
HexServer: an FFT-based protein docking
server powered by graphics processors
Gary Macindoe1, Lazaros Mavridis2, Vishwesh Venkatraman2,

Marie-Dominique Devignes3 and David W. Ritchie2,*

1Department of Computing Science, Lillybank Gardens, University of Glasgow, G12 8QQ Scotland, UK,
2Orpailleur Team (INRIA) and 3Orpailleur Team (CNRS), LORIA, 615 Jardin du Botanique, 54506
Vandoeuvre-lès-Nancy, France

Received January 28, 2010; Revised March 25, 2010; Accepted April 17, 2010

ABSTRACT

HexServer (http://hexserver.loria.fr/) is the first
Fourier transform (FFT)-based protein docking
server to be powered by graphics processors.
Using two graphics processors simultaneously, a
typical 6D docking run takes �15 s, which is up to
two orders of magnitude faster than conventional
FFT-based docking approaches using comparable
resolution and scoring functions. The server
requires two protein structures in PDB format to
be uploaded, and it produces a ranked list of up to
1000 docking predictions. Knowledge of one or both
protein binding sites may be used to focus and
shorten the calculation when such information is
available. The first 20 predictions may be accessed
individually, and a single file of all predicted orien-
tations may be downloaded as a compressed
multi-model PDB file. The server is publicly available
and does not require any registration or identifica-
tion by the user.

INTRODUCTION

Protein docking is the task of calculating the 3D structure
of a protein complex from its unbound or model-built
subunits. Although proteins are intrinsically flexible,
many protein docking algorithms begin by assuming
that the proteins are rigid and they use geometric
hashing (1) or fast Fourier transform (FFT) correlation
techniques (2) to find a relatively small number of putative
docking orientations which may be refined and re-scored
using more sophisticated techniques.

In recent years, several protein docking programs have
been made available as web servers. These range from the
rapid PatchDock server (3), which is based on a
rigid-body geometric hashing algorithm (4), to much
more computationally intensive approaches incorporating

models of flexibility such as RosettaDock (5) and
Haddock (6). Several FFT-based docking programs have
also been made available as web servers e.g. ClusPro (7),
GRAMM-X (8) and ZDOCK (9). Like the geometric
hashing approach, the FFT-based approaches assume
that the proteins to be docked are rigid, but they sample
densely all possible rigid-body orientations in the 6D
search space. However, because most FFT-based
approaches use 3D Cartesian grid representations of the
proteins, they can only compute translational correlations,
and these must be repeated over multiple rotational
samples in order to cover the 6D search space. Thus,
despite the rigid-body assumption, Cartesian grid-based
FFT docking algorithms are inherently computationally
expensive.
In order to address the main limitations of the Cartesian

FFT approaches, we developed the ‘Hex’ spherical polar
Fourier (SPF) approach which uses rotational correlations
(10), and which reduces execution times to a matter of
minutes (11). Nonetheless, we recently adapted the Hex
algorithm to obtain a further significant speed-up by ex-
ploiting the enormous computational power of modern
graphics processor units (GPUs; in preparation) using
the CUDA (Common Unified Device Architecture) devel-
opment tools (http://www.nvidia.com/object/cuda_home.
htm). For typical Hex docking calculations, a single
high-performance GPU can evaluate �170 million trial
orientations/second. This corresponds to a speed-up of
at least a factor of 45 compared to a contemporary
central processor unit (CPU), and which is up to two
orders of magnitude faster than conventional Cartesian
grid-based FFT docking approaches. However, because
high performance GPUs are relatively expensive, we
have developed HexServer, a web interface for Hex, in
order to make our GPU-accelerated docking approach
widely and freely available.
The Hex SPF algorithm has been validated in the

CAPRI (Critical Assessment of PRedicted Interactions)
blind docking experiment (12), and an acceptable

*To whom correspondence should be addressed. Tel: +33 3 83 59 30 45; Fax: +33 3 83 59 30 79; Email: dave.ritchie@loria.fr

Published online 5 May 2010 Nucleic Acids Research, 2010, Vol. 38, Web Server issue W445–W449
doi:10.1093/nar/gkq311

� The Author(s) 2010. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.



rigid-body Hex prediction has often been found within the
top 100 orientations in recent CAPRI scoring sections.
Thus, HexServer provides a very fast and convenient
way to generate high quality docking predictions for sub-
sequent refinement.

MATERIALS AND METHODS

System architecture

HexServer is implemented using a small number of web
pages and shell scripts which communicate via a MySQL
(http://www.mysql.com/) database. The computational
part of the server consists of a 32-node cluster running
the CentOS 5.2 operating system and using the OAR
batch scheduling system (http://oar.imag.fr/). Each node
consists of two quad-core Intel Xeon 2.5GHz CPUs, and
eight of the nodes are equipped with two Nvidia Tesla
C1060 GPUs. Hence, a total of 256 CPU cores and 16
GPUs are currently available on our server.
The web interface is implemented using the PHP

scripting language, through which the user’s PDB files
are uploaded and stored in a MySQL database along
with the other parameters of the docking job. Each job
is identified by a unique 13 digit job number. The web
interface performs some basic sanity checks on the input
data in order to highlight errors quickly and to avoid
wasting processor time on the server. A Linux shell
script running on the compute server periodically polls
the databases for new jobs. When a new job is found,
another shell script is generated and is submitted to the
OAR batch queuing system. This script executes the Hex
program and copies the results files back to the MySQL
database when the job has finished. The submitting web
page periodically polls the database for an indication that
the job has completed, and the results may be accessed
from a job-specific web link generated automatically
using the job number. If the user has provided an e-mail
address, he will be sent a mail message containing a link to
the job’s results page.
HexServer does not require any kind of user registration

or identification, and all results are accessible using only
the 13 digit job number. All PDB coordinate files of each
job are deleted from the system after 24 h, although other
details of the job are stored for statistical purposes.

Inputs

HexServer has an easy-to-use form-based interface,
through which users may upload a pair of protein struc-
tures in PDB format. Users may optionally provide an
e-mail address for notification of the status of their jobs.
Figure 1 shows the web interface for defining the param-
eters of a docking job. For a blind unconstrained 6D
docking run, it is normally sufficient to use the default
values for all parameters. If the proteins to be docked
have large and opposite formal charges, or if electrostatic
interactions are known to be important, it is often benefi-
cial to request a shape plus electrostatic calculation.
Otherwise, a shape-only correlation is recommended.
As described previously (11), all Hex docking cor-

relations use SPF shape–density representations to

polynomial order N ¼ 20 in order to generate very
rapidly a list of up to 25 000 candidate solutions. We
find that the top 3000 orientations nearly always include
some near-native orientations but a larger list is used to
avoid pruning good candidates in exceptional cases. These
candidate solutions are then re-scored using higher order
shape-only or shape plus electro-static correlations (using
e.g. polynomials to order N ¼ 25 or N ¼ 30), as selected
by the user. Requesting polynomial order N ¼ 25 (the
default) gives relatively soft representations of each
protein whereas order N ¼ 30 polynomials give
somewhat sharper representations.

If prior information is available about one or both
binding sites, the user can request that the docking
search will be focused around a selected interface residue
on one or both docking partners. As illustrated in
Figure 1B, this is achieved by specifying one central
residue from each protein to define an intermolecular
axis, and by specifying two further residues to be placed
on the intermolecular axis near the protein–protein inter-
face. The user may then specify an angular search range
(e.g. of 45�) for each protein with respect to the intermo-
lecular axis in order to constrain the rotational search
around the putative interface.

Outputs

Once a job is complete, the user is directed to a simple
results page (Figure 2) where he may download a ranked
list of predicted complexes. Because HexServer aims to
provide a relatively large number of putative complexes
for re-scoring, the requested number of predictions is pre-
sented as a single compressed multi-structure PDB file in
which each structure is identified using the standard PDB
‘MODEL’ and ‘ENDMDL’ keywords. This file may be
requested in any of the ‘zip’, ‘gzip’ or ‘bzip2’ compression
formats. The first 20 structures are also made available
individually in uncompressed PDB format. Thus
the user may quickly preview the predictions before
downloading the large multi-structure results file.

RESULTS AND DISCUSSION

Overall performance

The HexServer web interface provides a simple and easy
way to prepare protein–protein docking calculations using
Hex. The computational backend provides public access
to a powerful GPU-based cluster. The OAR batch
queuing system ensures that only one docking job can
execute at a time on each pair of GPUs, which maximizes
job throughput and avoids contention for resources. On
our system, a typical exhaustive 6D rigid-body docking
search takes around 15 s when using two C1060 GPUs
simultaneously. If knowledge of even just one interface
residue from one or both proteins is available, it can be
used very effectively to constrain the docking search
around the known or supposed interface. This further
reduces the overall docking time, and significantly
improves the quality of the predicted complexes (11).

W446 Nucleic Acids Research, 2010, Vol. 38, Web Server issue



Figure 1. Screenshots of the two dataentry web pages of the HexServer interface. (A) Top: the first web page is used to specify the PDB files to be
uploaded, and the type of docking calculation to be performed. (B) Bottom: the second web page may be used to define optional interface residues
and angular search ranges to focus the search around a known or hypothesized interface. By convention, the larger of the two proteins is called the
‘receptor’ and the smaller is called the ‘ligand,’ although Hex treats the two proteins equally. All input parameters are explained in further detail in
the online Help page, and some typical protein domains are available from the ‘Examples’ page.

Nucleic Acids Research, 2010, Vol. 38, Web Server issue W447



Comparison with ZDOCK

In order to illustrate the speed-up given by our
GPU-accelerated approach over a conventional
Cartesian grid-based FFT docking calculation, we
docked the PDB structures given on the HexServer
‘Examples’ page (porcine trypsin and soybean trypsin
inhibitor, PDB code 1AVX) using Hex 6.0, HexServer
(which invokes Hex 6.0), ZDOCK 3.0.1 and the corres-
ponding ZDOCK server (http://zdock.bu.edu/).
It should be noted, however, that it is difficult to make

an exact comparison due to the fundamental difference
in how the search space is partitioned in the SPF (five
rotations and one translation) and Cartesian (three rota-
tions and three translations) coordinate systems,
and because of other differences in the orientational
sampling techniques used. It is also worth emphasizing
that the speed of any FFT-based approach depends
critically on the sampling resolution used: doubling the
step size in each dimension will give a speed-up of Oð26Þ,
but using large step sizes entails a risk that good solu-
tions will be missed. Hence, both Hex and ZDOCK
employ a strategy of densely sampling the search
space and then clustering solutions with similar orienta-
tions. For example, by default, both Hex and HexServer
use 64 steps of 5.625� for rotational increments about
the intermolecular axis, and they use icosahedral tessel-
lations of the sphere of 812 vertices to give angular
rotation samples of about 7.5 for the remaining angular
degrees of freedom. Hence, the default sampling density
in Hex (812�64=51 968 ligand rotations) corresponds
quite closely to ZDOCK’s ‘dense’ sampling mode
(54 000 ligand rotational steps of about 6�). On the other
hand, ZDOCK server does not offer dense sampling
due to its high computational cost, and instead uses the
default ZDOCK coarse sampling level of 15� (3600 lig-
and rotations). Furthermore, Hex and HexServer use
translational steps of 0.8Å, which is somewhat finer than
the 1.2Å grid spacing used in ZDOCK and ZDOCK
server (9).
It should also be noted that Hex and ZDOCK employ

different scoring functions. For example, Hex calculates
an excluded volume model of shape complementarity
with an optional in vacuo electrostatic contribution (10),
whereas ZDOCK uses a scoring function composed from
shape, electrostatics and an atomic contact model of
desolvation (9). Hence, the two programs will inevitably
produce different lists of predictions, although the overall
computational complexity of their scoring functions is
broadly similar.
Bearing the above observations in mind, Table 1 shows

that for dense sampling, using Hex with one high perform-
ance GPU is about 330 times faster than using ZDOCK
on a single 2.5GHz CPU core. Although 15� sampling is
not publicly available in HexServer due to the risk of
missing good solutions, performing such coarse sampling
using two GPUs takes only around 3s, which is around
160 times faster than the corresponding calculation on the
ZDOCK server. These figures justify our claim that using
GPUs to accelerate Hex docking calculations can be up to
two orders of magnitude faster than conventional

FFT-based docking approaches when using comparable
search resolutions and scoring functions.

Recommendations for use

Although docking programs such as Hex and ZDOCK
can often produce near-native orientations within the
first few hundred predictions, it remains a significant chal-
lenge to identify which orientations are in fact the
near-native ones. We therefore recommend that users
should visualize docking predictions from HexServer
using an interactive graphics tool such as Jmol
(http://jmol.sourceforge.net/download/), VMD
(http://www.ks.uiuc.edu/Research/vmd/) or indeed the
stand-alone version of Hex itself (http://hex.loria.fr/). If
biological knowledge about the interaction is available,
this should be used to colour-code known interaction
residues to help assess each orientation. It is also recom-
mended to consider refining selected orientations using
short molecular dynamics runs or by submitting them to
a flexible docking server such as RosettaDock (5) or
Haddock (6).

In principle, PDB files could be loaded into HexServer
directly from the PDB repository (http://www.rcsb.org).
However, we recommend that the user first download
and examine the protein structures to be docked,
because it is often necessary to delete unwanted domains
and hetero groups before performing a docking
calculation.

It should be noted that Hex is designed for docking
typical protein domains of up to around 150 amino acid
residues. To dock proteins which are larger than this, it is
recommended to perform a constrained angular search
with respect to an explicitly specified initial orientation,
as described above.

In order to keep the web interface simple, many of the
more advanced or specialized features in Hex are not
available in HexServer. Hence, we encourage users both
to experiment with HexServer and to download the Hex
program. Binary executables are available for several
versions of popular operating systems, of which an
increasing number support CUDA-based GPUs.

Table 1. Timing comparisons of Hex and ZDOCKa

Modeb Hex Hex ZDOCK HexServer ZDOCK server
(CPUc) (GPUd) (CPUc) (GPUe) (CPUf)

dense 240 22 7255 15 –
coarse 52 5 500 3 900

aAll times are given in seconds: the server timings exclude any network-
ing delays or time spent waiting in a queue.
bHere, a ‘coarse’ sampling mode corresponds to 15� angular steps
(about 3600 ligand rotations), whereas ‘dense’ sampling corresponds
to 6� angular steps (about 54 000 ligand rotations). Dense sampling is
not available in ZDOCK server.
cUsing 3D FFTs on one 2.5GHz Intel Xeon processor.
dUsing 1D Hex FFTs on one Nvidia C1060 processor.
eUsing 1D Hex FFTs on two Nvidia C1060 processors.
fUsing 3D FFTs on eight IBM 1.1GHz p655 processors.

W448 Nucleic Acids Research, 2010, Vol. 38, Web Server issue



CONCLUSION

HexServer provides a convenient way to perform exhaust-
ive GPU-accelerated FFT-based rigid-body docking pre-
dictions without requiring the user to invest in special
hardware. Each blind 6D docking calculation takes only
�15s on our server, and the results for each docking run
are accessible for up to 24 h from a unique web page.
Thus, users may quickly and easily obtain a list of high
quality docking predictions for subsequent refinement and
analysis.

ACKNOWLEDGEMENTS

We thank Birama Ndiaye and Olivier Demengeon for as-
sistance with configuring OAR and the compute cluster.

FUNDING

Part of this work was funded by Agence Nationale de la
Recherche (grant reference ANR-08-CEXC-017-01). The
compute cluster is co-funded by INRIA and Region
Lorraine. Funding for open acess charge: Agence
Nationale de la Recherche.

Conflict of interest statement. None declared.

REFERENCES

1. Bachar,O., Fischer,D., Nussinov,R. and Wolfson,H.J. (1993) A
computer vision based technique for 3D sequence-independent
structural comparison of proteins. Protein Eng., 6, 279–288.

2. Katchalski-Katzir,E., Shariv,I., Eisenstein,M., Friesem,A.A.,
Aflalo,C. and Vakser,I.A. (1992) Molecular surface recognition:
determination of geometric fit between proteins and their ligands
by correlation techniques. Proc. Natl Acad. Sci. USA, 89,
2195–2199.

3. Schneidman-Duhovny,D., Inbar,Y., Nussinov,R. and
Wolfson,H.J. (2005) PatchDock and SymmDock: servers for rigid
and symmetric docking. Nucleic Acids Res., 33, W363–W367.

4. Duhovny,D., Nussinov,R. and Wolfson,H.J. (2002) Efficient
unbound docking of rigid molecules. Proceedings of the 2nd
Workshop on Algorithms in Bioinformatics (WABI), Lecture Notes
in Computer Science 2452. Springer, Berlin, pp. 185–200.

5. Lyskov,S. and Gray,J.J. (2008) The RosettaDock server for local
protein-protein docking. Nucleic Acids Res., 36, W233–W238.

6. Dominguez,C., Boelens,R. and Bonvin,A.M.J.J. (2003)
HADDOCK: a protein-protein docking approach based on
biochemical or biophysical information. J. Am. Chem. Soc., 125,
1731–1737.

7. Comeau,S.R., Gatchell,D.W., Vajda,S. and Camacho,C.J. (2004)
ClusPro: a fully automated algorithm for protein-protein docking.
Nucleic Acids Res., 32, W96–W99.

8. Tovchigrechko,A. and Vakser,I.A. (2006) GRAMM-X public web
server for protein-protein docking. Nucleic Acids Res., 34,
W310–W314.

9. Chen,R., Li,L. and Weng,Z. (2003) ZDOCK: an initial-stage
protein-docking algorithm. Proteins: Struct. Func. Bioinf., 52,
80–87.

10. Ritchie,D.W. and Kemp,G.J.L. (2000) Protein docking using
spherical polar Fourier correlations. Proteins: Struct. Func.
Genet., 39, 178–194.

11. Ritchie,D., Kozakov,D. and Vajda,S. (2008) Accelerating and
focusing protein-protein docking correlations using
multi-dimensional rotational FFT generating functions.
Bioinformatics, 24, 1865–1873.

12. Méndez,R., Leplae,R., De Maria,L. and Wodak,S.J. (2003)
Assessment of blind predictions of protein-protein interactions:
current status of docking methods. Proteins: Struct. Func. Genet.,
52, 51–67.

Figure 2. A screenshot of a results page generated by HexServer.

Nucleic Acids Research, 2010, Vol. 38, Web Server issue W449


