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Abstract
Large-scale human interaction through, for example, financial markets causes ceaseless random changes in outcome
variability, producing frequent and salient outliers that render the outcome distribution more peaked than the Gaussian
distribution, andwith longer tails. Here, we study howhumans copewith this evolutionary novel leptokurtic noise, focusing on
the neurobiological mechanisms that allow the brain, 1) to recognize the outliers as noise and 2) to regulate the control
necessary for adaptive response. We used functional magnetic resonance imaging, while participants tracked a target whose
movements were affected by leptokurtic noise. After initial overreaction and insufficient subsequent correction, participants
improved performance significantly. Yet, persistently long reaction times pointed to continued need for vigilance and control.
We ran a contrasting treatmentwhere outliers reflected permanentmoves of the target, as in traditionalmean-shift paradigms.
Importantly, outliers were equally frequent and salient. There, control was superior and reaction timewas faster. We present a
novel reinforcement learning model that fits observed choices better than the Bayes-optimal model. Only anterior insula
discriminated between the 2 types of outliers. In both treatments, outliers initially activated an extensive bottom-up attention
and belief network, followed by sustained engagement of the fronto-parietal control network.
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Introduction
Humans have always had to navigate a natural environment re-
plete with extreme events or “outliers.” Formally, outliers are ob-
servations in the tails of the distribution of expected outcomes
(visual or auditory stimuli, rewards, etc.). Usually, outliers signal
a change in contingency that requires adaptation. In the labora-
tory, this situation has been emulated in “contingency-shift
paradigms” (Daw et al. 2006; Behrens et al. 2007; Brown and Stey-
vers 2009; Payzan-LeNestour and Bossaerts 2010; Payzan-LeNes-
tour et al. 2013; McGuire et al. 2014). There, postoutlier adaptation
requires extensive learning and exploration. The situation has
also been emulated in oddball paradigms (Kim 2014), where the

focus is on adequate behavioral control after detection of an out-
lier.Mathematically, reversal learning tasks (Hampton et al. 2006)
fall in the same category. Humans are known to dowell in contin-
gency-shift or oddball paradigms, and the neurobiology support-
ing this capacity has begun to be understood. The crucial role of
noradrenergic neurons in the locus coeruleus (LC) in detecting
outliers and facilitating subsequent belief and behavioral adjust-
ment has long been acknowledged (Yu and Dayan 2003, 2005;
Cohen et al. 2007; Preuschoff et al. 2011; Nassar et al. 2012; Pay-
zan-LeNestour et al. 2013). The outliers engage a large attentional
network (AN), including thalamus, posterior parietal cortex (PPC)
and anterior cingulate cortex (ACC) (Kim 2014). This network
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is not monolithic: Recently, a dissociation has been found be-
tween PPC, involved in tracking the surprise reflected in the out-
liers (i.e., detection of improbable events), and ACC, engaged in
subsequent belief updating (i.e., adjustment of probabilities)
(O’Reilly et al. 2013). Animal models have provided details as to
how LC alters ACC output to facilitate belief adjustment and,
hence, behavioral adaptation (Tervo et al. 2014).

Outliers could occur for a very different reason, however. They
could be the result of continuous random shifts in observational
error variance. In that case, the resulting distribution is unusual:
It is far more peaked and displays much heavier tails than the
Gaussian distribution (Fig. 1a). The distribution is said to be “lep-
tokurtic,” a reference to its fourth moment, kurtosis, which is
higher than that of the Gaussian distribution. Under sustained
variance shifting (technically, variance “mixing”), outliers are
frequent and salient. Unlike in contingency-shift paradigms or
oddball paradigms, the outliers constitute noise because the
shift in variance affects the observation error and not the under-
lying value of the process. But, importantly, the outliersmust not
be ignored. They have to be acted upon, in ways that differ often
substantially fromoptimal choice in contingency-shift or oddball
paradigms. In a situation emulating themovement of stock mar-
ket prices during periods of high volatility, we will show—using

Bayesian principles—that this type of outlier calls for restraint.
This “leptokurtic noise” is rare in the natural environment of
humans, where most noise is either Gaussian or in the domain
of attraction of the Gaussian distribution (e.g., Poisson, exponen-
tial, binomial). Leptokurtic noise has emerged in the modern
social sphere of humans, however, where it is the consequence
of large-scale interaction. Financial markets constitute the
most widely studied case (Mandelbrot 1963; Embrechts et al.
1997). For instance, empirical distributions of daily price changes
of equity, a typical financial security, exhibit kurtosis as high as
10 (compared with 3 for the Gaussian distribution); see Figure 1b.
Leptokurtic noise has emerged through other types of large-scale
human interaction, such as internet communication and air traf-
fic (Hsu 1979; Wolpert and Taqqu 2005; Fischer 2010). Leptokurtic
noise is to be distinguished from other phenomena that create
high kurtosis, such as the ubiquitous “pink noise” (Mandelbrot
and Van Ness 1968). The distinguishing feature of leptokurtic
noise is not only the peakedness of the distribution (small
outcomes are disproportionally frequent relative to medium-
sized outcomes), but more importantly its complete lack of
memory—its power spectrum is flat; the noise is “white.” In
sharp contrast, “pink noise,” for instance, is characterized by
exceptionally long memory.
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Figure 1. (a) Randomshifting in (“mixing” of) the variance of a Gaussian distribution (left) generates an outcomedistribution that is leptokurtic (right); outliers are frequent

and salient. (b) Histogram and fitted Gaussian curve, daily rates of return (rates of movement of value frommarket close in 1 day to the next) of Standard and Poor’s (S&P)

index of 500 major US common stock, 1 June 1988 to 28 June 2013. (c) Cover of Time magazine for the week after the October 1987 stock market crash.
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Casual evidence would seem to suggest that humans over-
react to leptokurtic noise. The 1987 stock market crash is one
example. At the time, it looked arresting and indeed many
thought it to be the beginning of a new era; see Figure 1c.
Nevertheless, the outlier was merely an aberration. Within 1
year, the stock market had more than re-covered. Traders
who had pulled out of the market in 1987 thinking that
something fundamental had changed, ended up bearing large
opportunity costs. That even professional investors at times
overreact is a well-documented phenomenon (De Bondt and
Thaler 1990).

To date, there does not exist systematic evidence of how hu-
mans react to leptokurtic noise, let alone a deeper understanding
of its neurobiological foundations. We designed a simple experi-
mental paradigm where subjects had to guide a robot to track as
closely as possible a target that moved on a circle. Movements
were affected by leptokurtic noise (red dot; Fig. 2a). This meant
that the target frequently made large swings that reverted in
the subsequent trial. Because of the reversals, we refer to this set-
ting as the “Transitory Treatment.”

Evolutionary biologists have long conjectured that the human
brain was developed to adapt rapidly to novel types of risk, and
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Figure 2. (a) Sequence of events in one trial. Left: Following amovement of the target (old position: open red circle; new position: filled red circle; movement direction: red

arrow), the arc between the position of the robot (filled blue circle) and the target is indicated in yellow. This is also the “prediction error,” that is, the size of themistake of

the participant’s guess of the new position of the target. Middle: Participant adjusts position of robot bymoving a slider (old position: openwhite rectangle; new position:

filled white rectangle) somewhere between 0 (robot stays at current location) to 1 (robotmoves all theway to target position). Here, participant instructs the robot tomove

about 80% toward the target. The goal is tomove the robot as close as possible to the position of the target in the next trial. Right: Robot executes the instruction andmoves

about 80% toward the target (blue arrow; old position indicated by open blue circle; new position indicated by closed blue circle). (b) Sample paths of locations of target in

one Run, Transitory Treatment (top), and Fundamental Treatment (bottom). Outliers are salient, showing as sudden large movements. In the Transitory Treatment,

outliers revert in the subsequent trial. They are permanent in the Fundamental Treatment. (c) Empirical distribution of target movements in the Transitory Treatment

(top) and in the Fundamental Treatment (bottom). Movements are expressed in radians; one full circle corresponds to 2π radians, or approximately 6.28 radians.
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hence, eventually to copewith them, even if adaptation is not ef-
fortless. Anterior insula (AI), and to a lesser extent, the medial
wall of the ACC, have long been thought to be crucial for such
rapid adaptation, and this capacity has been linked to the pres-
ence of an evolutionary recent type of neuron, the von Economo
neuron (Allman et al. 2011). To be able to recognize that the un-
certainty in one’s surroundings is unusual requires appropriate
integration of external sensory signals and ensuing bodily reac-
tions (emotions), and fast behavioral adaptation to unfamiliar
uncertainty demands continued awareness—2 tasks that evolu-
tionary biologists have attributed to AI (Craig 2009, 2011). The first
aim of our study was to challenge the theory that AI facilitates
adaptation to highly unfamiliar types of risk, by establishing
whether AI activates preferentially in the presence of leptokurtic
noise. The emphasis is on “preferentially:”AI is generally engaged
whenever outliers or oddballs occur. This is best exemplified by
studies showing that AI activation correlates with risk prediction
errors, because outliers trigger risk prediction errors—outcomes
are larger than expected (Preuschoff et al. 2008; d’Acremont et al.
2009). We set out to determine to what extent, 1) AI manages to
discriminatebetween leptokurtic noise andother typesof outliers,
even if these are equally salient and frequent, and 2) whether this
discrimination is a property observed uniquely in human AI.

In our design, behavioral adaptation to leptokurtic noise was
less an issue of belief adjustment, but more one of adaptive con-
trol. Specifically, while belief updating played a role immediately
after the outlier, in that the decisionmaker learned about the fre-
quency and size/nature of outliers in the task at hand, subse-
quent adjustment required the right behavioral response.
Importantly, if mistakes were made initially, corrective actions
were required subsequently, in order not to stray farther afield.
Prior research has focused on outlier detection and belief adjust-
ment (d’Acremont, Fornari, et al. 2013; O’Reilly et al. 2013;
McGuire et al. 2014), whereas, in our design, the issue of control
came in addition, and subsequent, to outlier detection and belief
adjustment. Consequently, a second goal of our study was to de-
termine to what extent, 1) a neural network associated with be-
havioral control—as opposed to attention—would engage,
namely, the fronto-parietal control network (FPCN) (Glaescher
et al. 2012; Cole et al. 2013), and 2) whether there is temporal sep-
aration between the attentional and control networks, whereby
the former would activate first. To better evaluate behavioral re-
sponses and corresponding neural activation, we designed a con-
trasting treatment where outliers did not constitute noise, but
instead reflected permanent shifts in the mean, to be referred
to as the “Fundamental Treatment.”We ensured that the average
(unconditional) distribution of movement surprises was identi-
cal across the 2 treatments. For this purpose, we forced the per-
manent shifts of the target to be driven by the same leptokurtic
law that generated the noise in the Transitory Treatment. At
the same time, the Gaussian driving process of permanent shifts
of the target in the Transitory Treatment provided the noise in
the Fundamental Treatment. This way, outliers were equally sa-
lient and frequent under either treatment; only their nature dif-
fered. Towit, in the Transitory Treatment, outliers reflected noise
and hence reverted (so the distribution of potential future loca-
tions of the target remained unaltered), whereas in the Funda-
mental Treatment, outliers reflected permanent moves of the
target (outliers signaled a shift in the mean of the distribution of
potential future target locations). Figure 2b displays sample
paths of target locations for the 2 treatments. The difference of
the sample paths is immediately clear, both qualitatively and
quantitatively. Figure 2c displays the distributions of the target
movement for the 2 treatments. They are clearly leptokurtic.

While there were twice as many outliers in the Transitory Treat-
ment because outliers reverted, these reversals could be expected,
andhence, half of the outliers did not constitute surprises. So, cru-
cially, the number of “unexpected” outliers was the same; only
their effect differed (transitory vs. permanent).

Materials and Methods
Participants

Thirty-one participants took part in the study (12 women and 19
men). They were all students and staff of the California Institute
of Technology (Caltech). The median agewas 20 years old (min =
18, max = 32). The study took place at the Caltech Brain Imaging
Center and was approved by the local institutional review board.
The experimenter read the task instructions (see Supplementary
Information, Instructions) aloud, checked comprehension, and
participants were allowed to practice with one demonstration
Run before the functional magnetic resonance imaging (fMRI)
scanning.

Task Design

Participants were asked to manipulate a robot in such a way that
it came as close as possible to the upcoming position of a target
that moved in either direction along a circle (Fig. 2a). The target
first moved physically around the edge of the circle to its new lo-
cation. This move took 0.25 s, so that (rare) movements of more
than a full circle could be distinguished from those of less than
a full circle. Subsequently, participants had a maximum of
2.25 s to move the slider. The slider indicated, between 0 and 1,
how far the robot was tomove toward the newposition of the tar-
get, with 0 indicating no move, 1 indicating a complete catch-up
with the target, and numbers in between 0 and 1 corresponding
to fractionalmoves. After subject choice, the robot itselfmoved to
its new location, also in 0.25 s. If the target hadmovedmore than
a full circle while the robot was at the original position of the tar-
get, and the subject subsequently chose to make the robot catch
up with the target, then the robot too would move more than a
full circle. The total trial duration amounted to 2.75 s. The slider
direction changed every 10 trials, adding 2 s to the trial.

Slider direction was changed to balance visual and motor ac-
tivation across left and right brain hemispheres.

Borrowing from the previous modeling of outliers in compu-
tational neuroscience (Yu and Dayan 2003), the target position
in trial t (yt) was determined by a simple hidden state model
where the state (xt) was driven by a state transition shock ξt that
was independent of the observation error εt:

yt ¼ xt þ εt;

xtþ1 ¼ xt þ ξt:

Positions were measured in radians.
Importantly, and unlike in traditional contingency-shift para-

digms, the underlying state “changes each trial.”Our setting is an
extension of the traditional Kalman filter paradigm, where the
optimal filter becomes nonlinear (Yu and Dayan 2003; Kitagawa
1987): the learning rate changes with the prediction error in
ways we specify below. To appreciate the difference with trad-
itional contingency-shift paradigms, notice that filtering, and
hence learning (about the location of the new state), is continu-
ous. The issue our paradigm addresses is whether human sub-
jects understand that, under leptokurtosis, learning intensity
(i.e., the learning rate) changes appropriately. In particular, we
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introduce 2 Treatments. In one, learning becomes less intense
after an outlier, while in the other one, the learning rate is to be
increased.

In the so-called Transitory Treatment, the state transition
shock ξt was Gaussian with mean zero and standard deviation
(SD) 0.25 radians while the observation noise εt was drawn from
a leptokurtic distribution. See Figure 2b,c, Top. The leptokurtic
distribution was obtained as a mixture of 2 zero-mean Gaussian
random variables, one with SD 0.25 radians and chosen with
probability 0.85, and another one with SD 2 radians and chosen
with probability 0.15. The mean and skewness of target moves
were both equal to zero; their SD and kurtosis equaled 1.16 and
9, respectively. The leptokurtic noise had a SD and kurtosis of
0.80 and 17, respectively. In the so-called Fundamental Treat-
ment, the distributions of the observation error and state transi-
tion shock were switched, keeping the parameters the same: the
state transition shock became leptokurtic whereas the observa-
tion noise became Gaussian. See Figure 2b,c, Bottom. The mean
and skewness of target moves were both equal to zero; their SD
and kurtosis equaled 0.88 and 13, respectively. The state transi-
tion shocks had the same SD and kurtosis as the leptokurtic
noise in the Transitory Treatment.

In the scanner, participants completed 2 Runs of each of the
Treatments. Each Run lasted 200 trials, so participants made
choices across 800 trials in total. The Treatment order was coun-
terbalanced between subjects. Participants were informed that
target behavior, in particular, the way the target might reverse,
would change after the first 2 Runs. The explicit rule governing
the target movement in a given run was not revealed and had
to be learned.

Participants were paid for accuracy, as follows. In each Run, 3
randomly chosen trials were rewarded with $2. The chance of
winning $2 increased with accuracy of prediction of the position
of the target in the trial. The chance (in percentage points) was
determined as

max f0; 100� 0:04ðyt � rtÞ2g;

where yt is the (new) position of the target in trial t, and rt is the
position of the robot going into trial t. Here, position differences
between target and robot aremeasured in degrees rather than ra-
dians, to facilitate participant comprehension. The payoff from
the rewarded trials was added to a fixed payment of $50. The re-
warded trials typically added between $12 and $24 to the fixed
payment.

Bayes-Optimal Choice

Optimal adjustment of the position of the robot is equal to the
change in belief about the subsequent position of the latent
variable xt + 1. This latent variable drives permanent changes in
the position of the target. The adjustment can be expressed as a
proportion of the prediction error, that is, the difference be-
tween the new location of the target and the prior location of
the robot. Consistent with terminology for Kalman filtering
(Kitagawa 1987), we refer to the proportional adjustment as
the “learning rate” (also known as the Kalman gain). Unlike in
the traditional Kalman filter, however, the learning rate will
change with the size of the prediction error. As such, behavioral
adjustmentwas tied to learning rates, which themselves related
to prediction errors.

A Bayesianmodel was developed to determine how the learn-
ing rate should be adjusted. To simplify the analysis, we approxi-
mated our infinite-range (the target could move an unlimited

number of circles), continuous-state (the target could end up
anywhere) state-space model by a finite-range, discrete-state
Markov transition model. Bayesian posteriors could then readily
be obtained using simple matrix multiplications. Details can be
found in the Supplementary Information. We then determined
the average optimal learning rates and prediction errors per
trial category: outlier trials, where the target moved more than
1 SD, nonoutlier trials (the target moved less than 1 SD) and
reversal trials (trials following an outlier trial in the Transitory
Treatment). (The next section elaborates on the categorization.)
Average optimal learning rates and corresponding prediction er-
rors per trial category are indicated with horizontal green line
segments in Figure 3a,b.

The optimal Bayesian learning rate decreases with the size of
the prediction error in the Transitory Treatment, and increases in
the Fundamental Treatment. See Supplementary Figures 5 and 6,
left panels. This is because, in the Transitory Treatment, large
moves are most likely leptokurtic noise, and hence, not to be re-
acted to, whereas in the Fundamental Treatment, large moves
are most likely leptokurtic state changes, and hence, need to be
followed. Since inference about the cause of a target move is
clearest for outliers and for smallmoves, confidence in the appro-
priateness of the learning rates is highest for those types of out-
comes; confidence in correct adjustment for medium-sized
moves is lowest, because the entropy of the posterior belief
about the true location from which the target will move next is
highest. See Supplementary Figs 5 and 6, right panels.

Our Bayesian model assumes that the decision maker knows
the parameters of the generative process. This may be unrealis-
tic. Likewise, we assume that she knows which treatment she
is in. The latter is less objectionable: from the Instruction Set
(see Supplementary Information, Instructions), participants
could readily infer the treatments for Runs 2–4. As to Run 1, be-
cause of the salient reversals of outliers in the Transitory Treat-
ment, it takes a Bayesian only a few outliers to determine
which treatment one is in (see Supplementary Information).

Model-Free Reinforcement Learning

We developed a learning model that requires neither knowledge
of parameters nor treatment, unlike for the Bayesian approach.
We modified the model-free reinforcement learning (RL) algo-
rithm in Sutton (1992). The algorithm relies on autocorrelation
of prediction errors to adapt the learning rate. It was originally
conceived to accommodate contingency shifts. Here, we altered
the learning rate adjustment such that, for outliers only, the
learning rate is adjusted appropriately relative to a baseline. In
the Fundamental Treatment, lack of adjustment of the learning
ratewould give rise to positive autocorrelation, and the algorithm
reacts by increasing the learning rate. In the Transitory Treat-
ment, noise that is not accommodated induces negative auto-
correlation (of prediction errors) and, hence, the algorithm
decreases the learning rate. The reaction increases with the
size of the prediction error. In the Transitory Treatment, this
leads to a contrarian strategy, whereby the learning rate is scaled
back more the larger the prediction errors. Therefore, we call our
RL algorithm the Contrarian RL model.

Defining the error as the distance between the inferred and
true target position (estimated and true value of xt + 1), the root
mean square error of the Contrarian RL model is only marginally
worse than that of the optimal Bayesian algorithm, and much
better than that of the Sutton RL algorithm, or a simple RL algo-
rithm with fixed learning rate. Importantly, while relative per-
formance of the Contrarian RL Model is worse in the Transitory
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Treatment, it is much better than that of the Sutton and simple
RL algorithms. See Supplementary Figure 8, right panel. To con-
trol for the number of free parameters, the bayesian information
criterion (BIC) was calculated for the 4 models. As expected, the
Bayesianmodel had the lowest BIC, but the Contrarian RL outper-
formed both the Sutton and simple RL algorithms. See Reinforce-
ment Learning section in Supplementary Information for details.

Behavioral Analysis

We tracked learning rates, performance, and deliberation times.
Learning rates are adjustments of the belief about the true
value of the process driving permanent changes in the position
of the target. Belief adjustments are revealed by howmuch parti-
cipants let the robot catch upwith the target. The performance is
a function of the prediction error. The prediction error can be
measured by the distance between the robot’s position and the
target’s new position. Deliberation times are the length of the
interval between target movement and initiation of robot pos-
ition adjustment.

Trials were divided into separate categories, depending on
whether an outlier occurred. Outliers were defined as a target

movement greater than 1.18 radian (vertical dashed lines in
Fig. 2c), which is 1 SD of the distribution of target movements
after pooling outcomes in the 2 treatments. The chance of an out-
lier was about 1 in 10 trials. Regular trials then corresponded to
target movements smaller than 1 SD. They form what we shall
call the baseline. Outlier trials were trials when an outlier oc-
curred. Postoutlier trialswere regularmovements (<1 SD) that im-
mediately followed outliers. They were typically found in the
Fundamental Treatment. Reversal trials were the signature of
the Transitory Treatment. They were large target movements
(>1 SD) that followed an outlier and went in the opposite
direction.

For each criterion (learning rate, prediction errors, deliber-
ation times), we estimated a mixed linear model, with a factor
that identified the type of trial (regular, outlier, postoutlier/rever-
sal). Across-subject variability was accommodated through ran-
dom-effect regressors for the intercept as well as the trial type
factor. This allowed us to test differences between trials using
simple t statistics; P values reported below refer to these t statis-
tics. Subject-specific parameters could be obtained by summing
the fixed and random effects. More details can be found in the
Supplementary Information.
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Figure 3. (a) Average (±1 standard error [SE]) learning rates (fraction of length of arc spanning pretrial position of robot and newposition of target that participant instructs

robot to cover; a learning rate of 1 instructs robot to fully catch up with the target). Trials are divided into 3 categories: Nonoutlier (regular) trials; outlier trials; postoutlier

trial (Fundamental Treatment; this refers to the trial following an outlier) or reversal trial (Transitory Treatment; this refers to the trial following an outlier, but only if the

movement back covers at least the size of an outlier). First Run of 200 trials in yellow; second Run in orange. Green line segments indicate Bayes-optimal learning rates. (b)

Average (±1 SE) prediction errors (length of arc spanning pretrial position of robot and new position of target), stratified by Treatment, Run, and Trial types. Green line

segments show prediction errors from implementing the Bayes-optimal strategy. (c) Average (±1 SE) reaction times (in seconds), stratified by Treatment, Run, and Trial

types. (d) Average learning rates in event time (outlier trial = “0”), stratified by treatment (Transitory: learning rates decrease in outlier trial; Fundamental: learning rates

increase upon an outlier). Bayes-optimal model averages: green; Contrarian RL model averages: magenta; participant averages: black.
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Brain Analysis

Image Acquisition
Blood oxygen level–dependent (BOLD) fMRI acquisitions were
performed with a 32-channel head coil on a 3-T Siemens Tim-
Trio system. Functional MRI images were acquired with an echo
planar imaging gradient echo T2*-weighted sequence (Flip angle
80°, repetition time = 2000 ms, echo time = 30 ms, 64 × 64 matrix,
generalized autocalibrating partially parallel acquisitions accel-
eration 2, voxel size 3 × 3 × 3 mm, 38 slices, covering the whole
brain). Field maps were recorded to correct for head movement.
High-resolutionmorphological datawere acquiredwith a sagittal
T1-weighted 3D magnetization prepared rapid acquisition gradi-
ent echo sequence, 176 slices (with voxel size of 1 mm isotropic).
This became the structural basis for brain segmentation and
surface reconstruction.

Preprocessing
fMRI preprocessing steps were conducted with SPM8 (Wellcome
Department of Cognitive Neurology, London, UK), included un-
wrapping to correct for head movement, normalization to a
standard template (Montreal Neurological Institute template,
MNI) to minimize interparticipant morphological variability,
and resampling to isotropic voxels of 2 × 2 × 2 mm to improve
superposition of functional results and morphological acquisi-
tions, and convolution with an isotropic Gaussian kernel (full
width at half maximum = 6 mm) to increase signal-to-noise
ratio. The signal drift across acquisitions was removed with
high-pass filter (only signals with a period <240 s were retained).

Voxel-Based Analysis
A general linear model (GLM) was estimated on the BOLD data
using SPM8. Subject was defined as a random factor. The default
orthogonalization of regressors in SPM8 was turned off to avoid
arbitrary results due to regressor order. Regressors were convo-
luted with a standard hemodynamic response function to ac-
commodate the typical delay patterns in the fMRI signal. The
events defined in the GLM were the target movement (0.25 s),
the robot movement (0.25 s), the slider movement (variable dur-
ation), and the slider direction switch (2 s). Each event was de-
fined with an onset and a duration variable. Two additional
regressorswere included to study the early and late effects of out-
liers. These regressors modulated the effect of the target move-
ment. The early onset regressor takes the value one for outlier
trials and the next 2 target movements. Then it reverts to zero
(e.g., 1 1 1 0), unless a new outlier occurs. The late onset regressor
is obtained by shifting all the values to the next targetmovement
(e.g., 0 1 1 1; the boldface value refers to the outlier trial). To con-
trol for additional visual effects, the distance the robot moved
was included as additional regressor in the GLM. The choice of
early/late onset regressors was based on a preliminary analysis,
where we had included dummy variables separately for each of
the four trials including and following an outlier. The retained re-
gression specificationmaintains parsimony. Initially, we tested a
GLM model with the parametric prediction error as regressor,
thus allowing the size of an outlier to modulate the BOLD signal.
This produced qualitatively similar results. We only report find-
ings for the dummy variable analysis because the dummy vari-
ables allowed the effect of an outlier trial to span over several
trials (1 1 1 0) or to be delayed (0 1 1 1).

Altogether, there were 7 regressors per Run in the GLM, and
since there were 4 Runs, the GLM used 28 regressors. In addition,
we added regressors to capture headmovements, as well as Run-
specific dummy variables.

ROI Analysis
To avoid circularity or “double dipping” (because the same data
were used as in the voxel-based analysis), ROIs for each partici-
pant were localized based on the data of all other participants ex-
cluding the participant at hand (Kriegeskorte et al. 2009). Average
activation in regions of interest (ROIs) was calculated using Mars-
bar (Brett et al. 2002). The 20 s following an outlier onset were di-
vided in 10 bins of 2 s for the Finite Impulse-Response model. An
additional model was defined to estimate the effect of each target
movement separately. The beta values obtained with Marsbar
served in turn as a dependent variable inmixed linear regressions
(R Core Team 2015). The independent variables in these regres-
sions were the early onset regressor (coding for outlier target
movements as in the GLM), the treatment (0 = fundamental, 1 =
transitory) and their interaction (Outlier × Treatment). Subject
was set as a random factor.Onemixed linearmodelwas estimated
for each ROI. The analysis was repeated by replacing the early
onset regressor by the late one. The interaction term allowed us
to test if the early and late effect of outlierswas significantly differ-
ent between the Transitory and Fundamental Treatments.

Results
Behavioral Results

In the Fundamental Treatment, the Bayes-optimal strategy is to
increase the learning rate as a function of the prediction error.
See Figure 3a, Left (green line segments). The optimal strategy
can best be understood when considering that small moves are
likely to be just noise, while large moves reflect permanent
changes in the position of the target. Therefore, the robot should
be moved closer to the target when the target has just made an
outlier move. In the Transitory Treatment, small moves are likely
to be permanent position changes, while large moves are most
likely reversed subsequently. Therefore, but perhaps counter-in-
tuitively, the robot should not be moved much when the target
moves substantially, while small target movements require full
robot adjustment. In other words, the learning rate should de-
crease in the prediction error. See Figure 3a, right. In postoutlier
trials of the Fundamental Treatment (which, as mentioned be-
fore, excludes outlier trials), the learning rate returns close to
the baseline. In the Transitory Treatment, the learning rate also
returns near the baseline upon reversal (an outlier trial in the
other direction).

Consistent with Bayes-optimal choice, in the Fundamental
Treatment, the participant learning rate for outliers was higher
compared with the baseline (P < 0.001) and subsequently de-
creased significantly (P = 0.01, Supplementary Table 1). Still, ad-
justment in the outlier trials was below the Bayes-optimal
policy (P < 0.001, Supplementary Table 2). In the Transitory Treat-
ment, participants correctly reduced the learning rate for outlier
trials (P < 0.001) and then increased it at the time of reversals (P <
0.001, Supplementary Table 3). Still, participants overreacted in
outlier trials: their adjustment was significantly above the
Bayes-optimal level (P < 0.001, Supplementary Table 4).

Thus, when controlling the robot, participants distinguished
fundamental and transitory outliers and followed the general
Bayesian schema (following fundamental changes, resisting tran-
sitory changes). However, analysis of runs, prediction errors, and
reaction time will show that it is more difficult for participants to
adapt to transitory compared with fundamental changes.

Across Runs, we observed an effect of learning during outlier
trials in the Transitory Treatment, where the learning rate de-
creased significantly between the first and second Runs (P < 0.001,
Supplementary Table 5), bringing participants closer to the
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Bayesian optimal solution. No learning effect was detected in the
Fundamental Treatment (P = 0.26, Supplementary Table 6). This
differential learning effect was confirmed by a significant
Treatment × Run interaction (P < 0.001, Supplementary Table 7).

Prediction errors (the distance between the new target pos-
ition in a trial and the initial position of the robot) measured per-
formance: the lower, the better. The Bayes-optimal solution
generated large prediction errors during outlier trials in both con-
ditions (horizontal green lines, Fig. 3b), because outliers could not
be predicted. The error decreased in the postoutlier trials, be-
cause these involved only regular movements in the Fundamen-
tal Treatment, whereas in the Transitory Treatment, perfectly
predictable reversals occurred in these trials. In the Fundamental
Treatment, participant learning rates mirrored the Bayes-opti-
mal pattern, with significant increases in errors in outlier com-
pared with regular trials (P < 0.001), followed by a significant
decrease in postoutlier trials (P < 0.001, Supplementary Table 8).
The increase in outlier trials and decrease in subsequent rever-
sals were also significant in the Transitory Treatment (both P <
0.001, Supplementary Table 9). The relative prediction error
(computed as the difference between a participant’s prediction
errors and the Bayesian prediction errors) was larger in the Tran-
sitory compared with the Fundamental Treatment for regular
trials (P < 0.001, Supplementary Table 10) and outlier trials (P =
0.02, Supplementary Table 11) alike. It was also larger for reversal
trials when compared with postoutlier trials (P < 0.01). This sug-
gests that it wasmore challenging for people to predict the target
movement in the Transitory Treatment. Relative to the Bayes-op-
timal choice, prediction errors in the Transitory Treatment were
on average 67% larger than in the Fundamental Treatment (0.786
radians compared with 0.470; Supplementary Table 12).

Wenow consider prediction errors in absolute terms (not any-
more relative to the Bayes-optimal solution). For postoutlier
trials, participant errors were smaller in the second Run com-
pared with the first Run (P = 0.01, Supplementary Table 13). This
effect of training was also observed in reversal trials in the Tran-
sitory Treatment (P < 0.001, Supplementary Table 14). Important-
ly, the improvement in performancewasmorepronounced in the
Transitory Treatment, as indicated by a significant Treatment ×
Run interaction (P < 0.01). Quantitatively, training reduced predic-
tion errors in the Transitory Treatment by 27% (1.156 radians
comparedwith 1.585) and by 15% in the Fundamental Treatment
(0.777 radians compared with 0.909; Supplementary Table 15).

Deliberation time was defined as the length of time (in sec-
onds) between target movement in a trial and the moment the
participant started pulling the slider to adjust the learning rate.
Trials where participants did not change their learning rate
were not taken into account for the analysis. Compared with
regular trials, deliberation time increased for outliers in the Fun-
damental Treatment (P < 0.001) and decreased for postoutlier
trials (P < 0.001, Fig. 3c, Supplementary Table 16). In the Transi-
tory Treatment, deliberation times were significantly higher for
outliers compared with regular trials (P < 0.001), and further in-
creased for reversal trials (P < 0.001, Supplementary Table 17).
This suggests that outliers recruited additional cognitive re-
sources, in particular when an outlier reverts. Across Runs, delib-
eration times decreased in the Fundamental Treatment (P < 0.01,
Supplementary Table 18), but this was not the case in the Transi-
tory condition (P = 0.95, Supplementary Table 19). The latter indi-
cates that with training, behavioral adjustment to fundamental
outliers became more automatic, while it remained effortful for
transitory outliers.

The Behavioral Results section in Supplementary Information
provides detailed analyses of behavior beyond the first

postoutlier trial. From the second postoutlier trial on, learning
rates, prediction errors, and deliberation times across Transitory
and Fundamental Treatments are allmuchmore alike than in the
first postoutlier trial. See Supplementary Figure 1. But there are
important training effect differences. Specifically, in the Funda-
mental Treatment, changes in the learning rate upon an outlier
settle after about 80 trials, while convergence in the learning
rate toward the Bayes-optimal levels lasts several hundred trials
in the Transitory Treatment. See Supplementary Figure 2b. Indi-
vidual differences reveal that, for the large majority of partici-
pants, the learning rate increased after an outlier in the
Fundamental Treatment and decreased in the Transitory Treat-
ment. See Supplementary Figure 2a.

The Contrarian RL model has 4 free parameters (a baseline
learning rate a, a parameter identifying outliers f, a scaling par-
ameter controlling the effect of covariance of prediction errors
s, and a learning parameter updating estimates of variance and
covariance of prediction errors θ). We fit it to the participant
choices. We computed the error as the difference between the
participant choice and the model learning rate. This error
was calculated for each of the 12 400 experiment trials (31
participants × 400 trials per treatment). Minimizing the root
mean square error, the estimated parameters for the Contrarian
RL models were: a = 0.55, f = 0.59, s = 1.29, and θ = 0.002. Figure 3d
displays the learning rates for the 2models (Bayesian, Contrarian
RL), and the learning rate revealed in participants’ choices, per
treatment, and across several trials straddling the outlier trials.
The Contrarian RL produces learning rates that track those of
participants much more faithfully than the Bayesian model. In
particular, upon an outlier, both the Contrarian RL model and
participants adjusted the learning rate in the correct direction,
but this adjustment was smaller in comparison with the Bayes-
optimal solution. This under-reaction obtains in both treatments.
The smallest BIC was found for the Contrarian RLmodel (−61 126),
followed by the Bayesian model (−55 028), Sutton’s algorithm
(−43 635), and the simple RLmodel (−30 851). A formal comparison
of model thus confirmed that the Contrarian RL model matched
participant choices better than the other 3 models.

Brain Activation Results

Using fMRI, we correlated brain activation with mathematical
representations of outlier stimuli (controlling for the usual con-
founds such as movement or ancillary stimuli).

Absent significant learning effects in brain activation, we
merged data from the 2 Runs of each Treatment. We did not
find a significant difference in the effect of target movement
across Treatments, consistent with our hypothesis that our Fun-
damental Treatment was a good control for our Transitory Treat-
ment, andhence, that any treatment effectwould be pickedup by
decision-relevant regressors such as type of trial (outlier/nonout-
lier). To determine significance, we used a cutoff P level of 0.05,
corrected for multiple comparisons at the cluster level [Accepted
False Discovery Rate (qFDR) < 0.05] (Chumbley and Friston 2009;
Chumbley et al. 2010), unless indicated otherwise. Here, we
report activation in brain regions that reacted to outliers.

Exploratory analysis confirmed that some regions reacted at
the onset of outliers while others had a delayed response. This
analysis also showed that the effect of outliers spannedmultiple
trials. To formalize the timing effects, the target movement was
modulated by 2 regressors in theGLMwithwhich brain activation
was analyzed. The regressor corresponding to the early onset
equaled 1 in the outlier trial and the following 2 trials, 0 other-
wise. The regressor corresponding to the late onset equaled 1 in
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the trial following the outlier and the following 2 trials, 0
otherwise.

Areas of significant early activation comprised an extensive
bottom-up AN, including thalamus, bilateral PPC (stretching
from occipital cortex to the parietal lobes), medial ACC (reaching
the supplementary motor area [SMA]), superior part of the pre-
central gyrus (frontal eye field [FEF]; bilateral), inferior part of
the frontal gyrus (bilateral) extending to the (inferior) precentral
gyrus, and AI (bilateral), see Figure 4a. Detailed imaging results in
table format are provided in Supplementary Table 20. Significant
late activation upon outliers emerged in bilateral inferior parietal
cortex (angular gyrus extending to the supramarginal gyrus) and
bilateral middle frontal gyrus (dorsolateral prefrontal cortex;
Brodmann areas [BA] 8/9), extending to the frontal pole (BA 10),
see Figure 4b. This set of regions forms the fronto-parietal net-
work (Supplementary Table 21).

To explore the precise nature of these activations, we con-
ducted a region-of-interest (ROI) analysis, properly adjusting for
the fact that we re-visited the same data by localizing the ROI
for a given participant using voxel-based activation results for
the remaining participants only (leave-one-out procedure). A fi-
nite impulse-response model with 10 bins of 2 s was defined to
explore the time course of BOLD activity upon outliers. The
model was fitted to the mean activity of each ROI separately
and the estimated time course was averaged, across the 6 ROIs
forming the AN on the one hand (Fig. 4a), and the 3 ROIs forming
the fronto-parietal network on the other hand (Fig. 4b). Results

revealed that peak BOLD response to outliers in the fronto-par-
ietal network was delayed by about 4 s (ca. one trial) compared
with the AN (Fig. 4c).

We then tested whether the early or the late effects of outliers
were different between the Fundamental and Transitory Treat-
ments. Results of the GLM contrasts showed no difference for
the late onset regressor. Differences were also insignificant
when analyzing the average BOLD signal in each of the fronto-
parietal ROIs (P > 0.34). At a more liberal threshold (P < 0.001,
uncorrected), a significant difference was found in the bilateral
insula for the early onset GLM regressor. See Figure 5 (right) and
Supplementary Table 22. For illustrative purpose, the early effect
of outliers was computed for the 2 Treatments separately. For the
Transitory Treatment, a large activation was observed in the bi-
lateral insula and the medial wall of the ACC (qFDR < 0.05). No
voxel was significantly activated in the Fundamental Treatment,
see Figure 5 (left). A ROI analysis confirmed that the early effect of
outliers was significantly stronger in the bilateral insula (P < 0.01;
Supplementary Table 23). This significant differentiation already
emerged in the outlier trial itself (i.e., before outlier reversal;
P < 0.001). No significant difference between the 2 Treatments
was observed in the remaining 5 ROIs of the AN (P > 0.26).

Discussion
Westudied human reaction to leptokurtic noise and its neurobio-
logical foundations. Leptokurtic noise is an unusual type of risk
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Figure 4. (a) Statistical parametric brainmaps of significant BOLDactivation correlatingwith outlier trials (early onset), whole-brain corrected, all Runs of bothTreatments.

Significant activation emerges in a wide network engaged in bottom-up attention to sensory stimuli. (b) Statistical parametric brain maps of significant BOLD activation

correlating with outlier trials (late onset), whole-brain corrected, all Runs of both Treatments. Significant delayed activation emerges in the fronto-parietal control

network. (c) Statistical parametric brain maps (left) and time courses (right) of activation in the attentional (red) and fronto-parietal (green) networks correlating with

outlier trials, all Runs of both Treatments. Time courses aligned with initiation of target movement (time = 0).
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that has recently emerged in the human environment as a result
of large-scale social interaction through, for example, financial
markets. We had 2 goals in mind. First, we wanted to challenge
a conjecture in evolutionary neurobiology that the human AI
has been shaped, among others, to respond quickly to novel
types of uncertainty. We considered leptokurtic noise an excel-
lent example of an unfamiliar kind of risk. Our aim was to deter-
mine whether AI played a privileged role in discriminating
between, on the one hand, leptokurtic noise, and, on the other
hand, outliers that were otherwise equally salient and frequent
but that did not constitute noise. AI is known to generally activate
in response to outliers, presumably because outliers translate
into risk prediction errors, andAI encodes such errors (Preuschoff
et al. 2008; d’Acremont et al. 2009). But herewewere interested in
differential activation, and whether significant differential acti-
vation is unique to AI. Second, we wanted to determine whether
the FPCNbecame engaged after outliers that required demanding
behavioral adjustment. It is known that outliers activate a broad
AN, and that this activation can be separated in an outlier detec-
tion component and a belief updating component (O’Reilly et al.
2013). Here, we wanted to investigate neural processes support-
ing a crucial third stage, namely, behavioral control. We were in-
terested in localization, and in potential temporal separation
between (early) attention-related activation and (later) control
processes.We targeted FPCN because of its role in tasks requiring
behavioral control (Glaescher et al. 2012; Cole et al. 2013).

The behavioral results revealed that participants were indeed
unfamiliar with leptokurtic noise: they initially overreacted
grossly and performance was poor. Yet consistent with adapta-
tion, behavior improved gradually. Adaptationwas not effortless,
however, because reaction times remained high, even after sev-
eral hundred trials, and learning rates took hundreds of trials to
converge. This is in contrast to the results we obtained in our ver-
sion of a paradigm that humans are far more familiar with,
namely, the traditional mean-shift paradigm. There, choices
were far closer to optimal from the beginning, performance

higher, and reaction times shorter, despite the fact that the
same leptokurtic law was used to generate outliers. Our results
extend prior findings in mean-shift paradigms, demonstrating
that these findings continue to obtain even if the random shifts
in the mean occur continuously and follow a leptokurtic law.
Altogether, our results highlight the difficulty humans have in
adjusting their reaction to outliers generated by an increase in
error volatility (leptokurtic noise). This difficulty could partly
explain why investors and the media sometimes overreact to
inconsequential outliers (Fig. 1c).

We found that a Contrarian RL model fit participants’ choices
better than the Bayes-optimal model. Like an earlier RL model
(Sutton 1992), it exploits information in the autocorrelation of
outliers, reducing the learning rate below baseline when the
autocorrelation is estimated to be negative, and increasing it
when the autocorrelation is positive. Negative autocorrelation
obtains when the decision maker overreacts, so reduction in
the learning rate is called for. Positive autocorrelation obtains
when she underreacts, so the learning rate is to be increased
above baseline. Unlike the earliermodel, however, the Contrarian
RL model identifies outliers explicitly and adjusts learning rates
only based on observations in outlier trials, andwith the learning
rate in regular trials as baseline. In contrast with Bayes-optimal
choices, the Contrarian RL approach is model-free: it requires
knowledge of neither the parameters of the generative model
nor identification of which regime one is in (Transitory; Funda-
mental). It does require one to track autocorrelation of prediction
errors. Given how well the Contrarian RL model fits participants’
choices, an interesting question for future research is to explore
where and how autocorrelation is recorded in the brain.

Our findings elucidate the nature of the neural processes re-
quired to properly control behavior after salient and frequent
outliers. In prior work, the focus had been onneural processes in-
volved in detecting those outliers, and in updating beliefs. In both
Treatments, outliers initially engaged a broad bottom-up AN, in-
cluding sensory regions such as thalamus and attention-direct-
ing regions such as FEF. Within this network, involvement of
inferior frontal gyrus (extending to the inferior precentral
gyrus) and the PPC could be attributed to the surprise that the
outliers generated (Friston 2010; d’Acremont, Schultz, et al.
2013; O’Reilly et al. 2013). Updating of beliefs about the outliers
would explain engagement of ACC/SMA, consistentwith (O’Reilly
et al. 2013). In subsequent trials, activation shifted, tracing the
FPCN—inferior parietal cortex and dorsolateral prefrontal cortex
extending to the frontal pole (Cole et al. 2013; Glaescher et al.
2012).

Consistent with our conjectures, we thus observed neural dis-
sociation between the attentional/belief updating and control
phases of our task. The results highlight how cognition and con-
trol are separated neurally, both spatially and temporally. We
were able to detect such separation because subjects had to en-
gage in complex behavioral control after an outlier (the robot
had to be moved the right distance toward the target). As such,
our paradigm had a more prominent control component than,
for example, in oddball detection tasks. In traditional contin-
gency-shift paradigms (Behrens et al. 2007; O’Reilly et al. 2013;
McGuire et al. 2014), control after an outlier is likewise demand-
ing, but intertwinedwith extensive belief adjustment (what is the
nature of the new contingency?), and belief adjustment some-
times requires exploration (what action would reveal more
about the new contingency?),making it difficult to separate belief
adjustment and control. In contrast, our task was built on the
(nonlinear) Kalman filter, where adjustment of the learning rate
is continuous—forecasting the location of the true state should

P

Figure 5. Localization of significant BOLD activation correlating with outlier trials

(early onset), separated by treatment. BOLD signals in anterior insula and medial

wall of the anterior cingulate cortex were significant (whole-brain corrected) in

the transitory treatment (bottom left) while they were not in the Fundamental

Treatment (top left). Right: Only anterior insula survived (at P < 0.001

uncorrected) direct testing of differential activation across treatments.
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have taken place in each trial, whether an outlier occurred or not.
The distinguishing element was robot control (how far was the
robot to be moved?). If anything, forecasting (the location of the
state) was simpler in outlier trials than in nonoutlier trials: in
the Transitory Treatment, expected future target location (the
true state) coincided with target location in the previous trial;
in the Fundamental Treatment, expected future target location
coincided with the new target location. The entropy (which
moves inversely with precision) of the Bayesian posterior beliefs
reflects this: the entropy is higher after medium-sized target
moves, but lower both after small-sized and large target moves
(Supplementary Figs 5 and 6). The intuition is simple: medium-
sized target moves could equally likely have been caused by lep-
tokurtic noise or Gaussian disturbances.

Only AI survived a direct contrast between the two Treat-
ments. AI activated more strongly under the Transitory Treat-
ment. Given the unusual nature of leptokurtic noise, our
findings support the view among evolutionary biologists that AI
has developed to allow humans to rapidly respond in unfamiliar
stochastic environments (Allman et al. 2011). This capacity is at-
tributed to the presence of von Economo neurons. Closer inspec-
tion revealed that the area within AI where we observed the
activation overlapped with the region where von Economo neu-
rons are alleged to reside (Craig 2009). The same subregion of AI
has been found to encode risk prediction errors as well (Preusch-
off et al. 2008; d’Acremont et al. 2009). The ability of AI to discrim-
inate between leptokurtic noise and other frequent and salient
outliers fits well with the notion that AI is involved in building
awareness about unusual sensory stimuli from one’s environ-
ment and emotional reactions to these stimuli (Craig 2009,
2011). As such, AI activationmay not simply reflect identification
of salient, exceptional events, andmay instead reveal an attempt
to maintain awareness around outlier trials in the Transitory
Treatment, to avoid distraction that would otherwise lower per-
formance significantly. Our hypothesis here is that AI takes con-
trol of a person’s attention and emotions.

Because outliers were equally frequent and salient across the
2 Treatments, our results suggest that the role of AI is not merely
that of bottom-up detection of salient events and subsequent
modulation of attention and control (Menon and Uddin 2010).
Our results show that AI plays a far more fundamental role. It
identifies the nature of salient events, so that responses can be
fast and adaptive. AI is thought to engage in tasks that require re-
straint (Brass and Haggard 2007). To a certain extent, restraint
was also needed in our task: under leptokurtic noise, subjects
had to keep themselves from following large movements of the
target (in contrast, they were to catch up with the target when
it made small moves). The role of AI in controlling restraint is
controversial though: recent evidence from a stop-signal task
suggests that AI is involved only in initial acquisition of restraint,
while continued assuring of restraint is attributed to inferior
frontal gyrus (Berkman et al. 2014). Moreover, under leptokurtic
noise, optimal reaction to outliers was not simply to ignore the
outliers (unlike in, e.g., “task-irrelevant” oddball paradigms;
Kim 2014), but required careful adjustment of the position of
the robot depending on the size of the outlier. Specifically, the sli-
der had to bemoved toward the zero point, to reduce the learning
rate. Finally, AI is known to signal awareness of upcoming mis-
takes, perhaps as a result of an increase in noise that could affect
performance (Klein et al. 2007; Eichele et al. 2008). But anticipa-
tory activation of this kind is actually located in a more rostral
subregion of AI than where we observed our activation (Preusch-
off et al. 2008). An interpretation consistent with the localization
reported in previous studies would be that the AI activation

reflects the higher entropy associated with leptokurtic noise
(compare Supplementary Figs 6b and 5b).

The medial wall of ACC generally activates after outliers in
traditional contingency-shift paradigms, and this activation
has been associated with belief updating (Behrens et al. 2007;
O’Reilly et al. 2013; McGuire et al. 2014). Therefore, it may be sur-
prising that we did not record significant (whole-brain corrected)
activation when examining the Fundamental Treatment “in iso-
lation.” However, belief updating in our Fundamental Treatment
was actually much simpler than in traditional contingency-shift
paradigms. Asmentioned before, what happened after an outlier
did not require elaborate belief adjustment (about the nature of
the new contingency). We would offer the following explanation
for the strong activation of the medial wall of ACC in the Transi-
tory Treatment in isolation. Our explanation is consistent with
the idea that this region is crucial for belief updating, but here be-
lief updating does not concern location of the true state, but iden-
tification of the true outcome-generating process. Our subjects
exhibited coping problems because they were unfamiliar with a
setting where outliers reverted constantly. One can think of hu-
mans as favoring aworldmodel where outliers signal fundamen-
tal changes and reversals clash with this model. Several results
support the idea that fundamental changes are considered “nor-
mal,” such as the hot hand fallacy (Gilovich et al. 1985), and the
general tendency to seek meaningful patterns in random infor-
mation (apophenia) (Brugger 2001). The belief that outliers
should signal fundamental changes could have been exacerbated
in our paradigmbecause our paradigmuses a geometric interface
and subjects have been shown to attribute intention to geometric
objects thatmove on acomputer screen (Blakemore et al. 2003). In
addition, people are particularly prone the hot hand illusion
when random series are produced by an intelligent agent, as op-
posed to a lottery (Ayton and Fischer 2004). Thus, a possible inter-
pretation of ACC activation in the Transitory Treatment (Fig. 5,
bottom-left) is that participants’ beliefs need substantial revi-
sion, and this is what ACC is involved in.

The activation in themedial wall of ACC should also be put in
perspective against similar activation in Stroop (Shenhav et al.
2013) and AX-CPT tasks (Carter et al. 1998). ACC activation
squares with the idea that this brain region is involved when
stimuli are associated with conflicting response. In our Transi-
tory Treatment, a conflict exists between the meaning of the
stimulus (the outlier), on the one hand, and subjects’ beliefs
about how outliers are usually generated (their “world model”).
This conflict translated into longer reaction times and larger er-
rors among participants, and goes beyond conflict within the
stimulus (Stroop task) or conflict between temporary instruction
by the stimulus and usual instruction (AX-CPT task). Conflict had
to be resolved bymeans of adequate control (appropriatemoving
of the robot), but equally importantly, by means of updates of
one’s “world model.” As such, we could interpret ACC activation
as signaling not only conflicting responses, but also of belief up-
dating, in the processmerging 2 different opinions about the role
of ACC.

We have shown how participants managed to adapt to un-
familiar types of uncertainty. At the same time, substantial effort
was needed throughout, reflected in persistently long reaction
times. This should caution policies that implicitly force humans
to be exposed to leptokurtic noise. The recent tendency to make
citizens personally accountable for investments (e.g., through a
move from defined-benefit to self-administered, defined-contri-
bution retirement plans) has led to such increased exposure. In
fact, risks in financial markets are far more complex than those
underlying target movements in our paradigm, because there,
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it is never immediately clear whether an outlier constitutes noise
or reflects a permanent shift (Mandelbrot 1963; Embrechts et al.
1997). We would advocate the development of new statistical
models that adequately identify when outliers constitute noise.
Popular financial econometric tools such as GARCH (Bai et al.
2003) do not. Our Contrarian RLmodel appears to provide a prom-
ising direction for future research.

Finally, we conjecture that there may be a link between AI in
its role of securing fast, adaptive response to unfamiliar types of
uncertainty, on the one hand, and mental disorders that are
characterized by lack of adaptation to environmental changes,
on the other hand. Activation inAI has indeed been shown to cor-
relate with anxiety disorder and specific phobia, especially social
phobia (Etkin and Wager 2007; Damsa et al. 2009). We hypothe-
size that abnormal function of AI in modulating adaptation to
unfamiliar risks may be related to, if not the cause of, some
types of anxiety disorder and phobia.

Supplementary material
Supplementary Material can be found at http://www.cercor.
oxfordjournals.org/ online.
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