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Abstract Metabolite fingerprinting is widely used to

unravel the chemical characteristics of biological samples.

Multivariate data analysis and other statistical tools are

subsequently used to analyze and visualize the plasticity of

the metabolome and/or the relationship between those

samples. However, there are limitations to these approa-

ches for example because of the multi-dimensionality of

the data that makes interpretation of the data obtained from

untargeted analysis almost impossible for an average

human being. These limitations make the biological

information that is of prime importance in untargeted

studies be partially exploited. Even in the case of full

exploitation, current methods for relationship elucidation

focus mainly on between groups variation and differences.

Therefore, a measure that is capable of exploiting both

between- and within-group biological variation would be

of great value. Here, we examined the natural variation in

the metabolome of nine Arabidopsis thaliana accessions

grown under various environmental conditions and estab-

lished a measure for the metabolic distance between

accessions and across environments. This data analysis

approach shows that there is just a minor correlation

between genetic and metabolic diversity of the nine

accessions. On the other hand, it delivers so far in Ara-

bidopsis unexplored chemical information and is shown to

be biologically relevant for resistance studies.

Keywords Arabidopsis � Metabolomics � Metabolite

fingerprinting � Metabolic distance � Natural variation �
Metabolome diversity and metabolome plasticity

1 Introduction

Metabolites in living organisms together constitute the

metabolome, which gives specific eco-physiological prop-

erties to the organism enabling it to interact with its kin and

other species in the ecosystem. The signaling between

plants (Bouwmeester et al. 2003, 2007; Belz 2007), and

other living organisms such as predators and pollinators

(Raguso and Pichersky 1999; Hilker and Meiners 2006;

Cheng et al. 2007; Arimura et al. 2005) and defense against

biotic agents (Treutter 2005; Rulhmann et al. 2002;

Kliebenstein et al. 2005; Ehrlich and Raven 1964; Cona

et al. 2006; Chong et al. 2009) are among the interactions

in which metabolites play a pivotal role. The metabolome

of an organism, however, is not a stable entity. Many dif-

ferent sources of variation including genetic, and the biotic
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and abiotic environment shape the metabolome resulting in

a phenomenon that is referred to as metabolome plasticity.

A number of approaches have been introduced to study this

plasticity (Schripsema 2010). Metabolite fingerprinting or

profiling, which is the unbiased global scanning of the

metabolome, is being widely used in metabolomics

research to unravel the metabolite composition (or

metabolite ‘‘fingerprint’’) of biological samples. Multivar-

iate analysis of these metabolite fingerprints is subse-

quently used to reduce the dimensionality of the fingerprint

data to a number of components that explain the maximum

variation, i.e. principal components (PCs). This is followed

by visualization of the data and drawing conclusions based

on the clustering of samples (Kashif et al. 2009; Garcia-

Perez et al. 2008; Aliferis and Jabaji 2009).

Due to limitations in human imagination and visualization

power, the conclusions about clustering are usually based on

just two or rarely three PCs. Hence, although some of the

additional PCs may contain information about relevant

biological variation and are thus important for understanding

the metabolic relationships between samples, they are usu-

ally excluded from the analysis. Even in the case of clear

visual separation between clusters of samples along all PCs,

there are no methods for the quantification of the distance

between these clusters making quantitative comparisons

between groups of samples impossible.

The lack of a measure to describe the distance between

clusters can be partially circumvented by application of

principal component analysis (PCA) and hierarchical cluster

analysis (HCA) simultaneously. However, the experimental

design (such as a complete block design), the dimensionality

of the data (in case of multivariate data), the relationship

between and the ratio of inter- and intra-group variation, dif-

ferent levels of resolution to define the clusters and the method

used for the clustering (Almeida et al. 2007) make HCA

dendrograms not always compatible with the PCA clustering

or the treatment structure. This is because HCA not only takes

into account the biological sources of variation (such as

genotype and a treatment effect) but also non-biological or

undesired sources of variation (such as technical variation and

block effects). The non-biological sources of variation may

hinder the dendrogram calculation if they have a comparable

or greater influence on the variation than the biological sour-

ces. Some researchers filter their data statistically and select

those data points with significant difference among predefined

groups of samples (Boccard et al. 2007). Others use an

arithmetic mean analysis and make dendrograms with a rep-

resentative of each predefined group (Kim et al. 2009). As a

consequence of these filtering techniques, biological infor-

mation and/or the insight in the possible causes of variation

may be lost. Therefore, a measure for the distance between

clusters of samples that incorporates both between- and

within-cluster biological variation would be of great value.

For example, such a measure can be applied to determine the

metabolic distance between genotypes, including genetically

engineered organisms and their wild type relatives. The

metabolic distance can also be used for correlation analysis

between genetic and metabolic diversity.

In the present study, we examined the natural variation and

plasticity in the metabolome of nine A. thaliana accessions in

response to four different growing conditions. The objectives

were: (1) to show the potential of metabolite fingerprinting

and multivariate data analysis to characterize the effect of

more than one source of variation on the diversity and plas-

ticity of the metabolome, (2) to show the potential of metab-

olite fingerprinting and multivariate data analysis to establish

the metabolic distance between accessions and different

environmental conditions, (3) to estimate the correlation

between the genetic and metabolic diversity of the nine

accessions. Untargeted metabolite fingerprinting using three

types of analytical platforms was employed to produce fin-

gerprints of a wide range of metabolites in the nine accessions.

A number of statistical methods were applied subsequently to

the fingerprint data. Metabolites that contribute to the differ-

ences between the most diverged accessions were tentatively

identified and the biological relevance of the observed dif-

ferences in metabolic profiles of accessions assessed using a

number of bioassays with biotic agents.

2 Materials and methods

2.1 Plant material

Nine accessions of A. thaliana (supplementary information

Table 1) were selected, based on habitat geographical

distribution and variation in volatile headspace profile

(Snoeren et al. 2010). Accessions were sown in four

environments: on soil in a climate chamber (CC), a con-

trolled-conditions greenhouse (GH), an uncontrolled-con-

ditions greenhouse (UC) and on hydroponics in the climate

chamber (HY). Supplementary information Table 2 lists

the environmental conditions.

Seeds were sown in pot soil (heated to 60 �C overnight

before use; Lentse potgrond BV, Lent, The Netherlands) and

placed in a climate chamber. Seedlings at stage 1.02 (Boyes

et al. 2001), with two rosette leaves[1 mm, were transplanted

to plastic containers (12 cm diameter, four seedlings per

container) filled with the same soil. Containers were distrib-

uted randomly on shelves in CC, GH and UC and watered

twice a week. For HY, seeds were sown on rock wool units

fixed on a floating structure on the hydroponic solution

(Tocquin et al. 2003). The rock wool absorbed the required

water and nutrition for germination and growth. The hydro-

ponics solution was refreshed weekly and aerated

continuously.
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Stage 3.70–3.90 plants (Boyes et al. 2001) with

70–100% rosette formation were cut from the surface of

the soil or rock wool. Roots were cut from the hypocotyl at

the rock wool subsurface. Six biological replicates of shoot

material were used for each accession in each environment.

Each shoot biological replicate consisted of a pool of four

plants that had been growing in the same pot in CC, GH

and UC or were selected randomly in HY. For hydropon-

ically grown roots, four biological replicates were used that

consisted of the roots of six randomly pooled plants.

All biological replicates were flash frozen in liquid

nitrogen, lyophilized for 72 h, homogenized in a steel jar

containing two steel balls shaken at 20 s-1 by a MM300

mixer mill (Retsch) for 45 s at 21�C and ambient humidity.

Samples were stored dry at 4�C until extraction for

chemical analysis.

2.2 Extract preparation and LC-TOF–MS analysis

The protocol of Keurentjes et al. (2006) was followed for

extraction of semi-polar metabolites with some modifi-

cations. Fifty milligrams of shoot or 12.5 mg of root

material, both lyophilized and homogenized, were mixed

with 2 ml (for shoots) or 0.5 ml (for roots) of ice-cold

75% methanol acidified with 0.1% (v/v) formic acid.

After vortexing for 5 s, sonication for 15 min and cen-

trifugation (2,500 rpm) for 10 min, the extracts were fil-

tered through syringe filters (Minisart SRP 4, 0.45 lm,

Sartorius Stedim Biotech) and collected in glass vials.

The filtered extract (150 ll) was transferred to a glass

insert (300 ll) in a screw neck glass vial (1.5 ml) and

then analyzed. In both positive and negative mode anal-

yses, shoot samples were grouped in three sample blocks

each containing two randomly selected biological repli-

cates of each accession in each environment. A mixed

sample of the nine accessions was passed through the

same extraction procedures and used as technical repli-

cates. They were analyzed at the beginning, the end and

as every 15th sample in the injection sequence.

Liquid chromatography was performed on a Waters

Acquity Ultra Performance Liquid Chromatography system

(Waters, Milford, MA, USA). Five microlitre of extract

was injected automatically on an Acquity UPLC BEH C18

column (150 9 2.1 mm i.d., 1.7 lm particle size)

(Waters), held at 50�C with a mobile phase flow of

0.4 ml min-1. The mobile phase consisted of water and

acetonitrile containing 20 mM formic acid. The gradient

applied started at 100% water for 0.5 min and subsequently

changed to 10% acidified acetonitrile in 1 min, then rose

linearly to 25% in 4 min, 65% in 3.5 min and 95% in

5 min, which was held for 6 min. Before the next run the

column was equilibrated with starting conditions for 3 min.

Compounds eluting from the column were detected by a

Waters LCT Premier TOF MS (Waters, Milford, MA,

USA) equipped with a Z-spray interface and an electro-

spray ionization (ESI) source. The analysis was performed

in both negative and positive ion modes in the range of m/z

80–1,000 in separate runs, using a scan time of 200 ms.

The parameters of the source were: desolvation gas tem-

perature of 400�C, nitrogen gas flow of 500 l h-1, capillary

spray voltage of 2.5 keV, source temperature of 120�C,

cone voltage of 50 eV, nitrogen gas flow of 50 l h-1, and

aperture 1 voltage of 8 eV. The mass spectrometer was

calibrated with 5 mM sodium formate in iso-propanol/

water (9:1). A 1 lg ml-1 leucine enkephalin solution in

acetonitrile/water (1:1) containing 0.1% formic acid,

infused at a flow rate of 0.02 ml min-1, was used as a lock

mass to continuously recalibrate the mass accuracy in both

electrospray modes. The sampling rate of the lock mass

solution was 0.4 s every 2 s. MassLynx software version

4.1 (Waters) was used to control the instruments and for

data analysis.

2.3 Extract preparation and GC-TOF–MS analysis

Ten mg of shoot or 5 mg of root material, both lyophilized

and homogenized, were weighed for extraction of polar

metabolites. The instrument and protocol described in Fu

et al. (2009) were used for extraction, derivatization and

data acquisition by GC-TOF–MS with minor changes.

Shoot samples were grouped in three sample blocks, each

containing two randomly selected biological replicates of

each accession in each environment. Derivatized extracts

(25 ll) were injected (2 ll) with an Optic3 injector

(ATAS) at 70�C with a gradient of 6�C s-1 to 240�C. A

split flow of 10 (1 ml:11 ml) was used for shoot or 5

(1 ml:6 ml) for root material with a column flow of

2 ml min-1 in a GC6890 N gas chromatograph (Agilent

Technologies) on a ZB-50 capillary column

(30 m 9 0.32 mm i.d., 0.25 lm DF; Phenomenex). The

column temperature was 70�C for 2 min with a gradient of

10�C min-1 to 310�C and a final time of 3 min. The GC

was coupled to a Pegasus III time-of-flight mass spec-

trometer (LECO) and compounds were detected at a

scanning rate of 20 spectra per second (m/z 50–600).

2.4 Data processing and analysis

The data of all analytical platforms were processed using

MetAlign software (Lommen 2009) for peak detection and

alignment of the data points. An in-house script called

MetAlign Output Transformer (METOT; Plant Research

International, Wageningen) was used for data filtration,
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missing value replacement, and data quality and analytical

technique reproducibility verification. The post-METOT

data matrix was subjected to multivariate mass spectra

reconstruction (MMSR) for data size reduction and puta-

tive compound mass spectrum reconstitution (Tikunov

et al. 2005). MMSR relates thousands of ion fragments in a

chromatogram to their parental metabolites by clustering

them based on retention time and peak intensity pattern

across samples into reconstructed metabolites. These mass

clusters were used for further analyses and putative iden-

tification of metabolites.

For multivariate data analysis, the intensity values of

reconstructed metabolites were normalized by the dry

weight of the sample. Subsequently, metabolite intensities

of each sample were 10log-transformed and scaled by

dividing by the standard deviation of the metabolite

intensities of the corresponding sample. An integrated

dataset was constructed by combining the shoot data of

three analytical platforms. Values in the integrated dataset

were derived in the same manner with an additional scaling

by the standard deviation of samples for a reconstructed

metabolite subsequent to dry weight normalization. The

ordination diagrams in CANOCO (ter Braak 1988)

(Biometris, Wageningen, NL) were used to visualize the

variation in the sample profiles. Detrended correspondence

analysis (DCA) was used to check the gradient length

(L) of the explanatory variables (accession and environ-

ment) and accordingly choose between the linear (L\4) or

unimodal (L[4) ordination techniques (Smilauer 2003). In

addition to the first two ordinates (or PCs), the third and

fourth ordinates were incorporated into the analysis if they

individually explained more than 10% of the total variation

and the technical replicates were grouped along those

ordinates on the scores plot. Partitioning of explanatory

variable effects such as accession, environment and their

interaction on the observed variation was performed and

tested statistically (P-value \ 0.05) by Monte-Carlo per-

mutation (MCP) test using the partial redundancy analysis

(RDA) function of CANOCO (Smilauer 2003).

CANOCO scores and loading plots of shoot datasets

were superimposed separately for three analytical methods

which resulted in three biplots. Subsequently, 10 recon-

structed metabolites that fitted more than 55% into the

ordination space and showed to be accession-specific on

the biplot were selected for further analysis.

2.5 Correlation between genetic and metabolic

distance

A matrix of 149 genome-wide distributed SNP (single

nucleotide polymorphism) markers from the Borevits lab

(http://borevitzlab.uchicago.edu) was used to calculate the

genetic distance between the nine accessions. The ‘‘Jukes

& Kantor’’ distance and complete linkage clustering were

determined using TREECON v.1.3b (Van De Peer and De

Wachter 1997).

To compute the inter-accession metabolic distances, the

inter-sample Euclidean distances in an ordination diagram

were examined by taking the sample scores on the selected

ordinates of the PCA scores plots (Kabouw et al. 2009).

The inter-sample Euclidean distance matrices were com-

puted for all platforms. The resulting matrices were used in

an ANOSIM (analysis of similarity) by the program PAST

(Hammer et al. 2001) to calculate the R-values as a mea-

sure for the metabolic distance between accessions. The

Pearson correlation coefficient between two matrices

(r) was determined by a Mantel test (10,000 permutations).

2.6 In Silico Identification of Reconstructed

Metabolites

Putative identification of selected metabolites from the

shoot LC–MS datasets was done through the following

steps: (1) Elimination of adduct ions; From all m/z ratios

reconstructed in the centrotypes only mono-isotopic sig-

nals were selected and the respective neutral mass of the

molecule was calculated using the mass spectrometry

adduct calculator (http://fiehnlab.ucdavis.edu/staff/kind/

Metabolomics/MS-Adduct-Calculator/). (2) Molecular

formula assignment; Putative molecular formulas for an

accurate mass were predicted by the elemental composi-

tion tool of MassLynx (Waters) with a 5 ppm tolerance.

(3) Molecular formula screening; The Seven Golden

Rules software (http://fiehnlab.ucdavis.edu/projects/

Seven_Golden_Rules/Software/) was used for heuristic

filtering of the obtained molecular formulas (Kind and

Fiehn 2007). Remaining possible molecular formulas

were scored by the software according to their isotopic

abundance error. (4) Molecular formula ranking; The five

highest ranking molecular formula were prioritized based

on prior identification in A. thaliana, Brassicaceae species

or other plant species, presence in the Dictionary of

Natural Products (http://dnp.chemnetbase.com) and their

score.

The Golm Metabolome Database (GMD@CSB.DB

MSRI, http://csbdb.mpimp-golm.mpg.de/csbdb/gmd/msri/

gmd_msri.html), NIST library and an in-house mass

spectral database for GC-TOF–MS were used to puta-

tively identify reconstructed metabolites from GC-TOF–

MS analysis, using NIST MS Search v.2.0. Both mass

spectra and retention indices of the reconstructed metab-

olites were used to search for putative candidate metab-

olites already reported in A. thaliana. Matching factor

(MF) and reverse matching factor (RMF) (Davies 1998)

were exploited to select the best matching metabolite

identity.
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2.7 Metabolite identification

with HPLC–PDA-QTOF–MS/MS system

Metabolites detected by LC-TOF–MS were further anno-

tated using an HPLC- PDA-QTOF–MS/MS system from

Waters (Moco et al. 2006). Ten microlitre of the extracts

were automatically injected on an HPLC Luna C18 ana-

lytical column (150 9 2.0, 3 mm) (Phenomenex). The

chromatographic phases composition were water/formic

acid (0.1% v/v) (A) and acetonitrile/formic acid (0.1% v/v)

(B). The separation was performed at 40�C with a flow of

0.19 ml min-1 in a gradient starting with 5% of B which

linearly increased to 75% in 45 min, than up to 90% in

2 min and continued isocratic for 5 min. The column was

then equilibrated for 16 min under starting conditions.

The HPLC was linked to a PDA detector (Waters 2996)

and a QTOF Ultima mass spectrometer (Waters Corpora-

tion). The ionization source parameters were: capillary

voltage 2.75 keV, cone voltage 35 eV, source temperature

120�C and desolvation temperature 250�C. Cone gas and

desolvation gas flows were 50 and 600 l h-1, respectively.

MS/MS measurements were made with 0.40 s of scan

duration and 0.10 s of interscan delay with increasing

collision energies according to the following program: 5,

10, 15, 30, 50 eV (ESI positive), or 10, 15, 25, 35, and

50 eV (ESI negative). Leucine enkephalin was used as a

lock mass and was continuously sprayed into a second ESI

source using an LKB Bromma 2150 HPLC pump, and

sampled every 10 s.

2.8 Bioassays

Accessions An-1, Cvi, Eri and Col-0 were selected to

conduct bioassays. Inoculation by the powdery mildew

pathogen Oidium neolycopersici and assessment of infec-

tion was performed according to Bai et al. (2008). Inocu-

lation by the downy mildew pathogen Hyaloperonospora

arabidopsidis isolates Emoy2, Waco9 and Cala2 was done

and infection assessed according to Van Damme et al.

(2009). For Botrytis cinerea inoculation the protocol of

Ferrari et al. (2003) was used with minor modifications.

Plants were placed in darkness for 24 h after inoculation

and subsequently kept at 9 h photoperiod. Scoring was

done 3 d after inoculation by visual determination of the

area of the lesions on the inoculated leaves.

Western flower thrips, Frankliniella occidentalis

(Pergande), was reared according to De Vos et al. (2005).

Sixteen thrips were transferred to each of twelve Petri

dishes (9 cm) used as replicates. Each Petri dish contained

two detached leaves of each accession on a 1.5% agar

medium (Technical No.3). Every two leaves of the same

accession were randomly distributed on four sides of the

Petri dish keeping the same distance from each other. The

number of thrips present on each accession was counted at

0.5, 1, 2, 3, 4, 5, 6, 21, 22, 23 and 24 h. The average

number of observed thrips on each accession in the last

four hours was used to compare the thrips attraction of

accessions by generalized linear model analysis using

PASW statistics 17.

3 Results and discussion

3.1 The phylogenetic relationship between accessions

Complete linkage clustering using 149 genome-wide SNPs

resolved the phylogenetic relationship between the 9 A.

thaliana accessions of this study (supplementary informa-

tion Fig. 1). The level of confidence was estimated using a

bootstrap of 500 replications. A separation between An-1,

C-24, Cvi and Kyo-1 versus WS, Ler, Kond, Col-0 and Eri

occurred at a low stringency level and formed two major

clades with relatively close genotypes (accessions).

Accessions An-1, Eri, Col-0 and C-24 diverged earliest

from the rest of the genotypes in the clades indicating a

larger genetic distance between them and the rest of the

clade members.

3.2 Metabolome analyses

Shoot samples from all environments and root samples

from hydroponics were subjected to three different profil-

ing methods: LC-TOF-MS in positive and negative mode,

and GC-TOF-MS. The number of entities (masses or

reconstructed metabolites) after each step of the data pro-

cessing workflow with MetAlign, METOT and MMSR is

given in supplementary information Table 3. Reproduc-

ibility of the analyses and data processing were verified by

two approaches: The approach of Vorst et al. (2005) and a

PCA approach. Supplementary information Fig. 2 illus-

trates the methods and graphs of the first approach using

root data of LC–MS negative mode—after MetAlign and

METOT preprocessing—as an example. The amplitude

scatter plots of all mass peaks of two technical replicates

were made and compared with the same plot of two bio-

logical replicates (supplementary information Fig 2a ,b as

an example). The scatter plots showed that there is a close

linear relationship between all signal intensities of any two

technical replicates of an analytical technique (supple-

mentary information Fig. 2a). For biological replicates

there is also a linear relationship albeit with lower corre-

lation (supplementary information Fig. 2b). The scatter

plots also showed absence of hypo-alignment, as is con-

cluded from the absence of satellite clouds around the

diagonal axes of the aligned masses in the scatter plot.

These clouds can be due to peaks of one technical replicate
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being aligned with noise peaks in the other technical rep-

licate, instead of with its corresponding mass peak (Vorst

et al. 2005). Their absence indicates that masses were

aligned efficiently and/or that misaligned masses were

eliminated by METOT. supplementary information Fig. 2c

shows that more than 80% of the ion masses are present in

at least five of the six technical replicates. Around 80% of

the ions that are detected in all six technical replicates

show a variability in their measured mass of less than

5 ppm (supplementary information Fig. 2d) and the

amplitude variation for more than 90% of the masses

present in all six technical replicates was less than 20%

(supplementary information Fig. 2e).

For the second approach, we visualized the variation in

metabolite fingerprints of the technical and biological

replicates by PCA (supplemental information Fig 2f, as an

example). The technical replicates clustered more closely

together than the biological replicates in the examined PCs

showing that there was relatively minor variation due to

extraction and instrument artifacts compared with the

biological variation.

3.3 Visualization and quantification of the variation

due to source effects

The gradient of the explanatory variables (accession and

environment) was computed by DCA for all datasets. All of

the gradients were short (L \4) suggesting a linear

metabolite fingerprint response to the gradient of the

underlying variation source(s). Accordingly, PCA was used

for all data visualizations and analyses in which one or

more independent gradients (PCs) represent predictors for

fitting the regression model.

With the exception of the GC-TOF–MS data, all PCAs

of shoot datasets showed separate clustering of HY samples

from samples grown in the other environments along PC1

and PC2 (see supplementary information Fig. 2f as an

example). Clustering of all hydroponically grown geno-

types on one side of PC1 implies that there is a pronounced

effect of this growth condition compared to the other

sources of variation within the shoot LC–MS data. In other

words, this environment has a stronger effect on metabolite

composition than the other environments and its effect is

stronger than the genotypic effect. Within the HY envi-

ronment, however PCA showed clear clustering of the

accessions along PC1 and PC2 in both LC–MS (Fig. 1 as

an example) and GC-TOF–MS analyses (data not shown).

In both root LC–MS modes, about 40% of the variation

between accessions was explained by the first two PCs. In

positive mode, all accessions were separated along PC1

and PC2 with C-24, Kyo-1 and Kond positioned at the

extremes of the two dimensional PCA plot (Fig. 1a). In

negative mode some accessions clustered together

suggesting a close metabolic relationship (An-1 and Kyo-1,

Eri and Ler, and WS and C-24) (Fig. 1b). PC3 (10.2 and

11.9% for positive and negative mode, respectively) and

PC4 (9.3 and 10.2%) explained a similar amount of vari-

ation as PC2 (11.6 and 12.8%). Therefore, PC3 and PC4

were also used for ANOSIM and metabolic distance cal-

culation, but only if the technical replicates did not separate

along these PCs as much as the biological replicates.

Multivariate statistical representation of metabolite fin-

gerprints by using PCA as shown in Fig. 1 allows the

visualization of the natural variation and plasticity in the

metabolome. However, information about the magnitude of

the variation caused by a known factor is difficult, if not

impossible, to obtain in this way. Therefore, RDA was used

to estimate the effect size of a single or multiple

source(s) of variation such as accession or accession and

Fig. 1 PCA scores plots of the root metabolite profile of nine

accessions grown in hydroponics, analyzed by LC–MS in positive

mode (a) and negative mode (b). Numbers along the axes indicate the

PC number and percentage of explained variation. Boxes approximate

the boundaries of within accession variation and illustrate clustering

of samples belonging to the accession. open triangleAn-1, filled
diamond Col-0, open triangle C-24, open rectangle Cvi, filled square
Eri, filled circle Kond, ? Kyo-1, filled triangle
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environment on the metabolome in a multi-factorial

experiment. Furthermore, in partial RDA, one or more of

the explanatory variables can be defined as cofactor to

remove the associated effect from the solution of the

ordination model. For the root dataset only a single source

of variation (accession) was defined and the explained

variation in each dataset was calculated accordingly (sup-

plementary information Table 4). Accession explained a

bigger portion of the variation in both LC–MS datasets

(79.0 and 80.6% in positive and negative mode, respec-

tively) compared with the GC-TOF–MS dataset (53.9%).

For shoot datasets, first the effect of sample block was

removed by partial RDA. This resulted in environment and

accession explaining together 38.8, 35.2 and 63.0% of the

total variation in the GC-TOF–MS, LC–MS positive mode

and LC–MS negative mode datasets, respectively. Using

sample block and environment or sample block and

accession as cofactor group in RDA, the explained varia-

tion by accession and environment was calculated,

respectively (supplementary information Table 4). In con-

clusion, environment had a larger influence than the

accession on the LC–MS determined metabolic variation in

the shoot. For the GC-TOF–MS platform, which mainly

detects polar primary metabolites, the environment effect

was smaller than the accession effect.

Likewise the environment-accession interaction was

defined as an explanatory variable and sample block, envi-

ronment and accession main effects were added to the

cofactor group. Environment-accession interaction

explained a minor part of the total variation in GC-TOF–MS

and LC–MS positive mode datasets, respectively, while it

had no significant effect on the variation in the LC–MS

negative mode dataset (supplementary information

Table 4). In all datasets, the environment caused a change in

the position of samples (Fig. 2c as an example with LC–MS

negative mode dataset). This change is an indication of the

capacity of each accession to respond to perturbations in the

environment (metabolome plasticity). However, plant spe-

cies might differ in the degree of phenotypic plasticity when

exposed to the same environmental change (De Jong 2005).

The amount of variation explained by the accession-envi-

ronment interaction can be a measure for the difference

between accessions in their ability to respond to a pertur-

bation. The fact that the accession-environment interaction

explained only little metabolite variation suggests that the

metabolic responses of the different A. thaliana accessions

towards changes in the environment is quite similar.

3.4 Metabolic distance between accessions

The PCA scores plots show that biological replicates of the

same accession cluster together (Fig. 1). In many cases,

however, the large within-accession variation (variation

between biological replicates; indicated by boxes in Fig. 1)

or small between-accession metabolic variation caused

merging of samples belonging to different accessions along

one or more PCs. The merging of clusters happened along

different PCs (also along PC3 and PC4, which are not

shown in Fig. 1). To take the relative position of samples to

each other along all PCs, the scores of the samples on these

PCs were exploited as sample properties. A matrix con-

taining all these scores was used to calculate the Euclidian

distance between samples (inter-sample distance). Using

the inter-sample distance matrix, an R-value was assigned

by the ANOSIM permutation test. This R-value is a geo-

metric function that describes the distance between pairs of

a priori groups of samples belonging to two accessions in

the hyperplane. R-values can range from ?1 to -1, with

?1 indicating the maximal divergence of two accessions

and -1 indicating that one group is the child of the other.

R = 0 occurs if the position of both accessions in the

hyperplane completely overlaps. Table 1 shows the pair

wise R-values for the root metabolite fingerprints obtained

by LC–MS negative and positive mode analyses. Based on

these R-values, for example accessions Kyo and An-1 had

a very similar metabolome in both analytical methods

(RPositive mode = 0.07 & RNegative mode = 0.03) (Table 1).

Ler and Kond, on the other hand, were maximally different

for the positive mode metabolic profile, whereas for the

negative mode metabolic profile they were less different

(RPositive mode = 1.00; RNegative mode = 0.33) (Table 1). On

the contrary, Ler and An-1 were maximally different for

the negative mode metabolic profile and less different for

the positive mode metabolic profile (RPositive mode = 0.48;

RNegative mode = 1.00) (Table 1).

The use of more than two PCs in the R-value calculation

resulted in quite a different interpretation of the metabolic

distance between some accessions compared with the two

dimensional PCA plot. As an extreme example, the root

samples of accessions C-24 and Col-0 clearly separated

along the first PC in both LC–MS positive and negative mode

(Fig. 1). However, the R-value of the negative mode analysis

showed that these accessions are metabolically more similar

in the hyperplane than what can be observed on a plain PCA

plot (RNegative mode = 0.08) (Table 1). The distance is larger

in positive mode (0.39) but still much smaller than for

example the distance between C-24 and Cvi which in Fig. 1

are closer together than C-24 and Col-0.

Ranking of the average distance of one accession to all

other accessions was used as a measure for its metabolic

divergence from the rest of the accessions. Accessions

Cvi and C-24, for example, were the most and the least

diverging accessions, respectively, with regard to their

root metabolite profiles obtained by both LC–MS

modes (RPositive mode average = 0.98 & RNegative mode average =

0.85 for Cvi and RPositive mode average = 0.45 &
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RNegative mode average = 0.20 for C-24) (Table 1). Average

metabolic distance depended on the analytical method used

as was exemplified by accessions An-1 and Kond that

changed from second to eighth and eighth to second as a

result of the analytical method. This indicates the impor-

tance of the use of several different analytical platforms for

elucidation of metabolic relationships between accessions .

3.5 Metabolic distance in complex datasets

So far, we analyzed the metabolic distance for genetic

differences only. It would be of interest to look also at the

metabolic distance between genotypes under different

treatments. However, this implies the involvement of more

than one source of variation and that makes such analyses

complicated. Partial analysis, however, allows for reduc-

tion of the complexity by removing the effect of an

undesired source of variation from the dataset. In Fig. 2,

three PCA plots of the shoot LC–MS negative mode data

are shown (216 samples). If none of the sources of varia-

tion (sample block, accession, environment) was excluded

from the model, only separate clustering of hydroponically

grown samples could be observed (Fig. 2a). Hence, the first

PC explains only the considerable change in metabolite

Fig. 2 PCA plots of the nine accessions grown in four environments,

analyzed by LC–MS of shoot in negative-mode. a scores plot.

b partial PCA biplot (superimposed scores and loadings plots) with

environment and sample block as cofactor. Dashed arrows represent

the 11 metabolites that more than 55% of their influence was

represented by the first two PCs. The accurate mass is given in

parentheses for unidentified masses. c partial PCA scores plot with

accession and sample block as cofactor. Boxes approximate the

boundaries of within environment variation and illustrate clustering of

samples belonging to the environment. Numbers along the axes
indicate the PC number and percentage of variation explained.

Accessions in a, b: open triangle An-1, filled diamond Col-0, open
triangle C-24, open rectangle Cvi, filled square Eri, filled circle
Kond, ? Kyo-1, filled triangle Ler, open diamond WS; Environments

in c: CC climate chamber, GH controlled-conditions greenhouse, UC
uncontrolled-conditions greenhouse, HY hydroponics in the climate

chamber
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fingerprint in the HY samples compared with the other

environments.

Partial PCA of the LC–MS negative mode dataset with

sample block and environment or sample block and acces-

sion as cofactor removed the cofactors’ effect from the

dataset and resulted in cluster formation based on the

remaining sources of variation (Fig 2b, c). Hence, partial

analysis reduced the complexity of the datasets in which

more than one known variation source (accession and envi-

ronment in this case) was responsible for the metabolic dif-

ferences. Moreover, partial analysis enabled having more

biological replicates for each accession or environment by

combining the data from different environments or acces-

sions, respectively, hence giving better insight in the within-

accession or within-environment biological variation.

Subsequently, the scores of the samples on PC 1 to 4 in

these partial PCA analyses were used to calculate the dis-

tance between a priori groups (accessions or environments)

of samples in the hyperplane and successively the average

distance as a measure for metabolic divergence (Table 2

and supplementary information Table 5). The total of the

average R-values provides a measure for the overall met-

abolic distance of an accession or environment from the

others across all analytical methods. Among all accessions

and across all analytical methods, Cvi (Rtotal = 4.93;

ranking 1st) was the metabolically most diverged accession

(Table 2). Accessions Kyo-1 (Rtotal = 2.41; ranking 7th)

and Eri (Rtotal = 2.63; ranking 8th) had the lowest total

R-value which makes them the least metabolically

diverged accessions or in other words metabolically aver-

age accessions that in most of the analyses located close to

the center of the hyperplane or in between most of the other

accessions (Table 2; Fig. 2b).

Analogously among environments across all analytical

methods, Hydroponics (Rtotal = 2.43) was the most distant

environment from the others with the largest total R-value

(Supplementary Information Table 5) as was also con-

cluded from Fig. 2c. The total R-value of greenhouse

(Rtotal = 1.63) samples was the smallest, indicating that

this environment was the most ‘‘average’’ growth condi-

tion. (Supplementary Information Table 5 and Fig. 2c).

3.6 Correlation between metabolic distance matrices

The metabolic distance matrices (matrix of R-values) can

be used also to analyze pattern similarity between analyt-

ical methods. A Mantel test showed a significant correla-

tion between the metabolic distance matrices of shoot LC–

MS positive and negative mode (r = 0.70, P-value \0.01)

and between root LC–MS positive and negative mode

(r = 0.47, P-value \0.05) (Table 3). Interestingly, there

was also a significant correlation between the metabolic

distance matrices of shoot LC–MS negative mode and

GC-TOF–MS (r = 0.61, P-value \ 0.05) (Table 3).

A significant correlation between inter-accession meta-

bolic distance matrices for the analytical methods indicates

that the metabolite profiles obtained with these methods

give a similar picture of the relationship between the

accessions. This correlation does not imply that there is

similarity in the measured metabolites by those methods.

The lack of a significant correlation between some ana-

lytical methods, on the other hand, indicates that metabolic

distances can be also method dependent and that the ana-

lytical methods are complementary, rather than redundant,

in covering the metabolome. This is confirmed by the fact

that the ranking of accessions across uncorrelated

Table 1 R-values (metabolic distance) obtained by the ANOSIM permutation test using root LC–MS positive mode (values above the diagonal)
and negative mode (values below the diagonal) data, based on the first four principal components of PCA

The numbers in parentheses indicate the ranking of the corresponding accession with regard to the average of its distances with the other

accessions
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metabolic distance matrices varies more than across cor-

related matrices (Table 2). This also implies the impor-

tance of using different analytical methods for metabolome

characterization. Table 3 provides some guidelines for the

choice of analytical methods that avoid generation of

redundant analytical data for metabolic relationship dis-

section. A combination of LC–MS positive mode and

GC-TOF–MS analysis of derivatized polar extracts would,

at least for A. thaliana accessions of this study, give rea-

sonable coverage of the metabolome while avoiding too

much redundancy.

No significant correlation was observed between meta-

bolic distance matrices of shoot and root, in all three

analytical methods (Table 3). The lack of a similarity

between metabolite profiles of shoot and root has been

shown in a number of studies (Kabouw et al. 2009; Van

Dam et al. 2009). However, here we show that there is also

a lack of correlation between the matrices of metabolic

distances of accessions based on root and shoot. This

complements prior studies (Kabouw et al. 2009; Van Dam

et al. 2009) and indicates that the metabolic relationship

between accessions is dependent on the tissue under study.

3.7 Chemical relevance of metabolic distance

Key in estimating the metabolic distance between a priori

groups of samples (accessions or environments) is the

quantity of the analytical information and relevance of the

calculated distance. The metabolite profiling using three

analytical platforms was aimed at increasing the quantity of

the information from different classes of metabolites. A

metabolite identification strategy was followed to evaluate

the chemical relevance of the calculated metabolic dis-

tance. Shoot metabolites responsible for separation of

accessions were identified in silico as the first strategy.

Hereto, we used partial PCA plots eliminating the effect of

the environment from the dataset to find the metabolites

responsible for grouping of the accessions. Then, the scores

and loadings plots with the first two PCs were superim-

posed for shoot GC–MS and LC–MS positive and negative

mode datasets separately. The biplots of shoot GC–MS

data (supplementary information Fig. 3) and LC–MS neg-

ative mode data (Fig. 2b) are shown as examples. As a rule,

only those metabolites were included into the ordination

diagram that more than 55% of their influence was

Table 2 Average R-values (metabolic distance) of accessions in different analytical methods obtained by the ANOSIM permutation test on the

inter sample distances

An–1 Col–0 C–24 Cvi Eri Kond Kyo-1 Ler WS PCa Variance explainedb

Root LC–MS? 0.47 (8) 0.72 (3) 0.45 (9) 0.98 (1) 0.68 (6) 0.81 (2) 0.49 (7) 0.72 (3) 0.71 (5) 4 0.593

Root LC–MS- 0.65 (2) 0.46 (6) 0.20 (9) 0.85 (1) 0.59 (4) 0.31 (8) 0.32 (7) 0.63 (3) 0.59 (4) 4 0.609

Root GC–MS 0.57 (5) 0.60 (4) 0.65 (3) 1.00 (1) 0.34 (8) 0.37 (7) 0.38 (6) 0.38 (6) 0.73 (2) 3 0.535

Shoot LC–MS? 0.38 (3) 0.29 (5) 0.53 (2) 0.58 (1) 0.25 (9) 0.27 (6) 0.32 (4) 0.25 (9) 0.25 (9) 3 0.239

Shoot LC–MS- 0.89 (2) 0.65 (5) 0.78 (4) 0.97 (1) 0.54 (8) 0.85 (3) 0.57 (7) 0.59 (6) 0.51 (9) 3 0.343

Shoot GC–MS 0.29 (6) 0.23 (9) 0.31 (4) 0.55 (1) 0.23 (9) 0.46 (2) 0.33 (3) 0.30 (5) 0.28 (7) 4 0.441

Total 3.25 (2) 2.95 (4) 2.92 (5) 4.93 (1) 2.63 (7) 3.07 (3) 2.41 (8) 2.87 (6) 3.07 (3)

Numbers in parentheses show the ranking of the accession within the row
a The number of principle components (PC) used to calculate the Euclidean distances for ANOSIM
b % variation explained by the PCs used

Table 3 Mantel statistics ‘‘r’’,

for the correlation between

different datasets

P-value calculated by 10,000

permutations

Hyd Hydroponics

r P-value

Root LC–MS ? Vs Root LC–MS- 0.47 0.04*

Root LC–MS ? Vs Root GC–MS 0.24 0.19

Root LC–MS-Vs. Root GC–MS 0.39 0.08

Shoots LC–MS ? Vs. Shoot LC–MS- 0.70 0.004*

Shoots LC–MS ? Vs. Shoot GC–MS 0.38 0.08

Shoots LC–MS-Vs. Shoot GC–MS 0.61 0.01*

Hyd. shoots LC–MS-Vs Hyd roots LC–MS- 0.18 0.25

Hyd. shoots LC–MS ? Vs Hyd roots LC–MS? 0.29 0.08

Hyd. shoots GC–MS Vs Hyd roots GC–MS 0.39 0.10
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represented by the first two PCs. Consequently, ten

metabolites were pinpointed in the GC–MS data that con-

tributed most to the clustering of accessions Cvi and Kond

on one sides of the scores plot (supplementary information

Fig. 3 and supplementary information Table 6). They were

identified and annotated as monosaccharides (fructose,

1-methyl-alpha-D-glucopyranoside and glucopyranose), a

disaccharide (sucrose), an amino acid (L-glutamic acid) and

its derivative (pyroglutamic acid), and four other, yet

unknown, compounds that we could not unambiguously

identify. All of them have previously been detected in A.

thaliana (Fiehn et al. 2000). ANOVA showed that there is

a statistical significant difference between the accessions

(a = 0.05) for these ten metabolites. The fact that these

primary metabolites were among the most discriminating

compounds suggests a fundamental difference in central

carbon metabolism of Cvi and Kond compared with the

other accessions, including Col-0. This difference is

reflected in the divergence ranking of Cvi and Kond in the

GC–MS shoot analysis (Table 2).

In the shoot LC–MS negative mode dataset, 11 metab-

olites were most responsible for the separate grouping of

the accessions in the PCA biplot (Fig. 2b). The most likely

elemental compositions of the corresponding parent ion

mass of all these could be calculated by Seven Golden

Rules (Kind and Fiehn 2007). Library search in the

KnapSack database (http://kanaya.naist.jp/knapsack_jsp/

top.html) and the Dictionary of Natural Products (http://

dnp.chemnetbase.com) resulted in the annotation of 10

compounds of which eight were denoted as glucosinolates

(supplementary information Table 7). Glucosinolate pro-

files of A. thaliana have indeed been reported to vary

across accessions (Kliebenstein et al. 2001). All putatively

identified glucosinolates have been reported before in

Col-0 (Matsuda et al. 2010) or other Brassicaceae genera

(KnapSack). The remaining three compounds with parent

ion masses of 789.222 (tentatively identified as truncatulin

A from medicago truncatula) 338.093 (tentatively identi-

fied as clinacoside C) and 416.106 have so far not been

reported in Brassicaceae or any plant species.

Analogously, in the shoot LC–MS positive mode data-

set, ten metabolites responsible for separate grouping of

An-1, Cvi and C-24 on the PCA biplot (not shown) were

pin-pointed, of which nine could be tentatively identified.

Only two of them, diptocarpilidine and 3-carboxytyrosine,

have been reported before in at least one Brassicaceae

species (supplementary information Table 7). The other m/

z signals corresponded mainly to flavonoid derivatives and

nitrogen containing compounds that have not been reported

before in A. thaliana. All of the accession-specific metab-

olites in the LC–MS analyses were confirmed to be

statistically different across accessions by ANOVA

(a = 0.05).

3.8 MS/MS fragmentation of the most relevant

metabolites

MS/MS experiments were performed to further identify

the differential metabolites. Mass and retention time-

directed spectra were registered at different collision

energies (from 5 up to 50 eV) for each compound and

combined into one MS/MS spectrum. Not all of the

selected ion masses could be fragmented perhaps due to

structure stability although their presence was confirmed

Fig. 3 Ordination plot of accessions tested with a range of biotic

agents: Peronospora parasitica isolates (Emoy2, Cala2, Waco9);

Oidium neolycopesici; Botrytis cinerea and Frankliniella occidentalis
(thrips). The resistance or repellence level of accessions to biotic

agents (grey vectors) were set as explanatory variables and abundance

of metabolites (black vectors) as response variables in the RDA plot.

Indicated metabolites are accession-specific identified in the present

study and the rest of the metabolites were not identified in the present

study but all of them correlated with resistance. Numbers along the
axes indicate the ordinate number and percentage of variation

explained. X indicates the position of accessions on the scores plot

with respect to their resistance level. Vectors pointing in the same
direction are positively correlated and those pointing in opposite
directions are negatively correlated
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in the samples of independent experiments. The frag-

mentation pattern of 14 of the 21 ion masses was

obtained successfully. The fragmentation pattern in

combination with the corresponding retention time, iso-

topic pattern and UV–Vis spectrum allowed for further

confirmation of the structure.

In negative mode, MS/MS confirmed the identity of six

glucosinolates with their characteristic fragment signal at

[M-H]- 96.9595 Da (*97, supplementary information

Table 7). The isotopic pattern of the other putative gluco-

sinolates, which failed to fragment in MS/MS analysis,

confirmed the presence of sulfur making it likely they are

indeed glucosinolates.

A phenolic compound with the elemental formula of

C37H42O19 and accurate mass of [M-H]- 789.224 Da was

also detected in negative mode which was putatively

annotated as an isomer of truncatulin A and not reported

before in Brassicaceae. MS/MS analysis of the deproto-

nated molecule confirmed the presence of ferulic acid,

guaiacylglycerol and genticic acid linked via two pentose

sugars. (supplementary information Fig. 4a). This is the

first report of this mass and elemental composition in A.

thaliana. Hydroxybenzoic acids (such as genticic acid)

combined with a guaiacylglycerol group have been found

to occur as breakdown products of lignin (Katayama et al.

1981). Ferulic acid is a constituent of lignocellulose that

crosslinks the lignin and polysaccharides conferring rigid-

ity to the cell walls. These products may have some rela-

tion with defense (Fayos et al. 2006) but it’s presence in

some A. thaliana accessions remains to be further con-

firmed and explained.

In positive mode, three of the nitrogen containing com-

pounds were annotated as alkaloids that were not reported

before in A. thaliana (supplementary Information Table 7).

After analysis of MS/MS spectra it was possible to correlate

the fragments and characteristic neutral losses with the

structures proposed for one alkaloid, diptocarpilidine and

also for one amino acid derivative, 3-carboxytyrosine,

which have been reported before in Brassicaceae. To date,

only the indolic alkaloid, camalexin (a phytoalexin), has

been identified in A. thaliana (Glazebrook and Ausubel

1994; Hansen and Halkier 2005). However, the presence of

a multitude of alkaloid biosynthetic gene homologues in the

A. thaliana genome may suggest that more alkaloids can

potentially be synthesized (Facchini et al. 2004). Anno-

tated alkaloids were particularly present in accessions

Cvi, C-24 and An-1 and the fact that they have not been

reported before may be simply due to their low abundance

in Col-0.

Two putative flavonoid derivatives were identified in

LC-TOF–MS positive mode (supplementary Information

Table 7). One of them was registered with accurate mass

[M ? H]? 947.2816 Da and was annotated in silico as an

anthocyanin derivative not reported before in the Brassic-

aceae. Analysis of the MS/MS spectra (supplementary

information Fig. 5a) shows this is a different flavonoid

derivative, namely kaempferol 7-O-rhamnoside 3-O-

rhamnosyl-(synapoyl)glucoside (supplementary informa-

tion Fig. 5b). Flavonoids have been studied to a large

extent in A. thaliana and variants of this class of secondary

metabolites have been identified including derivatives of

kaempferol 3-glycosides (Sever et al. 2010; Matsuda et al.

2010). Here we report two new putative flavonoids in A.

thaliana detected in LC–MS positive mode, with one of

them also annotated as kaempferol glycoside by MS/MS

fragmentation. The fact that these flavonoids have so far

escaped identification in A. thaliana may be again due to

their absence in the mostly studied accession Col-0.

3.9 Biological relevance of metabolic distance

Metabolites mediate the interaction of plants with their envi-

ronment including biotic agents (Macel and Klinkhamer

2009; Kashif et al. 2009; Mahatma et al. 2009; Forlani

2010). Therefore metabolites are highly adaptive and hence

strongly vary between genotypes and habitats/environ-

ments of the accessions (Menezes and Jared 2002). Hence,

our strategy to evaluate the biological context of the

observed metabolic divergence between accessions was to

relate their differential metabolic profiles to the interaction

with biotic agents. We characterized accessions in a non-

induced metabolic state. The obtained metabolite finger-

prints thus represent the innate immune or general defense

system without a requirement for induction. Based on their

metabolic distances, four accessions were selected that best

represent the observed metabolome variation across the

nine accessions. Cvi and An-1 were selected as the most

diverged, Col-0 as the moderately diverged and most

studied and Eri as an average accession (Table 2). The four

accessions showed segregation with regard to resistance

against or attractiveness to different biotic agents, includ-

ing host and non-host and biotrophic and necrotrophic

pathogens as well as an insect (supplementary information

Table 8). None of the selected accessions was resistant or

susceptible to all of the biotic agents. Subsequently, the

resistance or attractiveness levels to the biotic agents were

used in RDA as explanatory variables for the abundance of

the reconstructed metabolites in the CC-environment

samples as bioassays were done under the same conditions.

Several metabolites were shown to significantly (MCP test,

10,000 permutations, P-value \ 0.01) correlate with the

resistance level of the accessions to different biotic agents

(Fig. 3), some of which were not identified as accession-

specific in our first strategy. Among the correlating

metabolites based on the first two PCs two were detected in

LC–MS positive mode whereas the rest were detected in
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negative mode with glucosinolates dominating the list

(Fig. 3). Abundance of positively correlated compounds

with Botrytis and thrips resistance was shown to be nega-

tively correlated with the resistance against downy mildew

isolates, while abundance of positively correlated com-

pounds with Oidium resistance was shown to have no

correlation with the resistance against other biotic agents

(Fig. 3).

Using the metabolic distance based on untargeted

metabolite fingerprints, we selected accessions of A. tha-

liana that chemically diverged in the PCA plane. As a

consequence of this chemical divergence, these accessions

also differed in their interaction with biotic agents. This

variation in chemical composition and biotic interaction

could be subsequently used to identify compounds corre-

lating with the interaction, some of them had been found to

be accession specific in the two dimensional PCA plane

(Fig. 3 and supplementary Information Table 7), thus

linking the metabolic distance of accessions with their

differential response towards biotic stresses.

3.10 Correlation between genetic and metabolic

distance

An integrated dataset that consisted of shoot metabolite

fingerprints from all analytical methods was used in a

partial PCA with environment as cofactor, in order to

estimate the pair-wise metabolic distance (R-value) among

the nine accessions across all analytical techniques (sup-

plementary information Table 9). The 149 genome-wide

distributed SNP markers were used to determine the

genetic distance among the nine accessions (supplementary

Information Table 9). A Mantel test showed that there is a

small (correlation coefficient r = 0.04) but significant

(P-value \ 0.01) pattern similarity between the shoot

metabolic and genetic distance matrices. There was no

significant correlation (r = 0.26 and P-value = 0.11)

between the root metabolic distance (determined using all

analytical methods) and the genetic distance matrices.

The weak correlation between the genetic and metabolic

distance matrices shows that genetic diversity is not one to

one translated into metabolic diversity. The phylogenetic

tree of all used accessions (supplementary information

Fig. 1) demonstrates that at the resolution level of 0.8, An-1

is the most genetically diverged accession and Eri is the

second at a lower resolution (0.7). Moreover, there is a large

genetic distance between these two accessions as shown in

supplementary information Table 9 and as they belong to

the two different major clades of the tree (supplementary

information Fig. 1). However, based on the combined

metabolite datasets of the shoot, Cvi has the largest meta-

bolic divergence and Eri is considered as an average

accession with the least metabolic divergence (shown by the

ranking of the average distance, supplementary Information

Table 9). An-1 is the second metabolically diverged

accession, which would fit with the fact that it is genetically

the most diverged. However, An-1 also has a large meta-

bolic distance from Cvi (R = 0.95) while genetically they

belong to the same major clade (supplementary information

Fig. 1). Such discrepancies imply that the genetic distance

of two genotypes does not completely define their rela-

tionship and distance at the metabolic level. Our result is in

accordance with a number of previous studies on closely

related genotypes of two plant species (Sesamum indicum

and Oryza sativa) and on several Rhizobium species

(Wolde-Meskel et al. 2004; Mochida et al. 2009; Laurentin

et al. 2008). We also observed convergence of ‘‘metabo-

types’’, i.e. accessions with no metabolic distance although

diverged genetically. As an example in the root dataset,

negligible metabolic distance is observed between An-1 and

Kyo-1 in both LC–MS modes (Table 1), while the two

accessions of each of these pairs belong to the two diverged

subclades of the phylogenetic tree (supplementary infor-

mation Fig. 1). A close metabolic relationship for geneti-

cally diverged accessions is in accordance with the

hypothesis of phenotypic buffering (Fu et al. 2009).

Although a genetic basis underlies the metabolome varia-

tion between A. thaliana accessions (our data) and mapping

populations (Keurentjes et al. 2006), the hypothesis of

phenotypic buffering suggests the existence of breakpoints

in a system that buffers them against too large effects of

genetic variation on the phenotype.

4 Conclusion

We characterized the metabolic variation within 9

A. thaliana accessions grown under various growing con-

ditions and established a statistical method for estimating a

metabolic distance between genotypes or treatments. This

method may help to evaluate and compare the effects of

genetic (natural variation, breeding and genetic modifica-

tion) or environmental perturbations on the metabolome.

Metabolic distance can be used to quantify the metabolic

diversity and plasticity among plant genotypes and envi-

ronments and could be a useful tool in breeding programs

and genetical genomics studies.
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