted by the radiolabeled tracker. While genetic manipulation
is considered a biohazard, modern gene-editing technologies
have developed safe harbor locations and reduced the risk of
January 2021 | Volume 11 | Article 604967
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mutagenesis. Reporter genes have been used to monitor cell-
based immunotherapies in preclinical and clinical studies (338,
352, 353). In a study with glioblastoma patients, cytotoxic T
lymphocytes (CTLs) were engineered to express the herpes
simplex virus type 1 thymidine kinase (HSV1-tk) alongside a
glioblastoma-targeting interleukin-13 zetakine (353, 354).
Immuno-PET coupled to MRI provided information regarding
the locations of CTLs in the glioblastomas together with detailed
anatomical context (353). The expression of a foreign protein can
be recognized by a patient’s immune system, causing adverse
reactions. To avoid an immune response against the foreign
reporter protein, endogenous human reporters have been
designed. However, these probes trade off immunogenicity for
reduced contrast. The sodium iodide symporter (NIS) is
considered one of the most promising reporters for preclinical
and clinical studies (284, 355, 356). Endogenous expression of
NIS is confined primarily to salivary and lacrimal glands,
lactating mammary glands, the thyroid and stomach. NIS
probes have been used to monitor immune cells, viral vectors,
oncolytic viruses, tumor cells and cellular therapies by PET and
SPECT in both animal models and patients (284).

Antibodies engineered for use in immuno-PET can target a
variety of epitopes on T lymphocytes. When naïve T-cells are
Frontiers in Immunology | www.frontiersin.org 14
activated, several cell surface markers are upregulated.
However, expression of these markers does not imply, per se,
cytotoxic effector functions. Metabolic activity is modified in
active T-cells including glycolysis and the upregulation of
nucleic acid metabolism. Therefore, specific enzymes involved
in the metabolic pathways constitute good tracking candidates.
Finally, the T-cell effector function can also be targeted
(318, 338).

Surface markers used for activated T-cells include interleukin-2
receptor (IL-2R), OX40 (CD134), TCR complex and co-receptors
CD3, CD4, and CD8. Activated T lymphocytes present high levels
of IL-2R on their surface and several studies investigated the
distribution of such immune cells via IL-2 labeling, with PET
and SPECT.

For example, in primary melanoma [99mTc]Tc-HYNIC-IL-2
accumulation was observed at metastases. 18F-labeled IL-2 was
developed as a PET tracer and its uptake was shown to increase
upon tumor treatment (357, 358). Clinical trial NCT02922283,
completed in February 2020, aimed to study the biodistribution
and kinetics of the tracer 18F-FB-IL2 in patients with metastatic
melanoma. Results have not yet been published. The activation
marker OX40 has also been targeted and imaged with PET using
a specific 64Cu-conjugated murine antibody (359). Humanized
FIGURE 6 | Protein-based scaffolds for targeting cell antigens in vivo.
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OX40 agonist monoclonal antibodies are currently being tested
in early phase clinical trials.

T-cell receptors (TCR) present a constant membrane
turnover that leads to internalization and accumulation of the
anti-TCR probe. Studies have tracked human T-cells using 89Zr
labeled anti-mouse TCR. A highly sensitive imaging approach
was proposed by Klar et al., targeting the TCR2.5D6 on T-cells,
which recognize a peptide expressed on leukemia cells (360). T-
cell co-receptor CD3 was targeted to monitor anti-CTLA-4
treatment in colon cancer xenograft mouse models. Anti-CD3
antibody labeled with 89Zr was used to quantify T-cell infiltration
revealing that tumor regression correlated with high levels
of infiltration (351). Anti-CD4 and anti-CD8 labeled with
89Zr or 64Cu have been used to monitor T-cells in mice and
human (361–364). Moreover, anti-CD8 minibodies are currently
under investigation in clinical trials (NCT03107663,
NCT03802123, NCT03610061).

Cell surface markers may present different expression
patterns during the progression of the disease therefore, to
obtain more comprehensive information, multiple markers
should be tested concomitantly.

Metabolic changes during T lymphocyte activation can be
monitored with labeled probes including amino acids, hormones,
sugars or nucleosides (Table 2). As previously mentioned,
activated T-cells switch to glycolytic metabolism and
upregulate the intake of substrates.

Fluciclovine 18F-FACBC, an analog of L-leucine, is a
radiolabeled amino acid that is imported into activated T-cells
due to upregulation of the amino acid transporter ASCT2 and
LAT-1 (373–375, 400, 401). Labeled substrates for enzymes
involved in the deoxyrubonucleoside salvage pathway have
been developed such as 18F-FAC, 18F -CFA, 18F-FLT, and 18F-
F-AraG (318).

18F-FAC is a labeled deoxycytidine analog, with high-affinity
for the enzyme deoxycytidine kinase (dCK). This tracer is being
investigated in an early phase clinical trial (NCT03409419), that
is recruiting patients with metastatic melanoma and who are
Frontiers in Immunology | www.frontiersin.org 15
undergoing TIM-3 targeted immunotherapy. 18F-CFA is also a
substrate for dCK and is studied as a potential cancer biomarker
for treatment stratification and monitoring. 18F-FLT is a
thymidine analog that is trapped intracellularly due to its
phosphorylation by thymidine kinase 1. It is used to monitor
T-cell activation and cancer cell proliferation in medical practice
(376, 379, 382, 383).

Arabinosyl guanine is a molecule with specific toxicity to T
lymphoblastoid cells and T-cells. AraG prodrug has been used in
patients with T-cell acute lymphoblastic leukemia and T-cell
lymphoblastic lymphoma (402). Engineered AraG leads to the
development of a 18F-F-AraG probe that is retained by primary
T-cells and it is a substrate for deoxyguanosine kinase. Such a
tracker could provide information about T-cell dynamics in the
TME and other pathologies involving the immune system (337,
385). A clinical trial to assess 18F-F-AraG biodistribution in
cancer patients who are expected to undergo immunotherapy or
radiation therapy is currently recruiting (NCT03142204). A
recent study demonstrated that 18F-F-AraG PET imaging could
be used to report immune activation in vivo, in mice with
rheumatoid arthritis (403).

Finally, the metabolic tracer 18F-FDG measures the rate of
glycolysis in active T lymphocytes, due to the upregulation of the
glucose transporters GLUT isotypes. However, tumor cells also
present increased rates of glycolysis, therefore imaging can lead to
false positive signals (338, 387, 388). The increase in substrate uptake
is similar between cancer cells and T-cells, therefore metabolic
radiotracers often lead to difficulties in image interpretation.

In order to specifically monitor active T lymphocytes, probes
targeting their effector functions have been developed (Table 2). For
example, granzyme B, released by CD8+ T-cells and natural killer
cells, is considered one of the main mechanisms through which
T-cells mediate cancer cell death (404). A recent study tested the
probe [68Ga]Ga-NOTA-GZP that targets murine or human
granzyme expression. Imaging made it possible to differentiate
responders from non-responders, within immunotherapy-treated
mice (392). The human probe showed high specificity in human
TABLE 2 | Markers for T-cells imaging.

Category Name Reference and clinical trials

T cell surface Interleukin-2 receptor alpha chain (CD25) NCT02922283 (357, 358, 365–367)
OX40 receptor (CD134) NCT02318394 (359, 368)
T cell receptor (TCR) (361, 369, 370)
CD3 (351, 371, 372)
CD4 (362)
CD8 NCT03107663, NCT03802123,

NCT03610061 (347, 363, 364)
Metabolic pathways L-leucine analogue (373–375)

18F-FAC (376–378)
18F -CFA NCT03409419 (377, 379–381)
18F-FLT (382–384)
18F-F-AraG NCT03311672, NCT03142204,

NCT03007719 (385, 386)
18F-FDG (387–391)

Effector function Granzyme B (392–395)
Interferon-gamma (396)
Checkpoint receptors NCT03065764, NCT02760225,

NCT03313323 (397–399)
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samples, revealing a candidate predictive biomarker for cancer
immunotherapy (392). Interferon-gamma (IFN-g) is a pleiotropic
molecule implicated in immune surveillance, playing a role in pro-
apoptotic and antitumor mechanisms. However, evidence points to
a protumorigenic role for IFN-g in downregulating major
histocompatibility complexes and upregulating checkpoint
inhibitors. Although clinical trials assessing the efficacy of anti-
cancer therapies based on IFN-g reported limited success, IFN-g-
mediated response is still correlated with a positive patient
prognosis (405). Gibson et al., used an 89Zr-labeled anti-IFNg
probe to predict immunotherapy response after HER2/neu
vaccination in mouse mammary tumors. Immuno-PET
demonstrated that IFN-g levels in situ, after vaccination, were
inversely correlated with tumor growth rate (396). Therefore,
targeting soluble cytokines by immuno-PET could be an
interesting strategy to quantify immune response directly in situ
and predict the response to immunotherapy.
OUTLOOK

A Comprehensive Biological Theory of
Immune Phenotypes in Solid Tumors
A current major challenge in immunotherapy is the increase of its
therapeutic potential in solid tumors. Preclinical research
demonstrated the existence of a variety of determinants that play
a role in shaping the TME, affecting immunotherapy response. The
dynamics and distribution of these factors probably change during
time and may also vary according to tumor type.

Further studies are required to understand the spatial and
temporal distribution of mechanisms involved in the immune
exclusion phenomenon and their interdence. Modern techniques
allow high-throughput analysis of immune cell distribution ex vivo
Frontiers in Immunology | www.frontiersin.org 16
and in vivo. It would be interesting to correlate tumor stages with
degree of immune infiltration and determinants of immune
exclusion, in a pan-cancer investigation. This correlation would
provide information on the mechanism(s) of immune exclusion,
allowing to integrate the different determinants into a unified
‘Theory of Everything.’ Moreover, a comprehensive analysis would
also provide insights into approaches that should be adopted in
order to improve the efficiency of immunotherapy and the
rationale for innovative translational combinatorial treatments.

Clinical Translation of Immune
Topographies
Ultimately, scientific insight into Immune Topographies in solid
tumors could lead to a benefit of cancer patients. In particular,
determining Immune Topographies at baseline (before starting a
systemic treatment such as immunotherapy or chemotherapy) could
inform physicians about the chances of treatment response. Thus,
Immune Topographies could help to choose one of several available
treatment options for a given patient. In addition, dynamically
observing Immune Topographies during treatment might enable
oncologists to adjust treatment accordingly. Compared to other
biomarkers in oncology, Immune Topographies are intuitively
understandable, linked to biological processes of demonstrated
relevance and are comparatively easy to measure. However,
clinical implementation will depend on larger-scale retrospective
analysis and prospective clinical trials evaluating the utility of
Immune Topographies for managing cancer treatment.
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mesenchymal stromal cells in regenerative medicine, autoimmunity and
cancer. Cytokine Growth Factor Rev (2018) 43:25–37. doi: 10.1016/
j.cytogfr.2018.06.002

45. Jiang H, Hegde S, DeNardo DG. Tumor-associated fibrosis as a regulator of
tumor immunity and response to immunotherapy. Cancer Immunol
Immunother (2017) 66:1037–48. doi: 10.1007/s00262-017-2003-1

46. Harryvan TJ, Verdegaal EME, Hardwick JCH, Hawinkels LJAC, van der
Burg SH. Targeting of the Cancer-Associated Fibroblast-T-Cell Axis in Solid
Malignancies. J Clin Med Res (2019) 8(11):1989. doi: 10.3390/jcm8111989

47. Monteran L, Erez N. The Dark Side of Fibroblasts: Cancer-Associated
Fibroblasts as Mediators of Immunosuppression in the Tumor
Microenvironment. Front Immunol (2019) 10:1835. doi: 10.3389/fimmu.
2019.01835

48. Chandler C, Liu T, Buckanovich R, Coffman LG. The double edge sword of
fibrosis in cancer. Transl Res (2019) 209:55–67. doi: 10.1016/j.trsl.
2019.02.006
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