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Abstract

Recent discoveries from large-scale genome-wide association studies (GWASs) explain a

larger proportion of the genetic variability to BMI and obesity. The genetic risk associated

with BMI and obesity can be assessed by an obesity-specific genetic risk score (GRS) con-

structed from genome-wide significant genetic variants. The aim of our study is to examine

whether the duration and exclusivity of breastfeeding can attenuate BMI increase during

childhood and adolescence due to genetic risks. A total sample of 5,266 children (2,690

boys and 2,576 girls) from the Avon Longitudinal Study of Parents and Children (ALSPAC)

was used for the analysis. We evaluated the role of breastfeeding (exclusivity and duration)

in modulating BMI increase attributed to the GRS from birth to 18 years of age. The GRS

was composed of 69 variants associated with adult BMI and 25 non-overlapping SNPs asso-

ciated with pediatric BMI. In the high genetic susceptible group (upper GRS quartile), exclu-

sive breastfeeding (EBF) to 5 months reduces BMI by 1.14 kg/m2 (95% CI, 0.37 to 1.91, p =

0.0037) in 18-year-old boys, which compensates a 3.9-decile GRS increase. In 18-year-old

girls, EBF to 5 months decreases BMI by 1.53 kg/m2 (95% CI, 0.76 to 2.29, p<0.0001),

which compensates a 7.0-decile GRS increase. EBF acts early in life by delaying the age at

adiposity peak and at adiposity rebound. EBF to 3 months or non-exclusive breastfeeding

was associated with a significantly diminished impact on reducing BMI growth during child-

hood. EBF influences early life growth and development and thus may play a critical role in

preventing overweight and obesity among children at high-risk due to genetic factors.

Author summary

Previous studies have shown that EBF is associated with lower BMI during childhood and

adolescence. Moreover, a GRS based on 97 genetic variants has been derived from large

PLOS GENETICS

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008790 June 11, 2020 1 / 14

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Wu Y, Lye S, Dennis C-L, Briollais L

(2020) Exclusive breastfeeding can attenuate body-

mass-index increase among genetically susceptible

children: A longitudinal study from the ALSPAC

cohort. PLoS Genet 16(6): e1008790. https://doi.

org/10.1371/journal.pgen.1008790

Editor: Samuli Ripatti, Institute for Molecular

Medicine Finland (FIMM), FINLAND

Received: January 7, 2020

Accepted: April 22, 2020

Published: June 11, 2020

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pgen.1008790

Copyright: © 2020 Wu et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: Data from the

ALSPAC cohort is available to researchers

according to processes outlined at http://www.

bristol.ac.uk/alspac/researchers/access/ and is

http://orcid.org/0000-0003-1553-1392
http://orcid.org/0000-0002-0135-7242
http://orcid.org/0000-0001-5741-9812
https://doi.org/10.1371/journal.pgen.1008790
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1008790&domain=pdf&date_stamp=2020-06-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1008790&domain=pdf&date_stamp=2020-06-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1008790&domain=pdf&date_stamp=2020-06-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1008790&domain=pdf&date_stamp=2020-06-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1008790&domain=pdf&date_stamp=2020-06-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1008790&domain=pdf&date_stamp=2020-06-11
https://doi.org/10.1371/journal.pgen.1008790
https://doi.org/10.1371/journal.pgen.1008790
https://doi.org/10.1371/journal.pgen.1008790
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.bristol.ac.uk/alspac/researchers/access/
http://www.bristol.ac.uk/alspac/researchers/access/


GWASs and is predictive of BMI in adults and children. However, it remains unclear

whether EBF can attenuate the increase in BMI attributed to the GRS in children. Our

study was able to characterize the effect of the GRS in children from birth to 18 years of

age. Our main results showed that EBF to 5 months has substantial effect in decreasing

BMI among children at higher genetic risks. EBF to 3 months or non-exclusive breastfeed-

ing had a significantly diminished effect on reducing BMI growth during childhood. Our

study suggests that interventions aimed at reducing the risks of overweight and obesity

across the lifespan should start in very early childhood to be impactful, which makes EBF

a key candidate intervention. While EBF is beneficial to all children, targeting those carry-

ing multiple BMI/obesity alleles should be a priority to reduce obesity and associated non-

communicable diseases.

Introduction

Previous research has clearly established a link between early environments (prenatal and post-

natal), genetic and behavioral factors on the developmental origins of health and disease

(DOHaD) [1]. Among environmental factors, breastfeeding has been advocated in the preven-

tion of overweight/obesity among children. The WHO suggests breastfeeding is the “perfect

food for the newborn” and recommends all infants be exclusively breastfed up to 6 months of

age, with continued breastfeeding along with appropriate complementary foods up to two

years of age or beyond [2]. Importantly, there is growing evidence that breastfeeding may

reduce the risk of being overweight [3]. A large meta-analysis from WHO showed that the

odds of being obese among children who never breastfed or breastfed for less than 6 months

vs. those who breastfed for at least 6 months were 1.22 (95% CI, 1.16 to1.28) for non-exclusive

breastfeeding and 1.25 (95% CI, 1.17 to1.36) for EBF [4]. Despite numerous observational

studies demonstrating the benefits of breastfeeding on a healthy infant growth, the biological

functions underlying this effect are still poorly understood. It also remains unclear whether the

beneficial effect of breastfeeding extends to children with higher genetic risks. Our previous

analysis of the ALSPAC child cohort suggested that a longer duration of EBF (i.e. at least 5

months) has significant preventive effect on BMI growth trajectories among children carrying

a genetic variant in the FTO gene [5]. Recently, a large GWAS based on 339,224 adult Cauca-

sians identified 97 genetic variants strongly associated with BMI and explaining about 2.7% of

BMI variability, which can be used to construct a GRS predictive of adult and children obesity-

related traits [6]. This 97-SNPs GRS has been found to be associated with BMI across all ages

in adults, with stronger associations in women than in men. This sex difference could reflect a

greater heritability of adult BMI in women than in men, as reported in twin studies, or that dif-

ferent sets of genes influence adult BMI in men and women [7–9]. In terms of effect size, a

10-allele increment in the weighted GRS increases BMI by 1.35 kg/m2 in women and 0.91 kg/

m2 in men, at 45 years of age [10]. In children, a similarly defined GRS was found associated

with BMI at adiposity peak and childhood BMI, where a one-allele increment in the GRS

increases BMI around 6 years of age by 0.112 kg/m2 [11]. This GRS explained about 1.5% of

child BMI variability at 6 years of age. Our previous work has shown that the effect of the GRS

on pediatric BMI starts in early childhood and continues through adulthood [12]. While

knowledge on the genetic architecture of adult and pediatric BMI is accumulating thanks to

large-scale GWAS results, the construction of obesity-specific GRSs is emerging as an impor-

tant approach for the personal and clinical management of individuals at risk of adverse out-

comes [13, 14]. It is therefore timely to consider the protective effect of EBF among children
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with elevated risk of overweight/obesity, where this risk is assessed by an obesity-specific GRS,

and thus to extend our previous results on the FTO genetic variant. Our goal in this paper is to

assess the effect of this GRS from infancy to the end of adolescence as well as the modulating

effect of EBF during this time period.

Methods

Ethics statement

Ethical approval for the study was obtained from the ALSPAC Law and Ethics committee and

our Local Research Ethics Board. Informed consent for the use of data collected via question-

naires and clinics was obtained from participants following the recommendations of the

ALSPAC Ethics and Law Committee at the time. Please note that the study website contains

details of all the data that are available through a fully searchable data dictionary and variable

search tool [15]. Patients or the public WERE NOT involved in the design, or conduct, or

reporting, or dissemination plan of our research.

Cohort information

Our discovery cohort is the Avon Longitudinal Study of Parents and Children (ALSPAC) [16,

17]. Pregnant women resident in Avon, UK with expected dates of delivery 1st April 1991 to 31st

December 1992 were invited to take part in the study. The core ALSPAC sample consists of

14,541 pregnancies. An additional 542 eligible pregnancies not in the core sample, who were

invited to participate at age 7 and for whom research data were available in November 2004, were

also included in our study. Overall, these 15,083 pregnancies resulted in 15,224 known fetuses.

For reasons of confidentiality data on the 13 triplet and quadruplet children were not available for

analysis. After removing children without anthropometric measures (height/length or weight,

n = 2,462), non-Caucasian children (n = 2,314), those without genotype data (n = 3,537) or with-

out exclusive breastfeeding (n = 857) or socio-economic information (n = 775), a total of 2,690

boys and 2,576 girls (N = 5,266) was available for our analyses. These children have been followed

for over two decades. The description of the cohort is given in Table 1.

Exclusive breastfeeding

Information pertaining to early infant feeding was collected. Mothers recorded the age at

which breastfeeding was stopped (in months), and the age at which supplementation with

milk other than breast milk was introduced (in months). This information was determined

from the mother’s diary of early feeding milestones, as well as from an interview with the study

nurse at the 6-month child follow-up and survey questions at the 15-month child follow-up.

The duration of EBF was defined as the provision of breastmilk only from the time of from

birth until the introduction of other milk (non-breast milk) or any solid. Different coding

strategies for EBF were assessed using either categorical or continuous variables. The most sig-

nificant effect of EBF was obtained under a continuous coding, which can be interpreted as a

dose-response relationship between BMI and EBF.

Genetic risk score

We used 69 SNPs associated with BMI at genome-wide significance in the Genetic Investiga-

tion of Anthropometric Traits (GIANT) consortium and that were recently included in a

gene-obesogenic interaction study [18] as well as 25 independent non-overlapping SNPs that

we previously studied in relation to pediatric BMI trajectories to create a GRS of 94 SNPs (S1

Table), which represents the genetic susceptibility to overweight and obesity [12]. The sex-
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specific GRSs were created using the imputed dosages for the 94 SNPs where each SNP was

recoded to represent the number of BMI-increasing alleles and was weighted using the sex-

specific weights derived from the GIANT consortium and UK BiobBank meta-analysis [19]

and available through the portal: https://portals.broadinstitute.org/collaboration/giant/index.

php/GIANT_consortium_data_files. GRS scores were then created for boys and girls sepa-

rately by scaling the sum of the weighted SNP effects (∑βi × SNPi, i = 1, . . ., 94) to a range of 0

to 10. With this transformation, a 1-unit (i.e. 1-decile) increase in the GRS corresponded to a

4.6-allele effect in boys and 5.2 allele-effect in girls.

Assessment of BMI and control variables

Birth length (crown-heel) was measured by ALSPAC staff who visited newborns soon after

birth (median 1 day, range 1–14 days), using a Harpenden Neonatometer (Holtain Ltd). Birth

Table 1. Summary statistics for individual level variables and BMI measurements by age in years. Chi-square or two-sample t-test was carried out to examine differ-

ences between boys and girls for individual level variables.

Individual-level variables BMI measurement by age

Boys Girls Age (year) Boys Boys

N = 2690 N = 2576 p-value N Mean(SD) N Mean(SD)

Categorical Variables N(%) N(%)

Mother’s Education Birth 2013 13.9(1.8) 1947 13.8(1.7)

CSE/none 313 (11.6%) 303 (11.8%) 0.734 1 716 18.0(1.4) 665 17.7(1.4)

Vocational 227 (8.4%) 193 (7.5%) 2 638 17.1(1.3) 591 16.8(1.4)

O Level 955 (35.5%) 904 (35.1%) 3 641 16.6(1.3) 601 16.5(1.5)

A Level 720 (26.8%) 711 (27.6%) 4 676 16.4(1.3) 634 16.3(1.6)

Degree 475 (17.7%) 465 (18.1%) 5 719 16.0(1.6) 682 16.0(1.7)

Mother’s pregnancy smoking status 6 1898 15.7(1.6) 1796 15.6(1.8)

Never 1493 (55.5%) 1450 (56.3%) 0.388 7 1361 16.1(1.9) 1286 16.3(2.1)

No during pregnancy 691 (25.7%) 679 (26.4%) 8 1819 16.4(2.0) 1790 16.7(2.2)

Yes during pregnancy 506 (18.8%) 447 (17.4%) 9 1074 17.0(2.3) 1044 17.4(2.5)

Mean family income per week 10 2917 17.6(2.8) 3006 17.9(2.9)

< £100 45 (1.7%) 48 (1.9%) 0.634 11 1338 18.1(3.0) 1281 18.4(3.1)

< £200 329 (12.2%) 309 (12.0%) 12 2044 18.9(3.3) 2119 19.2(3.3)

< £300 479 (17.8%) 473 (18.4%) 13 1675 19.4(3.4) 1750 20.0(3.4)

< £400 1038 (38.6%) 946 (36.7%) 14 1745 19.9(3.3) 1826 20.6(3.4)

� £400 799 (29.7%) 800 (31.1%) 15 1058 20.9(3.3) 1116 21.6(3.5)

16 449 21.1(3.3) 512 21.8(3.5)

Continuous Variables Mean (SD) Mean (SD) 17 226 22.2(3.5) 273 22.2(3.6)

Mother’s pre-pregnancy BMI 23.0 (3.8) 22.9 (3.8) 0.353 18 989 22.5(3.9) 1236 22.9(4.1)

Duration of EBF (month) a 1.6 (1.56) 1.7 (1.59) 0.004 19–20 67 22.5(3.3) 79 23.2(4.0)

Duration of BF (month) b 4.6 (4.71) 4.9 (4.66) 0.090

Gestational age (weeks) 39.5 (1.8) 39.6 (1.7) 0.006

GRS (Range 0–10)c 5.0 (1.3) 5.0 (1.3) 0.520

GRS (number of risk alleles)d 95.3 (6.7) 92.7 (7.1) <0.0001

(min, max) (73, 119) (68, 120)

a Duration of EBF (exclusive breastfeeding in months).
b Duration of BF (non-exclusive breastfeeding in months).
c GRS (genetic risk score, deciles) were derived for boys and girls separately.
d GRS in raw scales (number of risk alleles). 1-decile increase in the GRS corresponds to a 4.6-allele effect in boys and 5.2 allele-effect in girls.

https://doi.org/10.1371/journal.pgen.1008790.t001
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weight was extracted from medical records. From birth to five years, length and weight mea-

surements were extracted from health visitor records, which form part of standard childcare in

the UK. In this cohort we had up to four measurements taken on average at six weeks and at

10, 21, and 48 months of age. For a random 10% of the cohort, we also have length/height mea-

surements from eight research clinic visits, held between the ages of four months and five

years of age. From age seven years upwards, all children were invited to annual clinics. In addi-

tion, parent-reported child height and weight were also available from the questionnaires. BMI

was derived from height and weight measurements (mean 9 measurements per individual)

and calculated as the weight (in kg) divided by the square of height (in cm). The following con-

founding variables consistently associated with breastfeeding were controlled in the analysis:

gestational age (in months), maternal preconception BMI, education and smoking status, and

family income. The gestational age was calculated based on a variety of records including last

menstrual period, pediatric assessment, obstetric assessment and ultrasound assessment. Self-

reported maternal preconception BMI was collected from the "About Yourself" questionnaire

at 12 weeks of gestation. Maternal education status was obtained from the "Your Pregnancy"

questionnaire administered at 32-weeks of gestation and coded as: Certificate of Secondary

Education (CSE)/none; vocational; O level; A level and Degree. Maternal smoking status was

collected from the "Having a Baby" questionnaire at 18-week gestation and was coded as:

Never; Yes during pregnancy; Not during pregnancy. Family income was collected at the 33,

47, 85, 97, 134 months and 18 years follow-up visits and the mean weekly income was catego-

rized into one of five levels: less than £100, £100–£199, £200–£299, £300–£399, and £400 per

week or more. Gestational age and maternal preconception BMI were centered at the means

and analyzed as continuous variables. The levels with the largest proportions for categorical

variables were used as the reference groups in the analysis.

Statistical methods

Summary statistics were used to describe the sample characteristics for boys and girls. A

mixed-effects model approach with cubic splines of age (S1 Text) was used to fit the longitudi-

nal BMI data from the ALSPAC cohort from birth to 20 years of age in boys and girls sepa-

rately [20]. We examined three-way interactions between cubic splines of age, EBF and GRS.

Both backward elimination and stepwise variable selections were used to select the best model

and optimal spline knots. We calculated the predicted BMI trajectories (i.e., the population

average) up to age 18 years with GRS scores evaluated at the three quartiles 2.5, 5.0 and 7.5 for

zero and five months of EBF, respectively, to characterize the effect of GRS and EBF on BMI

trajectories. Hypothesis testing of GRS and EBF effect at specific ages was performed by using

the generalized linear hypothesis (GLM) approach (S1 Text) [21]. We also estimated the tim-

ing of adiposity peak (AP) and adiposity rebound (AR). The bootstrap method with 2,000 iter-

ations was used to test the effect of GRS and EBF on AR and AP [22]. Additionally, we

replaced the EBF variable with non-exclusive BF to examine if EBF had stronger effect than

any BF.

Statistical analyses were performed using the statistical software R 3.5.1. Statistical packages

in R include “nlme”, “effects”, “spida2” and “ggplot2”. All hypothesis tests were 2-sided and

the priori level of significance was set at 5%.

Missing data

Children with missing longitudinal BMI observations over time were included in our analyses

as long as they had at least one BMI observation available between birth and 20 years. The
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estimation from mixed-effects models remains valid in that situation assuming the longitudi-

nal observations are missing at random [20].

Results

Effect of the GRS on pediatric BMI growth trajectories

The GRS is associated with higher BMI with an increasing effect with age (Fig 1 and S2 Table).

A quartile (2.5 units) increment in the GRS increases BMI by 0.61 kg/m2 (95% CI, 0.47 to 0.75,

p<0.0001) at age 7 years and 1.98 kg/m2 (95% CI, 1.65 to 2.32, p<0.0001) at age 18 years

among boys. The corresponding effects in girls are 0.39 kg/m2 (95% CI, 0.24 to 0.55,

p<0.0001) and 0.75 kg/m2 (95% CI, 0.40 to 1.09, p<0.0001). These effects become significant

from 5 years of age.

Effect of GRS on the timing of adiposity peak (AP) and adiposity rebound

(AR)

The GRS had no significant effect on the age at AP but was negatively associated with the age

at AR among boys and girls, where a higher level of GRS corresponds to earlier age at AR (S3

Table). For instance, a GRS score of 5.0 vs. 2.5 (median vs. 1st quartile) advances the age at AR

by 0.36 years (95% CI, 0.37 to 0.46, p<0.0001) and a GRS score of 7.5 vs. 2.5 (inter-quartile dif-

ference) by 0.65 years (95% CI, 0.49 to 0.80, p<0.0001) in boys. These effects in girls are 0.31

year (95% CI, 0.21 to 0.41, p<0.0001) and 0.57 year (95% CI, 0.39 to 0.741, p<0.0001),

respectively.

Effect of EBF on child longitudinal BMI by GRS levels

Our results indicate a significant 3-way interaction between age, GRS and EBF (or BF) in boys

and girls (S4 Table). EBF has a stronger protective effect as the children become older and the

Fig 1. Marginal effect of 2.5 units increase in GRS on pediatric BMI from birth to 18 years of age for boys and girls.

https://doi.org/10.1371/journal.pgen.1008790.g001
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effect is greater with increasing GRS (Fig 2, S5 Table). In boys, at the first quartile of GRS

(GRS = 2.5), five-month EBF decreases BMI by 0.21 kg/m2 (p = 0.19) at 7 years and 0.81 kg/m2

(95% CI, 0.05 to 1.57, p = 0.0362) at 18 years. At the median GRS level (GRS = 5.0), this BMI

decrease is 0.12 kg/m2 (p = 0.32) and 0.98 kg/m2 (95% CI, 0.40 to 1.56, p = 0.001). At the third

quartile of GRS (GRS = 7.5), this decrease reaches 0.03 kg/m2 (p = 0.85) and 1.14 kg/m2 (95%

CI, 0.37 to 1.91, p = 0.0037), respectively. In girls, five-month EBF decreases BMI by 0.38 kg/

m2 (95% CI, 0.04 to 0.72, p = 0.0272) at 7 years and 0.86 kg/m2 (95% CI, 0.11 to 1.62,

p = 0.0252) at 18 years at the first GRS quartile. This decrease reaches 0.50 kg/m2 (95% CI, 0.24

to 0.76, p = 0.0002) and 1.20 kg/m2 (95% CI, 0.62 to 1.77, p<0.0001) at the median GRS level,

0.62 kg/m2 (95% CI, 0.28 to 0.96, p = 0.0003) and 1.53 kg/m2 (95% CI, 0.76 to 2.29, p<0.0001)

at the third quartile GRS level for age 7 and 18 respectively.

Effect of 5 months EBF on timing of AP and AR by GRS levels

EBF to 5 months delays the age of AP significantly in boys with the average/high levels of GRS:

0.21 year (95% CI, 0.05 to 0.36, p = 0.0076) and 0.25 year (95% CI, 0.05 to 0.42, p = 0.0136) for

GRS level of 5.0 and 7.5, respectively (S6 Table). A shorter delay in the age at AP was observed

Fig 2. Effect of 5 months of exclusive breastfeeding (EBF) and non-exclusive breastfeeding (BF) on BMI measurements at 7, 10 15 and 18 years of age for GRS

scores evaluated at 2.5, 5.0 and 7.5.

https://doi.org/10.1371/journal.pgen.1008790.g002
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in girls, i.e. 0.14 year (95% CI, 0.04 to 0.24, p = 0.0063) and 0.24 year (95% CI, 0.09 to 0.38,

p = 0.0011), respectively. A duration of 5 months of EBF delays also the age at AR significantly

in girls all levels of GRS, i.e. 0.64 years (95% CI, 0.15 to 1.16, p = 0.0114), 0.53 years (95% CI,

0.20 to 0.86, p = 0.0015), and 0.44 (95% CI, 0.05 to 0.85, p = 0.0278) for GRS of 2.5, 5.0 and 7.5,

respectively. It delays also the age at AR in boys but to a lesser extent and not significantly.

Effect of non-exclusive BF on pediatric BMI growth trajectories

The effect of non-exclusive BF had less impact on BMI growth trajectories at different ages

compared to the effect of EBF (Fig 3, S5 Table). For instance, at 18 years, the reduction of BMI

associated with 5 months of non-exclusive BF varied in boys from 0.31 (95% CI, 0.05 to 0.56,

p = 0.0172) to 0.37 (95% CI, 0.12 to 0.63, p = 0.0042) between the first and third GRS quartiles,

and from 0.34 (95% CI, 0.09 to 0.60, p = 0.0075) to 0.54 (95% CI, 0.27 to 0.81, p<0.0001) in

girls.

Dose-response relationship of EBF duration on pediatric BMI

As expected, a duration of EBF for 3 months had significantly less impact in decreasing BMI

than 5 months of EBF (S7 Table, S1 Fig), and BF 3 month and 5 months had less effect com-

pared to EXBF. At 18 years, the range of variation was -0.49 kg/m2 to -0.68 kg/m2 in boys and

from -0.52 kg/m2 to -0.92 kg/m2 in girls, respectively, across the GRS categories (Fig 4). A

duration of 3-months EBF also had a decreased influence on delaying the age of AP and AR

compared to a 5-months duration (S6 Table). This is an important result since rapid weight

gain during infancy is known to predispose to later onset of overweight and obesity during

adulthood.

Discussion

Our study demonstrates the role of the duration and exclusivity of breastfeeding in reducing

BMI increases during childhood and adolescence resulting from adverse genetic effects. In the

high genetic susceptible group (upper GRS quartile), EBF to 5 months reduces BMI by 1.14

kg/m2 (95% CI, 0.37 to 1.91, p = 0.0037) in 18-year-old boys, which compensates a 3.9-decile

GRS increase. In 18-year-old girls, EBF to 5 months decreases BMI by 1.53 kg/m2 (95% CI,

0.76 to 2.29, p<0.0001), which compensates a 7.0-decile GRS increase. EBF acts early in life by

delaying the age at AP and at AR. Importantly, EBF to 3 months and non-exclusive breastfeed-

ing to 5 months had a significantly less effect on BMI clearly demonstrating a strong dosage

effect of continued EBF. These results reiterate the importance of EBF to 6 months as recom-

mended by WHO.

The role of the obesity-specific GRS has been recently studied in children and adolescents

[10–13, 23–28] and recent evidence suggests a continuum of risks starting from early child-

hood [12] and rising up to the mid 40s [10]. Our study confirms this trend and helps better

characterize the GRS effect during childhood, showing a clear increasing trend from early

infancy to late adolescence/early adulthood in boys and girls. Our results also shed light into

the critical role of EBF in early development by showing how it delays the age at AP and AR

and brings new insights by emphasizing that its effect in the high-susceptible genetic group is

more substantial right after the timing of AR. During this developmental period, BMI is a

strong predictor of later overweight/obesity development [29–31].

Recent efforts have demonstrated the clinical utility of the GRS in predicting overweight

and obesity risks [13, 14]. A recent paper using an extended version of the GRS based on 2.1

million genetic variants, stressed the greatly increased risk of severe obesity among individuals

in the top decile of the GRS. For instance, 15.6% of individuals in the top decile of GRS went
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Fig 3. Predicted BMI growth trajectories for ALSPAC boys and girls from birth to age 18 years for GRS = 2.5 and 7.5, and (a) EBF = 0 or 5 months, and (b)

BF = 0 or 5 months.

https://doi.org/10.1371/journal.pgen.1008790.g003
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Fig 4. Effect sizes of GRS on BMI and attenuation effects of 3 and 5 months of non-exclusive breastfeeding (BF) and exclusive breastfeeding (EBF) among

ALSPAC boys and girls at 7, 10, 15 and 18 years. In each sub-figure are represented the GRS effect on BMI (first 2 bars from the left) and the attenuation effect of

3-months BF (second 2 bars from the left), 5-months BF (third 2 bars from the left), 3-months EBF (second 2 bars from the right) and 5-months EBF (last 2 bars from

the right).

https://doi.org/10.1371/journal.pgen.1008790.g004
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on to develop severe obesity compared with 5.6% of those in deciles 2–9 and 1.3% in the lowest

decile [13]. This top decile of the population had also a 4.2, 6.6 and 14.4-fold increased risk of a

high BMI of 40, 50 and 60 compared to the rest of the population and also had increased risks

of cardiometabolic diseases and overall mortality. Targeting this 10% decile population might

therefore offer a cost-efficient strategy to reduce obesity-related morbidity, although this

would need to be thoroughly evaluated. These authors also stressed the importance of early

intervention, acknowledging that “given that the weight trajectories of individuals in different

GRS deciles start to diverge in early childhood, such interventions may have maximal effect

when employed early in life.” As noted also in Torkamani et. al. [14], a targeted intervention

might help “clarifying a high-risk individual’s perception of their susceptibility to disease and

quantifying the benefits of healthy behaviors could be an effective tool to induce and maintain

behavioral changes”.

Our study suffers from a number of limitations. Due to the relatively short duration of EBF

in ALSPAC, we were not able to assess the effect of more than 5 months of EBF on pediatric

BMI trajectories. Our GRS definition was based on 94 SNPs including 69 SNPs from Locke et.

al., 2015 [6]. As large meta-GWASs on BMI and obesity-related traits are fast developing, some

extended definitions of GRSs are emerging such as Yengo et.al. 2018 [19] and Khera et.al, 2019

[13]. However, the correlation between BMI and GRS in the Health and Retirement Study par-

ticipants derived from Locke at.al., 2015 is near identical to the correlation between the BMI

and GRS derived from Yengo et.al., 2018 (r = 0.22) [32]. We are planning to generalize our

study to these new GRS definitions in the near future. Also, our GRS definition is mainly based

on SNPs found associated with BMI in adults and could be extended to include genetic variants

more specific to children, taking advantage on recent GWAS discoveries [33–35].

Clinically, from a public health perspective, the promotion of EBF could play a pivotal role

in the programming of healthy life trajectories since breast milk is the first postnatal nutri-

tional environment of all mammals and is now widely recognized as essential for optimal

infant growth and development [36]. There is now widespread acceptance that the health ben-

efits of breastfeeding continue well into the early childhood and beyond. The benefits for

women have also been highlighted [37]. The 2016 Lancet Breastfeeding Series quantified the

impact of these health and development benefits on healthcare costs and economic growth

reporting that increases in breastfeeding rates could save US$400 million in health care costs

in the US, UK, Brazil and China alone and inject US$300 billion into economies from more a

productive workforce [38]. Despite these enormous benefits, only 40%, or two out of every

five, infants globally are exclusively breastfed to 6 months postpartum as recommended. Suc-

cessful breastfeeding programs directed at women are thus needed to achieve a longer duration

of exclusive breastfeeding which, according to our findings, should be an important part of a

comprehensive overweight or obesity prevention program to promote healthy growth trajecto-

ries during infancy that continue later in life.

While the benefits of breastfeeding on a healthy infant growth are well demonstrated, the

biological functions underlying this effect are still poorly understood. The protective effect of

breastfeeding could stem from its micronutrients and bioactive composition. Another hypoth-

esis suggests the lower protein content of human milk compared with formula milk as the

source of this protective effect [39]. Understanding the biological mechanisms underlying the

beneficial effect of breastfeeding on healthy growth warrants further investigations.
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