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Abstract: Drug addiction is thought to be driven by negative reinforcement, and it is thought that a
shift from positive affect upon initial exposure to negative affect after chronic exposure to a drug is
responsible for maintaining self-administration (SA) in addicted individuals. This can be modeled in
rats by analyzing ultrasonic vocalizations (USVs), a type of intraspecies communication indicative of
affective state based on the frequency of the emission: calls in the 22 kHz range indicate negative
affect, whereas calls in the 50 kHz range indicate positive affect. We employed a voluntary chronic,
long-access model of fentanyl SA to analyze affective changes in the response to chronic fentanyl
exposure. Male Sprague-Dawley rats self-administered either fentanyl (N = 7) or saline (N = 6) for 30
consecutive days and USVs were recorded at four different time points: the day before the first SA
session (PRE), the first day of SA (T01), the last day of SA (T30), and the first day of abstinence (ABS).
At T01, the ratio of 50 to 22 kHz calls was similar between the fentanyl and saline groups, but at T30,
the ratio differed between groups, with the fentanyl group showing significantly fewer 50 kHz calls
and more 22 kHz calls relative to saline animals. These results indicate a shift toward a negative
affect during drug use after chronic exposure to fentanyl and support negative reinforcement as a
main driving factor of opioid addiction.
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1. Introduction

Affective state in response to aversive or appetitive stimuli can be readily modeled in
laboratory rats by analyzing a form of intraspecies communication known as ultrasonic
vocalizations (USVs). USVs can be categorized into two ranges associated with different
meanings, due to their emission during emotionally arousing situations: calls in the
18-33 kHz range are referred to as 22 kHz USVs and calls in the 35-70 kHz range are
referred to as 50 kHz USVs [1,2].

Due to their predictable occurrence in response to aversive situations, 22 kHz calls
are considered representative of a negative affective state and are generated during com-
mon behavioral situations such as exposure to predators [3], unfamiliar touch [4], drug
withdrawal [5,6], and exposure to pain such as foot shock [7]. Conversely, 50 kHz calls are
reliably emitted during situations involving the anticipation of potential reward [8,9], social
contact [10], electrostimulation of mesolimbic sites supporting self-stimulation [11], and
the administration of addictive drugs [12,13]. Therefore, 50 kHz calls are representative
of an appetitive, hedonic behavioral state associated with positive affect [9,10]. As both
22 and 50 kHz USVs can provide insight into the affective state of animals, they can be
recorded and analyzed during periods of drug administration to identify changes in affect
associated with chronic opioid exposure.
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It is commonly accepted that negative reinforcement is the driving factor behind
addiction [14], whereby the escape or avoidance of negative affect during drug use and
withdrawal is the main motivating factor maintaining the self-administration of addictive
drugs [15]. Furthermore, a shift from positive affect upon initial drug use to the emergence
of negative affect after extended drug exposure and development of drug dependence
and/or addiction is a salient motivational factor in chronic, long-access animal models [16]
and human drug abuse [17]. Analyses of rodent USVs during opioid administration
indicated that anticipatory 50 kHz emissions decrease after repeated exposure to morphine,
suggesting an aversive influence of morphine exposure [12] and supporting a shift from
positive to negative affect in response to repeated opioid administration.

Morphine was shown to dose-dependently suppress both 22 and 50 kHz USVs in-
dependent of opioid effects on pain perception, and this response can be attenuated by
administration of a mu-opiate receptor antagonist such as naloxone [18], implicating opioid
specificity. Additionally, opioid administration suppresses 22 kHz USVs emitted during
foot shock, whereas the audible pain-associated squeak is unaffected, further dissociating
USV suppression by opioids from their analgesic effects [7]. These results are consistent
with claims that opioids influence affective as well as autonomic, somatic, and motor
processes, and indicate a role of opioids in modifying the central mechanisms of USVs.

Surprisingly, little emphasis has been placed on understanding the specific affective
state of rats during the self-administration of opioids. Therefore, we employed a long-
access fentanyl self-administration (SA) model to analyze the changes in affect in response
to chronic fentanyl exposure in rats. Intravenous SA is the most translatable animal model
for human drug addiction and is thus often referred to as the gold standard for measuring
abuse liability [19,20]. The model establishes two key aspects of drug addiction: compulsive
drug use and escalation of drug intake over time. The inclusion of USV analysis allows for
the identification of the emergence of a negative affective state, which is a third key aspect
of drug addiction. Based on previous studies citing a shift from positive to negative affect
after repeated drug exposure [12,16,17], we predicted that rats would exhibit increased
positive affect upon initial exposure to fentanyl, as indicated by increased 50 kHz call rates
during the first session of fentanyl SA, which would then shift toward negative affect after
30 days of fentanyl SA.

2. Materials and Methods
2.1. Animals

Adult, male Sprague-Dawley rats (Charles River, Wilmington, MA, USA) were al-
lowed to self-administer the opiate receptor agonist fentanyl HCL (dose = 2.57 pug/kg per
i.v. infusion; fentanyl SA group, N = 7) or saline (saline SA group, N = 6) for 30 consecutive
days. Rats were singly housed on a 12:12 h light:dark cycle (lights on at 10:30 a.m..). Prior
to surgery, rats were allowed to reach adult weight (350 g) and maintained at this weight
thereafter to avoid the addition of fat tissue.

2.2. Catheterization Surgery

Animals were anesthetized with a ketamine/xylazine (K/Xyl) mixture (50 mg/kg, i.p.)
and given an injection of atropine (10 mg/kg; i.p.) to decrease fluid buildup in lungs and
prevent respiratory arrest. Anesthesia was monitored and maintained throughout surgery
by intermittent K/Xyl injections. During surgery, animals were chronically implanted
with an intravenous catheter in the right jugular vein. This catheter was threaded subcuta-
neously and exited at the scalp where it was led through a j-shaped stainless-steel cannula
attached to the skull using dental cement and jeweler’s screws. The catheter was protected
by a metal spring-leash permanently connected to the animal’s cannula to prevent damage.
Following surgery, the animal was housed in a self-administration operant chamber at all
times for the entirety of the SA experiment. Animals were allowed one week to recover
from surgery, during which time they received once daily i.v. infusions of antibiotics and
NSAID pain reliever (rimadyl and baytril). During all hours other than SA sessions, a
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200 pL infusion of saline was delivered every 25 min by a computer-controlled syringe
pump to preserve catheter patency. Animals received water ad libitum and received
enough food to maintain a weight of 350 g throughout the duration of the experiment.

2.3. Self-Administration Apparatus

The clear Plexiglas chamber in which animals were housed included a corner with a
fixed 6-photocell device used to monitor and record head movements [21]. An infusion
was administered only when a correct operant response was performed in this corner. A
correct operant response consisted of breaking photocells 2 and 3 in succession within
1s. All rewarded responses (RRs) and unrewarded responses (URs) were recorded. The
Plexiglas chamber was housed within a ventilated, sound-attenuating outer shell.

2.4. Self-Administration

SA sessions (6 h/day, 7 days/week) were conducted using the long-access model
of Ahmed and Koob [22], which models human addiction, including escalation of intake
and persistent increase in the motivation for drug-taking [23,24]. SA sessions ran each
day for 30 consecutive days, starting at light onset. Sessions automatically ended upon
the completion of 6 h. During the session, drug or saline was available during the entire
6 h on an FR1 reinforcement schedule. A correct response (except during timeout, see
below) turned on the pump and automatically dispensed a 0.9 ug/0.075 mL solution of
intravenous fentanyl (or an equal volume of saline) through the surgically implanted
catheter over 2.5 s, for an average infusion dose of 2.57 pg/kg. This correct response was
defined as an RR. An RR immediately triggered a 40 s inter-trial interval timeout as a
precautionary measure to prevent overdose, but all responses provided during this time
were recorded as URs.

2.5. USV Recording and Scoring

Prior to the commencement of SA recording sessions, a condenser microphone
(CM16/CMPA, Avisoft) was suspended 2.5 cm above an arrangement of small holes
in the top of the Plexiglas SA chamber. USVs were recorded at a 250 kHz sampling fre-
quency (16 bits) using recording software (Ultrasound Gate, Avisoft, Glienicke/Nordbahn,
Germany). Baseline USVs were recorded one week after surgery prior to the start of the
first SA session over the same 6 h period as SA sessions were conducted. Subsequent USV
recordings were obtained for 6 h during session 1 (T01), session 30 (T30), and the first day of
abstinence (ABS; session 31) at the same time of day as a 6 h SA session. As characterization
and scoring of USVs are time- and labor-intensive, this limited agenda was designed to
capture affective calling during SA for the first time, SA for the 30th consecutive day, and
the first time being deprived of the expected drug (18 h withdrawal).

Audio files were run through an automated detector, DeepSqueak [25], to isolate
potential calls. These were then manually checked to distinguish between actual calls
(which were accepted) and artifacts and background noise (which were rejected). The
automatic detector outputs the specific frequency and exact timing of individual calls. Only
manually accepted calls were used for analyses. Calls were designated as belonging to the
22 or 50 kHz ranges.

2.6. Data Analyses

Data were analyzed using Prism GraphPad software. Behavioral measures included
(i) number of RRs/session, (ii) average drug level (mg/kg) maintained during SA, (iii)
slope of escalation of intake, and (iv) 22 and 50 kHz call rates during baseline, T01, T30,
and ABS sessions.

2.6.1. Escalation of Intake

The total number of RRs was regressed over sessions 1 through 30 for both fentanyl
and saline SA. The analysis was conducted using a simple linear regression, where RR was
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defined as the dependent variable and session was defined as a continuous independent
variable. An additional linear regression was performed in which total fentanyl intake
was regressed over the session (1-30), where intake was defined as a dependent variable
and session was defined as a continuous independent variable. To incorporate body
weight into the calculation of total fentanyl intake, the following equation was used:
intake = (#RRs x pg fentanyl per infusion)/body weight.

2.6.2. USV Analysis

One-tailed t-tests were conducted to compare the ratio of 50 kHz to 22 kHz USVs for
T01 vs. T30. One-tailed t-tests were performed based on expectations derived from the
literature, from which we formed the hypothesis that the ratio would shift toward fewer
positive and more negative calls at T30 relative to TO1.

3. Results
3.1. Acquisition of Fentanyl SA

A total of 28 rats were surgically prepared for SA. Seven rats in the fentanyl SA group,
and six rats in the saline SA group completed all phases of SA and USV recording. Animals
self-administered fentanyl in a manner consistent with animal models of substance use
disorder, in which escalation of intake is a key marker of addiction [26]. The average
number of reinforced responses (#RRs) was plotted against SA session (session 1-30). The
simple linear regression revealed that the slope of the line for fentanyl SA (0.6242) was
significantly different from zero (F(1,28) = 16.45, p = 0.0004), identifying escalation of intake
over time. Accounting for body weight, a separate linear regression similarly identified
escalation of fentanyl intake (ug/kg) over time (F(1,28) = 9.912, p = 0.0039, Figure 1).
The average number of RRs in the saline group remained low and did not change across
sessions (Figure 1; F(1,28) = 4.140, p > 0.05).

Average SA intake
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Figure 1. Average SA intake. A simple linear regression revealed that fentanyl animals exhibited
escalation of intake over 30 days of SA training as demonstrated by the increased number of fentanyl
infusions (RRs; F(1,28) = 16.45, p = 0.0004) and average daily intake of fentanyl (accounting for body
weight; ng/kg; F(1,28) = 9.912, p = 0.0039). Saline animals did not escalate intake over 30 days of SA
(F(1,28) = 4.140, p > 0.05). Error bars denote the SEM.
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3.2. Shift toward Negative Affect after 30 Days of Fentanyl SA

Animals exhibited a mix of affective responses to fentanyl SA in session 1 (T01).
Relative to baseline (PRE), some rats emitted more 50 kHz than 22 kHz calls during the
six hours of T01, whereas others exhibited the opposite pattern (Figure 2). However, by
session 30 (T30), no fentanyl SA rats emitted more 50 kHz than 22 kHz calls, with several
rats emitting more 22 kHz than 50 kHz calls. Across all sessions, the average 50 kHz call
rate per hour peaked at TO1 but declined to near zero at T30 (Figure 3). Combined, the
seven rats in the fentanyl group emitted a total of one 50 kHz call during the six hours of
T30. In contrast, the average 22 kHz call rates peaked at T30.

To test the hypothesis that affective state would become more negative after a month
of daily fentanyl SA, a key planned comparison was between the ratio of 50 to 22 kHz
call rates at TO1 vs. T30. The ratio was computed for each animal in each session using
the formula (B — A)/(B + A), where B is the 50 kHz call rate and A is the 22 kHz call rate.
Using this formula, positive values indicate a higher prevalence of 50 kHz calls, negative
values indicate a higher prevalence of 22 kHz calls, and zero indicates equal rates of each
(Figure 2). At T01, the fentanyl group (M = —0.17, SD = 0.65) showed no difference from
the saline group (M = 0.06, SD = 0.59) (t(11) = —0.684, p = 0.25). In contrast, at T30, the
fentanyl group (M = —0.37, SD = 0.39) showed a significant shift toward fewer 50 kHz
and more 22 kHz calls compared to the saline group (M = 0.10, SD = 0.35) (t(11) = —2.31,
p = 0.02). Thus, the ratio of 50 kHz to 22 kHz calls was not different between groups at T01
but shifted to a significantly more negative value in the fentanyl group at T30 (Figure 2).
These results indicate the emergence of a predominately negative affective state during a
six-hour session of drug use after a month of chronic fentanyl self-administration.

Ratio of 50 kHz to 22 kHz calls
Saline SA * Fentanyl SA
| T |

06 T
04 T
02 T

0.2 +
04 +
0.6 +
-0.8 +

PRE To1 T30 ABS PRE To1 T30 ABS

Figure 2. Ratio of 50 to 22 kHz calls. Tracking of all rats” 50 kHz vs. 22 kHz calls across all sessions.
Each line represents one rat. Y-axis = (B — A)/(B + A), where B is the rate of 50 kHz USVs and A is
the rate of 22 kHz USVs. Thus, numbers above the horizontal line at zero represent a higher ratio of
positive to negative calls; numbers below zero indicate a higher ratio of negative to positive calls;
zero (horizontal line) indicates equal rates of the two calls. Note the absence of positive USVs and
the prevalence of negative USVs in the 30th fentanyl SA session. The ratio did not differ between
groups on T01, but the negative ratio of the fentanyl group was significantly different from the ratio
of the saline group at T30; * p = 0.02.
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Figure 3. The 22 kHz and 50 kHz call rates per hour. Each bar represents the mean call rate per hour
at PRE, T01, T30, and ABS for both saline and fentanyl groups. Each dot represents one animal. The
fentanyl group exhibited a shift toward negative affect after 30 days of fentanyl SA as indicated by
the increase in 22 kHz calls and decrease in 50 kHz calls at T30 compared to T01. This change was not
observed in the saline group. Two data points (one fentanyl TO1 and one saline PRE) were outliers
and removed from Figure 3, but not from statistical analyses, to avoid distortion of the y-axis, so that
the visualization of the data is consistent with the results showing a shift toward negative affect at
T30. Note the non-linear scale on the y-axis. Error bars denote the SEM.

4. Discussions

The present results provide evidence of a shift toward negative affect during chronic
opioid administration, supporting negative reinforcement as a salient motivating factor
driving drug addiction. The decrease in 50 kHz and increase in 22 kHz USVs in session
30 relative to session 1 of fentanyl but not saline SA suggest an aversive response to
repeated opioid use, which is consistent with previous reports [12]. The call rate/hour
results (Figure 3) are reinforced by the data presented by the ratio of 50 kHz calls to 22 kHz
calls (Figure 2), which track animals across sessions and highlight individual differences
among animals. This ratio provided a useful measure of general affect, which varied
between positive and negative during the long-access sessions in the present study. T30
in the fentanyl group was the only recording session exhibiting an equal or greater ratio
of negative to positive calls for all rats, as well as a dearth of 50 kHz calls, indicating not
only a lack of positive affect but also a shift toward overall negative affect. Accordingly,
these results further corroborate those of previous studies reporting a shift from positive to
negative affect after chronic drug abuse [12,16,17].

We observed no significant or uniform increase in positive affect at T01 of fentanyl
SA, consistent with previous studies reporting the suppression of 50 kHz calls in response
to opioids in drug-naive rats [27,28]. The initial exposure to opioids does not consistently
generate a positive affective response [29,30] (for a review, see Verendeev and Riley [31])
typically observed with other classes of drugs [16,32]. Given the presence of some negative
affective responses to fentanyl SA on T01, we cannot rule out the possibility that the
increase in 22 kHz calls at T30 could have been associated with a higher drug intake in
that session. That increase in negative calls plus the lack of major changes in the call rates
of either frequency at ABS highlight the presence of negative affect during drug use after
repeated exposure to the drug, not just once the drug has left the body and withdrawal sets
in. The mix of both 22 and 50 kHz calls during the 6 h ABS session may reflect fluctuations
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between a negative affective state associated with opioid withdrawal [6] and a positive
affective state associated with anticipation of drug for the 31st consecutive day, since 50 kHz
calls can indicate an anticipatory state [8,33,34].

Opioids have been known to suppress USVs in general [12,18,28]. This appears to be
the case in the present study, considering the low call rates detected compared to the higher
rates of both 22 and 50 kHz calls detected during cocaine SA (e.g., [16,35]). The pattern
of USV emission during fentanyl SA appears to be notably different from the SA of other
classes of drugs, such as stimulants. Behaviorally, we did not observe an initial “load-up”
period in which drug level rises rapidly at the beginning of each SA session as is observed
with cocaine SA [36]. Cocaine drug level is a strong predictor of affect, such that the 50 kHz
emissions by animals self-administering cocaine coincide with rising drug levels exclusively
during initial load-up, coinciding with a decrease in the 22 kHz call rate. Thereafter, 22 kHz
calls dominate the maintenance phase, increasing whenever drug level falls [37]. Cocaine
generates a positive affect upon first exposure to SA [16], along with motoric activation and
emotional arousal, which is the driving force for the emission of USVs [8]. This does not
appear to be the case for fentanyl SA, as initial exposure to fentanyl SA generated neither
positive nor negative affect in the present study. Opioid SA is not as clearly associated with
emotional arousal as that of cocaine, considering environmental preferences with respect to
each drug. Badiani et al. [19] reviewed extensive evidence that both rats and humans prefer
recreational and/or social use of the psychomotor stimulant cocaine, whereas they prefer
taking opioids in private settings. Fentanyl SA may be associated with greater tranquility,
less emotional arousal, and less tendency to emit positive vocalizations.

We observed a trend toward elevated 50 kHz call rates during the first SA session,
similar to that of Avvisati et al. [38], who also studied opioid SA in rats occupying their
home cage. They reported a further increase in 50 kHz calls during the first 30 min of SA
sessions after two weeks of heroin SA. That finding, however, differs from the decline we
observed in the 50 kHz call rate after a month of daily fentanyl SA. A second difference
between the studies is the paucity of 22 kHz calls in their study compared to the present
increase in 22 kHz calls during session 30 of fentanyl SA. These differences may relate to
the SA of the two different opioids, their use of 3 h sessions for 14 days vs. the 6 h session
model of addiction [22] for 30 days used in the present study, or their daily alternation
with cocaine SA. Resolving these differences will be important for understanding affective
processes in opioid abuse.

Some insight may be gained from our prior studies of cocaine SA. During load-up, the
spike in 50 kHz call rates increased [16] or was sustained [37] across 14 sessions of cocaine
SA, similar to the increase across sessions observed by Avvisati et al. [38] during the first
30 min of their sessions. Following load-up on cocaine, the 5+ hour maintenance phase
was devoid of 50 kHz calls but dominated by 22 kHz calls, indicating that responding was
being maintained by negative reinforcement [37]. A similar predominance of 22 kHz calls
indicating negative affect and potentially negative reinforcement may have characterized
the maintenance of fentanyl SA. However, we observed substantial variability within and
between subjects in the timing of fentanyl self-infusions, with no clear separation of load-up
from maintenance. Therefore, we chose not to attempt analyses of the initial portion of
sessions, but instead analyzed the whole session.

The present decline in positive affect in parallel with an increase in negative affect
across chronic opioid SA is consistent with the decrease to below baseline in subjective
“liking” of the effects of fentanyl administration in human subjects over time [39,40], in
agreement with the incentive sensitization hypothesis of Berridge and Robinson [39]. Our
findings in self-administering rats indicate that repeated exposure to fentanyl generates a
significant shift toward negative affect even while on the drug. This suggests that chronic
fentanyl SA involves aversive effects, despite outward signs that might appear consis-
tent with models of addiction emphasizing positive reinforcement. Multiple ascending
pathways originating in the brainstem are responsible for the generation of emotional
arousal, including the ventral dopaminergic system originating in the ventral tegmental
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area (VTA) [8], a pathway strongly implicated in the rewarding effects of both opioids
and stimulants. In the case of stimulants such as cocaine, the lateral habenula has been
implicated in playing a critical role in the regulation of negatively motivated behaviors
by targeting midbrain neuromodulatory systems such as the dopaminergic pathway pro-
jecting from the VTA [41,42]. Negative behaviors associated with opioids, however, are
predominantly modulated by the paraventricular nucleus of the thalamus, which has
significant inputs to the nucleus accumbens, whereby it mediates the negative signs of
withdrawal and opioid-related aversive memory [43]. Therefore, it is possible that differ-
ences in affective regulation during cocaine versus fentanyl SA may be a result of activity
in separate neural circuits during exposure to different classes of drugs.

We previously reported that the only USVs emitted during the maintenance phase
of cocaine SA are 22 kHz calls [37]. Those negative calls were associated with falling
cocaine levels, suggesting that further study is necessary of the relationship between USVs
and fluctuating levels of fentanyl in the blood. Whereas the pattern of fentanyl SA and
its associated affect are markedly different from those of cocaine SA, our findings with
both fentanyl and cocaine [16] are consistent with the literature, supporting negative
reinforcement as a driving factor of addiction and emphasizing that escape/avoidance of
negative affect is a salient motivational factor reinforcing drug addiction.

5. Conclusions

Chronic fentanyl SA generates a shift toward negative affect during drug use as
indicated by an increase in 22 kHz calls and a decrease in 50 kHz calls at T30 compared to
saline control animals. The shift toward a negative affect during drug use is consistent with
previous reports of increased negative affect in response to chronic drug exposure [12,16,17]
and supports negative reinforcement as a salient motivational factor driving drug addiction.
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