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Many adverse reactions to therapeutic drugs appear to be allergic in nature, and are
thought to be triggered by patient-specific Immunoglobulin E (IgE) antibodies that
recognize the drug molecules and form complexes with them that activate mast cells.
However, in recent years another mechanism has been proposed, in which some drugs
closely associated with allergic-type events can bypass the antibody-mediated pathway
and trigger mast cell degranulation directly by activating a mast cell-specific receptor
called Mas-related G protein-coupled receptor X2 (MRGPRX2). This would result in
symptoms similar to IgE-mediated events, but would not require immune priming. This
review will cover the frequency, severity, and dose-responsiveness of allergic-type events
for several drugs shown to have MRGPRX2 agonist activity. Surprisingly, the analysis
shows that mild-to-moderate events are far more common than currently appreciated. A
comparison with plasma drug levels suggests that MRGPRX2 mediates many of these
mild-to-moderate events. For some of these drugs, then, MRGPRX2 activation may be
considered a regular and predictable feature after administration of high doses.

Keywords: MRGPRX2 receptor, anaphylaxis, mast cells, perioperative anaphylaxis, morphine, atracurium,
vancomycin, rocuronium
INTRODUCTION

Acute adverse reactions to therapeutic drugs are those which occur within minutes to hours of drug
exposure, and many of these present clinically as allergic episodes (1, 2). Mild-to-moderate
symptoms include rash, erythema, pruritus, tachycardia, local tissue swelling, moderate
bronchospasm, transient hypotension, and gastrointestinal distress (3, 4). The most extreme of
these reactions are classified as “anaphylaxis” and can be life-threatening; these include more severe
hypotension, bronchospasm, and tissue swelling, and even collapse of the cardiovascular system
(3, 4).

Most of these are assumed to be driven by activation of mast cells by drug-specific
Immunoglobulin E (IgE) antibodies, which are called Type I immediate hypersensitivity
reactions (1, 2, 5). Prior exposure to the drug, or to a compound with a structurally similar
element, stimulates production of antibodies that recognize the drug or a conjugate formed when
the drug or a metabolite binds to an endogenous protein. These antibodies then associate with
org August 2021 | Volume 12 | Article 6763541
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high-affinity IgE receptors on the surface of mast cells in a
manner that leaves their drug-binding sites free. When a drug
recognized by the antibodies is administered, it (or the conjugate)
binds to multiple antibodies at the same time. This brings the IgE
receptors associated with the antibodies into prolonged close
contact, triggering activation of the receptors and the release of
mediators like histamine that generate the allergic responses (6).

Another cause of acute mast cell activation has been proposed, in
which drugs trigger reactions very similar to Type I events – but
without the need for antibodies or immune priming – by activating
mast cells directly through a receptor called Mas-related G protein-
coupled receptor X2 (MRGPRX2). MRGPRX2 is a seven
transmembrane G protein-coupled receptor which is expressed
almost exclusively by a subset of mast cells that populate
connective tissues like the skin (7, 8). It is classified as an orphan
receptor (9), meaning that the ligand(s) it is intended to recognize
has not been determined. However, multiple screens with hundreds
of small molecules, peptides, and proteins have established that it is
responsive to a wide range of molecules, and that the overwhelming
majority of them carry a net cationic, or positive, charge (8, 10–14).
A recent review identified that most also have bulky hydrophobic
groups, perhaps to increase affinity for plasma membranes (15). In
2015 a study reported that several therapeutic drugs with cationic
groups, all of which induce high rates of allergic-type reactions, are
agonists for MRGPRX2 (12). Moreover, activation of a cell line
called LAD2, which has properties similar to human mast cells and
often is used as a surrogate because primary cells are very difficult to
extract, was dependent upon MRGPRX2 (12). Other drugs capable
of activating MRGPRX2 have since been found, many of which also
trigger allergic-type events. This finding raises the possibility that
side effects that appear to be Type I – i.e., allergic and IgE-mediated
–may in some cases arise instead from direct activation of mast cells
through MRGPRX2. Such events have been called “pseudo-allergic”
or “anaphylactoid” to distinguish them from true allergies. All
events that present as allergic episodes will be referred to as
“allergic-type” in this review, as the etiology is not always clear.

This review will present an analysis of the frequencies of
allergic-type events for many drugs/MRGPRX2 agonists that are
particularly closely associated with such events. Calculated EC50

values for MRGPRX2, compiled from several studies, are
presented in Table 1 (12–14, 16–19). Two specific issues are
addressed for each drug: 1.) whether the mild-to-moderate
events truly are mast cell-mediated; and 2.) whether
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MRGRPX2 involvement is supported. The first issue is
important because, while anaphylaxis elicits a stereotyped and
coordinated set of symptoms with a clear mast cell origin, the
milder events only include some of these, and mast cell activation
is not the only possible cause of the symptoms. The second issue,
of whether MRGPRX2 is involved, is impossible to prove without
specific antagonists. However, if events are much more common
only when plasma levels are high enough to activate MRGPRX2,
it certainly supports a role for this receptor. Therefore, plasma
concentrations are provided for each drug. A more detailed
discussion on methods of distinguishing IgE from MRGPRX2
or other non-IgE origins is provided in Section II.

The most surprising finding from this analysis is that mild-to-
moderate allergic-type events can be very frequent, much more
so than generally presumed. These events generally are neglected
in favor of anaphylactic episodes, which are much more serious
but are extremely rare. In contrast, mild-to-moderate events have
been reported to occur in a majority of patients at some drug
dosages. These are not trivial and may have serious impacts on
health when patients already are highly compromised. Peak drug
plasma concentrations support MRGPRX2 involvement in these
events for several drugs; this suggests that MRGPRX2 activation
might be considered a common, not a rare, feature when these
drugs are administered.
DETERMINATION OF IGE- VS. MRGPRX2-
MEDIATED MAST CELL ACTIVATION

A pressing issue in the field is how to determine whether mast
cell activation is mediated by IgE or MRGPRX2 when a patient
has suffered an allergic-type event due to a drug that is an
MRGPRX2 agonist. These drugs also may be immunogenic, so
simply exhibiting MRGPRX2 agonism does not rule out IgE.
Technically, distinguishing between these is not yet possible
because there are no biomarkers that reliably identify or
exclude one or the other mechanism, such as a mediator only
released after stimulation of one but not the other receptor.
However, specific measurements can be made that support the
involvement of each pathway.

MRGPRX2 Involvement
MRGPRX2 should be suspected if an event is only observed at
concentrations high enough to activate the receptor, and resolves
when the concentration drops below this. As described in detail in
th next section, the drug concentrations needed to activate
MRGPRX2 are very high and only achieved transiently for most
drugs. Many allergic-type reactions also are very transient and only
occur at very high drug concentrations. In contrast, there is a
widespread assumption that IgE-mediated mast cell activation
occurs even at very low concentrations of an antigen – for
example, food allergies only require miniscule amounts of food-
though this is not proven for every allergy. Another factor is that
mediator release after IgE-driven mast cell activation persists for
much longer than after antibody-independent mast cell stimulation
(20), so events that are short-lived are less likely to be IgE-driven,
TABLE 1 | Calculated EC50 values for selected MRGPRX2 agonists.

Name EC50 Reference

Vancomycin ~ 60 micrograms/ml (14)
Atracurium 28.6 micrograms/ml (12)
Mivacurium 39 micrograms/ml (16)
Cisatracurium 103 micrograms/ml (17)
Rocuronium 261 micrograms/ml (12)
Morphine 4.5 - 7 micromolar

(1.3 – 2.0 micrograms/ml)
(13, 18, 19)

Ciprofloxacin 6.8 micrograms/ml (12)
Levofloxacin 22.7 micrograms/ml (12)
Moxifloxacin 9.9 micrograms/ml (12)
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especially if they only occur at high drug concentrations and
disappear when plasma or tissue concentrations drop below EC50

values for MRGPRX2.
EC50 values for MRGPRX2 can be used to determine whether

plasma or tissue drug concentrations are high enough to activate the
receptor. However, several additional factors should be considered
when evaluating these. First, plasma concentration measurements
may not reflect concentrations in some tissues; specific examples are
discussed in the fluoroquinolones and neuromuscular blocking drug
sections. Second, EC50 values must be taken in context, as caveats
exist. The values were calculated for the most common MRGPRX2
variant, but dozens of others with slightly different amino acid
compositions, due to natural variations in the coding DNA, have
been identified (21, 22). These sometimes have altered properties;
most of the ones characterized are loss-of-function, but ones with
enhanced signaling have also been reported (23, 24). It is quite
possible that alleles that respond tomuch lower drug concentrations
are expressed by some patients, and if so, EC50 values for those
variants should be used instead. Also, MRGPRX2 expression levels
vary tremendously between subjects (25), and those with
abnormally high expression may also respond to low drug
concentrations, even when the canonical receptor variant is
expressed. Another consideration is that EC50 values usually are
calculated in cell lines, not in primary cells. Finally, concurrent
illnesses may either enhance or reduce mast cell responsiveness, or
how tissues respond to mast cell mediators. An example is provided
below in the vancomycin section, in which bacterial infections
appear to dramatically reduce systemic mast cell responses. On
the other hand, patients with chronic spontaneous urticaria appear
to have much stronger responses to MRGPRX2 agonists (26). This
is an emerging topic and more research needs to be performed, but
it is clear that comorbidities can have a profound influence on
allergic-type reactions.

IgE Involvement
IgE-mediated mast cell activation should be suspected when
events occur at low drug concentrations, when the events are of
long duration, or when drug-specific IgE titers are high. Four
tests are recognized by the World Allergy Organization to help
determine whether a patient has drug-specific IgE antibodies: a
skin prick test, intradermal injection of the drug, plasma or
serum IgE quantification, and basophil activation tests (27).
Protocols are not standardized, and interpretation of the
results can be quite controversial (28, 29). Of these, skin prick
and intradermal injection tests are, by far, the most common
methods for identifying IgE involvement. The concept behind
them is that concentrations are too low to activate MRGPRX2,
but are sufficient to trigger IgE reactions. However,
concentrations are not standardized and in many cases likely
are enough to activate MRGPRX2 – for instance, a commonly-
used skin prick test concentration for morphine and atracurium
is 1 mg/ml (30), dozens of times higher than their EC50 values for
MRGPRX2 activation (Table 1). Intradermal concentrations
generally do not exceed these values, though morphine is
recommended at 10 micrograms/ml, over 5 times higher than
its EC50 value. As mentioned above, MRGPRX2 variants may
have greater sensitivity and may trigger signaling at even lower
Frontiers in Immunology | www.frontiersin.org 3
drug concentrations. Even when several tests are used, the results
can be equivocal. In one study, all four tests were conducted in
each of 140 instances of anaphylaxis after administration of the
neuromuscular blocker rocuronium (31). Strikingly, the tests all
were in agreement in less than 15% of the cases. This is not
meant to imply that IgE tests are not useful, only that they are not
yet optimized, and that tests for MRGPRX2 involvement should
be conducted, as well.

Unfortunately, the assays described for MRGPRX2 and IgE
essentially never are conducted together. Plasma drug
concentrations and MRGPRX2 allele analysis are almost
exclusively limited to controlled experiments in which mild-to-
moderate but not anaphylactic events are observed. Conversely, IgE
tests are used as a diagnostic only after anaphylactic episodes. Until
they are all performed in tandem, even a perfect IgE test cannot rule
out MRGPRX2; likewise, evidence of extraordinarily high drug
concentrations cannot rule out IgE. It even seems quite plausible
that both can operate together in some cases. It is hoped that future
studies with a more comprehensive approach will be undertaken to
help clarify this matter, particularly in cases of anaphylaxis.
ALLERGIC-TYPE ADVERSE EVENT
FREQUENCIES AND ANALYSIS

This section summarizes and analyzes the available data on allergic-
type event frequency for several drugs known to have MRGPRX2
agonist properties. It also discusses evidence for and against a mast
cell origin for these events, as well as peak plasma drug concentrations
to help evaluate whether MRGPRX2 plays a role when mast cells are
involved. Plasma drug concentrations are almost totally unknown in
patients who have suffered anaphylactic episodes, so correlations
cannot be made for these events.

Vancomycin
Vancomycin is a glycopeptide antibiotic used for difficult-to-
treat Gram-positive bacterial infections like methicillin-resistant
Staphylococcus aureus (32, 33). It is given orally or, more
frequently, intravenously as a slow infusion, and is closely
associated with allergic-type reactions – often regrettably
described as “Red Man Syndrome” – that begin during or
shortly after infusion (34).

Allergic-Type Event Frequency and Mast
Cell Dependence
Allergic-type reactions are the most common side effects of
vancomycin, and are characterized by erythema of the head
and neck, hypotension, tachyphylaxis, pruritus, and occasional
angioedema (33, 35, 36). These usually are associated with
elevated plasma histamine (37–41), and often can be mitigated
by antihistamines (42–46), confirming mast cell involvement in
these reactions.

The reported frequency of allergic-type reactions is highly
variable, with most studies reporting either 5% or less [e.g (47–
54)] or over 70% [e.g (38–40, 42, 46, 49, 55–57)]. No systematic
differences in dosage exist between the high and low incidence
studies, suggesting that other factors were responsible for this
August 2021 | Volume 12 | Article 676354
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vast disparity. Notably, with very rare exceptions (43, 58), the
studies reporting high incidence rates were conducted
specifically to examine side effects, while the studies with low
rates were designed to assess antibacterial efficacy. It is plausible
that the different aims resulted in different thresholds for what
constituted a medically relevant side effect.

Another difference between the high and low incidence studies is
the makeup of the study populations. The high incidence studies
examined healthy subjects or hospital patients without infections,
while the low incidence studies were almost all of patients with
severe bacterial infections. Mast cells can be activated by bacteria
(59), and it is possible that persistent activation during infection
leads to mast cell desensitization to further stimuli, and/or systemic
desensitization to mast cell mediators. In support of this, one small
study compared responses in healthy volunteers to those in infected
patients, and found that no infected patients had any reactions,
while nearly all of the healthy controls did (49). No definitive
conclusion can be drawn yet, but the inverse correlation between
infection and mast cell responsiveness appears to be quite strong.

In a massive study of over four million patients given
vancomycin, anaphylaxis was reported to occur with a
frequency of 0.018%, or approximately 1 in 5000 (54).

Peak Plasma Concentrations and Potential
MRGPRX2 Involvement
Vancomycin is a weak agonist, with a calculated EC50 of about 60
micrograms/ml (14). Recorded peak plasma levels of
vancomycin cluster around the 30-50 micrograms/ml range,
which is enough to activate mast cells but not to a large extent.
Patients with more severe reactions may have plasma levels on
the upper end of this range – indeed, levels exceeding 70
micrograms/ml have been reported (55). Importantly, most
measurements were taken after the infusion was complete and
they may underreport the actual peak. Small differences in
concentration are important when considering MRGPRX2
activation, as the reported dose-response curve in cell lines is
very steep (14) and slight changes can have large effects. For
example, in one study, reducing the average peak concentration
from 65.7 to 40.3 micrograms/ml was sufficient to completely
abolish all allergic-type reactions (55). Plasma drug levels and
MRGPRX2 allele expression were not recorded in the large study
that calculated anaphylaxis rates (54), so no correlations
are available.

Atracurium, Cisatracurium,
and Mivacurium
These all are non-depolarizing neuromuscular blocking drugs
(NMBDs). NMBDs are routinely used during surgical
procedures to facilitate tracheal intubation of breathing tubes,
and to reduce aberrant muscle activity during the surgeries. They
bind to and block acetylcholine receptors expressed by muscles,
preventing innervation by nerves (60). High doses of atracurium
and mivacurium are associated with allergic-type side effects
(61); these are much less frequent after cisatracurium
administration (62, 63), which may be due to the fact that
relatively low doses are used.
Frontiers in Immunology | www.frontiersin.org 4
Allergic-Type Event Frequency and Mast
Cell Dependence
Non-depolarizing NMBDs are associated with flushing, erythema,
and hypotension (61). Preclinical studies suggested that high doses
of atracurium would cause hypotension and histamine release in
patients (64). This was indeed the case – after rapid injection of 0.5
mg/kg or more, elevated histamine levels in the plasma were
recorded (65–69), drops in mean arterial blood pressure (MAP)
of at least 20% were observed in most studies, and this could be
blocked by pre-treatment with a combination of H1 and H2
histamine receptor antagonists (65–68). Flushing or erythema also
were blocked in studies that monitored this AE (66, 69). The choice
of antihistamine may be important, as some can counteract their
own effects by blocking the enzyme that breaks down histamine,
which would elevate histamine levels (65). One study demonstrated
that the anesthetic thiopental, commonly used with atracurium, also
can cause a drop in MAP, and suggested that this is the primary
reason for the drop (69). However, this does not explain the cases
where thiopental was not used (68) or was administered well before
atracurium (66, 67), nor does it explain why the drop in MAP could
be abolished by slowing down the atracurium injection time (65,
66), which would produce a lower peak plasma concentration.
Taken together, the data strongly suggest that the immediate drop in
MAP and cutaneous allergic-type effects, the primary side effects of
atracurium, are caused by mast cell activation.

Mivacurium injection is associated with elevated plasma
histamine levels, flushing/erythema, and drops in mean arterial
pressure (MAP) of greater than 20%, which all correlate with the
speed of injection and drug dose. Elevated histamine levels were
frequently observed when measured, sometimes in more than
50% of patients (70–73). Flushing/erythema has been observed in
from 6% to 73% of patients (70–72, 74–82). MAP changes also
occur at a lesser frequency, from 0% to 50% (70, 72, 73, 77,
80–83). Studies that examined all at once found that MAP
changes nearly always were accompanied by flushing and
histamine release (70, 73, 78). Antihistamines block all these
effects (72, 78). It should be noted that occasional studies only
reported average changes in histamine levels and/or mean
arterial pressure, which sometimes did not achieve significance
as a group (71, 79, 82, 84). This does not mean that zero patients
in the group suffered from an AE. The heterogeneity of
responses, compared to atracurium, likely stems from the
variety of mivacurium doses and speeds of injection.

Cisatracurium is very rarely associated with allergic-type side
effects, with incidence rates of 0.5% or less (62, 63), even in
patients with existing cardiovascular morbidity (85). Elevated
plasma histamine levels, though usually mild, have been
recorded after high doses (0.2 mg/kg or more) of cisatracurium
in approximately 5-10% of patients, so it is possible that the
allergic-type events are indeed mast cell-mediated (86–89).

Recent studies have estimated the incidence of atracurium-
induced anaphylaxis at approximately 1 in 20,000-50,000
(90–93). Anaphylactic episodes after cisatracurium administration
are exceedingly rare, as low as 1 in 250,000 (92), though data are
not common and estimates are not necessarily representative.
Anaphylaxis after mivacurium was estimated as occurring in less
August 2021 | Volume 12 | Article 676354
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than 1 in 1,000,000 administrations in a recent study (90), though,
as with cisatracurium, data are relatively sparse, compared to
rocuronium and atracurium. Plasma drug levels and MRGPRX2
allele data are not available for these events.

Peak Plasma Concentrations and Potential
MRGPRX2 Involvement
Peak recorded plasma concentrations after rapid atracurium
injections are usually less than 10 microgram/ml range, even
when high concentrations of 0.5 mg/ml or more are
administered (94, 95). This is lower than the calculated EC50

for MRGPRX2 of 28.6 micrograms/ml (12), and it is not clear
from intradermal injection studies that mast cells respond to
lower concentrations (96). However, even though measurements
were taken 1-2 minutes after injection, there is reason to believe
that these are not truly peak plasma or interstitial concentrations.
Two studies found that extending injection times from 5-30
seconds to 75 seconds was sufficient to abolish most AEs (65, 66).
This suggests that rapid injections produce plasma or interstitial
concentrations somewhere in the body that are enough to
activate mast cells; these are achieved for only several seconds
and a very slight reduction in injection speed is enough to
prevent this. These might not be captured in blood samples,
even shortly after injection; notably, the cited pharmacokinetic
studies did not include information about injection speed.

Peak reported plasma concentrations of the combined
isomers of mivacurium cluster in the 3 to 10 micrograms/ml
range when measurements are taken within a few minutes of
injection (97–101). These also are too low for efficient activation
of MRGPRX2, if the recorded EC50 of 39.0 micrograms/ml is
accurate (16), and skin tests provide little evidence for activation
at lower concentrations. Interestingly, 10-15 second injection
times produced far more AEs than when administration was 30
seconds or more (70, 77, 80). This suggests that, as with
atracurium, the true peak plasma and/or interstitial
concentrations may be missed by the recordings.

Data on peak cisatracurium plasma concentrations are
relatively scarce, but usually are less than 2 micrograms/ml
(102, 103). This is far below the calculated EC50 of 103
micrograms/ml (17). These seem to be too far apart to
consider any side effects to be MRGPRX2-related. However,
skin reactions to intradermal cisatracurium have been observed
at 12 micrograms/ml (104, 105), and LAD2 cell activation by
cisatracurium is dependent on MRGPRX2 (17), so it is possible
that the EC50 for primary mast cells may be lower.

Rocuronium
Rocuronium is a member of the aminosteroid group of NMBDs
that, like atracurium, acts as a muscle nicotinic receptor antagonist
(60). Its onset is only slightly slower than the fastest-acting NMBD,
succinylcholine, while its duration is longer (106). One attractive
reason to use rocuronium is that its effects can be reversed rapidly
by administering sugammadex, which binds to and inactivates
rocuronium (107) and allows for precise control over paralysis.
Unlike atracurium, very few adverse events related to off-target
activity like mast cell degranulation are reported (106, 108–111).
Somewhat surprisingly, the incidence of anaphylactic reactions,
Frontiers in Immunology | www.frontiersin.org 5
while still rare, has been estimated in some studies as being
higher after administration of rocuronium that of most other
NMBDs (91, 93).

Allergic-Type Event Frequency and Mast
Cell Dependence
The most commonly-reported acute side effect specifically
associated with rocuronium is tachycardia (112). Tachycardia,
or increase in heart rate, has been observed with histamine-
releasing drugs, but in the case of rocuronium, this is thought to
be caused by off-target block of acetycholine receptors that
regulate cardiac pacemaker activity (112). In fact, elevated
histamine levels are extremely rare (72, 73, 113) and
immediate hypersensitivity events are not observed in the vast
majority of patients (108–111), though occasional mild skin
reactions do occur (72). Estimates of anaphylaxis are highly
variable (90, 114, 115) but are as high as 1 in 2500-4000 patients
(91, 92, 116).

One plausible mast cell-related AE is an injection site
reaction, which occurs in up to 80% of patients given
rocuronium (106). However, while intravenous rocuronium
can cause a local rash (117), intravenous and intradermal
rocuronium injections are associated not with itch – typical of
mast cell-driven reactions – but with sharp pain and involuntary
limb withdrawal (118, 119). One study in mice suggests that
rocuronium directly activates skin C-fibers, which transmit
noxious sensations like pain (119). This apparently is pH-
dependent, as neutralizing its pH from 3.5 to 7.4 abolished
pain sensation in one human study (120). Another study
reported that pain was reduced after pretreatment with the
antihistamine chlorpheniramine maleate (121). However, it is
quite possible that this is due to off-target activity, as the dosage
given was 10 times higher than the standard amount and also
was given as an intravenous bolus, which results in extremely
high plasma concentrations, compared to an equivalent oral dose
(122). In sum, mast cells may play a role in injection site
reactions, but it seems likely that other mechanisms
also contribute.

Peak Plasma Concentrations and Potential
MRGPRX2 Involvement
Peak recorded plasma concentrations of rocuronium within a
few minutes after rapid injection are between 6-15 micrograms/
ml (123–128). The calculated EC50 for MRGRPX2 activation is
261 micrograms/ml (12), so even with the caveat that plasma
concentration measurements underestimate the peak when taken
after infusion, it seems impossible that MRGPRX2 could be
systemically activated. This readily explains why histamine-
associated AEs are so rare. MRGPRX2 alleles and drug
concentrations are generally not available for patients who
have suffered anaphylactic episodes. One study identified
expression of an allele in one patient (129), though this does
not appear to increase receptor sensitivity (130).

Injection site reactions may involve MRGPRX2. Rocuronium
is supplied as a 10 mg/ml injection solution, which is much
higher than the reported EC50 for MRGPRX2 of 261
micrograms/ml (12), and the threshold for evoking wheal and
August 2021 | Volume 12 | Article 676354
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flare after intradermal injection is as low as 61 micrograms/ml
(104). Local leakage of the drug into the area surrounding the
injection site may trigger MRGPRX2-mediated mast
cell activation.

Morphine
Morphine is a small molecule alkaloid which is used clinically to
activate endogenous opioid receptors and relieve pain. It usually
is administered orally, intravenously, or spinally as an epidural or
intrathecal injection. It has been linked to allergic-type reactions
for over 100 years (131).

Allergic-Type Event Frequency and Mast
Cell Dependence
Pruritus is one of the most commonly-reported adverse events of
any kind associated with morphine (132–134). Frequencies after
epidural administration are from 8.5% to over 50% (135–137);
30% - 100% after intrathecal administration (136–138); up to
40% after intravenous administration (139); and generally 2 -
10% after oral delivery (140), though higher rates have been
reported (141). Oddly, other mast cell-associated adverse events
like rash and hypotension are not nearly as common, and are
rarely mentioned in clinical studies that use typical drug dosing
regimens (132–134). The unusually specific dominance of
pruritus can be explained, at least in part, by the fact that
morphine and other opioid receptor agonists can engage a
mast cell-independent mechanism to trigger pruritus. The
details of this mechanism have not been fully worked out, but
some evidence suggests that it is mediated by a subset of opioid
receptor-expressing neurons in the spinal cord that specifically
mediate itch transmission (142). This may be why epidural and
intrathecal administration of morphine still trigger pruritus – in
fact, they have the highest incidence rates of all routes of
administration – even though they bypass systemic exposure
and do not activate skin mast cells at all. This also may explain
why the mu opioid receptor agonist fentanyl, which does not
activate mast cells (or MRGPRX2) (13, 143), induces pruritus
with incidence rates comparable to, though somewhat less than,
morphine (144, 145). Thus, it is not clear how much of a role
mast cells play in morphine-induced pruritus after normal
clinical doses.

High doses of intravenous morphine produce side effects like
flushing, changes in mean arterial pressure and lowered vascular
resistance (131, 146–150), which almost certainly are mediated
by mast cells. Plasma histamine levels usually were highly
elevated when measured (146, 147, 150, 151), and in two
studies the cardiovascular effects were reduced by pretreatment
with H1 and H2 receptor antagonists (147) or the H1 receptor
antagonist promethazine (149). Local administration of high
doses of morphine into the forearm by skin prick, intradermal
injection, or infusion into a local artery produced wheals and
blood vessel dilation (often reported as a “flare”), which are
common markers of mast cell activation and which could be
reduced by antihistamines (152–156), though it is important to
note that not all of the drugs used are specific for histamine
receptors. Interestingly, an in vitro study of rat aortic endothelial
cells demonstrated that morphine could influence their behavior
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directly through opioid receptors (157), suggesting a direct effect
of morphine on blood vessels. This may have a minor role in
humans, as well, as skin responses could partially be blocked by
the opioid receptor antagonist naloxone (154, 156), at least when
relatively low morphine doses were used (158). Still, taken
together, the studies strongly suggest that most of the vascular
changes induced by high doses of morphine are due to mast
cell activation.

Anaphylaxis after morphine administration is thought to be
exceedingly rare, though exact calculations are lacking. It has
been proposed that some deaths from overdoses may involve
anaphylaxis, but this is still unclear (159).

Peak Plasma and Tissue Concentrations, and
Potential MRGPRX2 Involvement
Injection site reactions after morphine administration likely are due
toMRGPRX2, as formulations usually are at 10 mM concentrations
or higher and are well above the EC50 for MRGPRX2 activation of
4.5 to 7 µM (13, 18, 19). Typical systemic doses of morphine do not
achieve plasma concentrations high enough to activate MRGPRX2
to a significant extent. For instance, peak concentrations rarely
exceed 14 nM after oral dosing (160) and usually are 2 µM or less,
often substantially so, after intravenous administration (161–166).
This lends more support to a mast cell-independent origin for
morphine-induced pruritus. Higher doses and/or those delivered
rapidly are much more likely to result in concentrations that exceed
the EC50, though not enough recordings have been made to
determine just how high these are. As described above, this is
when typical events like rash and swelling are seen. Since human
skin mast cells do not express opioid receptors (7), it appears likely
that most true mast cell-mediated events are mediated
by MRGPRX2.

Fluoroquinolones
Fluoroquinolones are a group of small molecule antibiotics
which are structurally similar and are effective against Gram-
positive and Gram-negative bacteria (167). Popular members
are ciprofloxacin, levofloxacin, and moxifloxacin. They are
administered orally or intravenously. Fluoroquinolones are
associated with a constellation of mild-to-moderate adverse
events, including typical allergic-type effects and others that
potentially have a mast cell component. Fluoroquinolones also
are linked to extremely serious side effects (168–172), which,
while rare, are common enough that the FDA and European
Medicines Agency now discourage their use for relatively mild
infections, as the risks might outweigh the benefits (173). One of
these, anaphylaxis, certainly is related to mast cells; of the others,
tendinopathy and tendon rupture have been linked to mast cells
in other diseases.

Allergic-Type Event Frequency and Mast
Cell Dependence
Fluoroquinolones have a broad side effect profile and are not as
clearly linked to mast cell activation as the other drugs in this
review. Surprisingly, no systematic human studies have been
carried out – for instance, measuring blood histamine or tryptase
levels, and pretreating patients with antihistamines – to assess
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which of the symptoms are mast cell-driven. However, many
frequently reported mild-to-moderate adverse events are highly
suggestive of allergic-type reactions. Rash, pruritus, injection site
reactions, and hypotension have been reported in 1-4% of
patients (174–177), though occasionally frequencies are much
higher (178). A relatively generic description of “allergy”
occasionally is reported, with frequencies of up to 2% (179).
Gastrointestinal symptoms, which could be driven by mast cells
(180), occur at frequencies of up to 20% (170). With the
exception of anaphylaxis, the severe side effects of
fluoroquinolones – tendinitis and tendon rupture, peripheral
neuropathy, central nervous system effects, increased risks of
damage to the aorta, and decreases in blood sugar (171) – are not
typically linked to mast cell activation. Interestingly, mast cells
have been proposed to influence tendon healing after injury,
perhaps weakening them (181, 182), so it is possible that they are
involved in some way in fluoroquinolone-induced tendon
inflammation. The risk of tendinopathy or tendon rupture
depends dramatically on many other factors, including activity
level, age, and use of corticosteroids, but fluoroquinolone use can
increase this by several-fold (183). Unfortunately, the link
between mast cells and any of the above symptoms remains
speculative; an understanding of the full extent of mast cell
involvement in fluoroquinolone-induced AEs awaits dedicated
studies of the subject.

Anaphylaxis is rare but increasing in frequency; in fact,
fluoroquinolones now are the second-most frequent cause of
drug-induced anaphylaxis in total cases, behind beta-lactams
(172). The calculated frequency of these events is as high as 1 in
20,000 administered doses, though other estimates are
lower (184).

Peak Plasma and Tissue Concentrations, and
Potential MRGPRX2 Involvement
Reported peak plasma concentrations for fluoroquinolones
generally average 2-6 micrograms/ml after a single dose, with
intravenous administration often producing higher levels than
oral (174, 185–187). As seen in Table 1, only ciprofloxacin can
activate MRGPRX2 at these levels. However, plasma
concentrations can be much higher after multiple high dose
administration – for example, plasma levels exceeding 10
micrograms/ml have been recorded for ciprofloxacin (188),
and over 20 micrograms/ml for levofloxacin (189–191), even
several hours after intravenous infusion (189). Abnormally high
plasma concentrations may also occur in patients with renal
impairment (192) and poor metabolism (168). Peak
concentrations may be even higher, as sampling of blood
during infusions usually wasn’t measured. Nonetheless, it
seems likely that levels required for clinically relevant
MRGPRX2 activation are only transiently achieved. This may
account for the relative rarity of systemic mast cell-associated
reactions, compared to other MRGPRX2 agonists like
vancomycin. No measurements of drug concentrations have
been made immediately after anaphylactic events that could
help determine whether they might also involve MRGPRX2,
nor has an analysis of allele expression been conducted.
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An unusual property of many fluoroquinolones is that they
accumulate in specific tissues at concentrations well above peak
plasma concentrations (187, 193, 194), and can exceed those needed
to activate MRGPRX2. This is linked to the lipophilicity of the
molecule (194), and some are much more likely than others to
distribute unevenly. The lung, especially the epithelial lining fluid
(ELF), is a site of some of the highest reported concentrations (195)
– for instance, levofloxacin concentrations in the ELF have been
measured at over 40 micrograms/ml (189), and two hours after a
single dose of moxifloxacin, ELF concentrations reached 21
micrograms/ml (196). Limited data, mostly from experimental
animal models, suggest that fluoroquinolones also accumulate in
cartilage (197). This may have some significance, as
fluoroquinolones are associated with arthralgia, myalgia, and joint
damage in some studies (198), and mast cell mediators have been
shown to weaken tendons (181). In sum, this unusual tissue
distribution pattern of fluoroquinolones may result in intense
mast cell activation that is both delayed and restricted to certain
tissues. This would not be accompanied by the typical signs of
degranulation like rash and pruritus, but a closer look at mast cell,
and MRGPRX2, involvement in these delayed and long-lived side
effects might be justified.
DISCUSSION

A question that is raised repeatedly in the literature is whether
MRGPRX2 activation is capable of triggering anaphylaxis. This
likely would require a sustained period of high plasma drug levels,
and/or expression of a rare MRGRPX2 allele with greatly enhanced
sensitivity to the drug or abnormally strong signaling downstream
of receptor activation. Tandem testing of MRGPRX2 allele
expression, drug concentrations, and IgE titers in patients with
anaphylaxis would be extremely informative; unfortunately, these
tests are rarely conducted and most MRGPRX2 alleles remain
uncharacterized. Ultimately, an MRGPRX2 antagonist is needed
to provide direct proof of MRGPRX2 involvement. Development of
antagonists is in its infancy and none has made it to clinical trials
yet, though several promising candidates have been identified and
rapid development on this front is expected (15).

Perhaps the most surprising finding from the analysis is how
common the mild-to-moderate events are. These events are not
life-threatening like anaphylaxis is, and rightly should be a lesser
priority for clinicians. However, they should not be neglected,
either. For instance, one allergic-type response classified as
moderate is a drop in mean arterial pressure of over 20% - this
certainly is not a trivial effect and may have an impact on
vascular stability, especially in patients who have serious
cardiovascular impairment already. Comparisons with plasma
drug levels suggest that MRGPRX2 drives many of these mild-to-
moderate events. An MRGPRX2 antagonist is not yet available,
but if one enters clinical use, it would be interesting to see if
prophylactic administration before surgical procedures lowers
overall perioperative patient mortality. In sum, it is clear that
there is much still to be learned about MRGPRX2 and its impact
on human health.
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