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ABSTRACT Genome-wide association studies have thus far failed to explain the observed heritability of complex human diseases. This
is referred to as the “missing heritability” problem. However, these analyses have usually neglected to consider a role for epigenetic
variation, which has been associated with many human diseases. We extend models of epigenetic inheritance to investigate whether
environment-sensitive epigenetic modifications of DNA might explain observed patterns of familial aggregation. We find that variation
in epigenetic state and environmental state can result in highly heritable phenotypes through a combination of epigenetic and
environmental inheritance. These two inheritance processes together can produce familial covariances significantly higher than those
predicted by models of purely epigenetic inheritance and similar to those expected from genetic effects. The results suggest that
epigenetic variation, inherited both directly and through shared environmental effects, may make a key contribution to the missing
heritability.

THE challenges of identifying the common or rare genes
that contribute to the transmission of heritable human

diseases and other complex phenotypes have been discussed
for some time (Moran 1973; Layzer 1974; Feldman and
Lewontin 1975; Kamin and Goldberger 2002). Large-scale
single-nucleotide polymorphism (SNP) genotyping was
hoped to reveal DNA variants that would explain much of
the variance in complex phenotypes. So far, however, only
a small amount of the heritable variation in most phenotypes
can be explained by common genomic variants (Goldstein
2009). This problem is often referred to as the “missing her-
itability” problem. A potential explanation is that the ob-
served heritability reflects not only Mendelian inheritance,
but also inheritance of epigenetic or environmental states
(Maher 2008; Eichler et al. 2010; Petronis 2010).

The term epigenetics has been defined in various ways
(Waddington 1957; Bird 2007; Bossdorf et al. 2008). We
consider as epigenetic any contribution to the phenotype
through modification of the chromatin that does not involve

a change in DNA sequence. Such modifications include
methylation of cytosine nucleotides at CpG sites and histone
protein modification. Such epigenetic modifications may be
transmissible across generations or arise de novo each gen-
eration; the heritability of chromatin modifications is ex-
tremely variable among organisms (reviews of evidence in
mammals in Jablonka and Lamb 1989; Rakyan et al. 2001;
Rakyan and Beck 2006; Jablonka and Raz 2009; and in
plants in Jablonka and Lamb 1989; Martienssen and Colot
2001; Henderson and Jacobsen 2007; Jablonka and Raz
2009). Particular epigenetic states are associated with a
number of human diseases, including some cancers, Angel-
man’s syndrome, Prader–Willi syndrome, and Beckwith–
Wiedemann syndrome (Egger et al. 2004; Jiang et al.
2004; Feinberg 2007; Hirst and Marra 2009), as well as
psychiatric disorders such as schizophrenia, depression,
and Rett syndrome (Abdolmaleky et al. 2005; Tsankova
et al. 2007).

Culture and environment can also affect phenotypes and
cause them to aggregate in families. The disease Kuru,
endemic to the Fore tribe of Papua New Guinea, is trans-
mitted through ingestion of a prion during a funeral ritual in
which individuals consume dead relatives or close acquain-
tances (Gajdusek et al. 1966; Lindenbaum 2008). Despite
this purely cultural transmission, the high disease correla-
tion between relatives originally led researchers to believe
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that Kuru was a genetic disorder (Harper 1977; Cavalli-
Sforza and Feldman 1981).

Diseases and other phenotypes may also exhibit complex
inheritance when epigenetic states are environment sensi-
tive. In mice, a mother’s grooming and licking of an off-
spring can induce epigenetic changes in the offspring,
causing a modified stress response when the offspring reach
adulthood (Weaver et al. 2004; Meaney and Szyf 2005;
Weaver et al. 2006). The mechanisms governing this system
have been reviewed by Weaver (2007). Maternal diet in
mice can affect offspring phenotype by increasing methyla-
tion rates (Wolff et al. 1998; Cooney et al. 2002; Waterland
and Jirtle 2003, 2004; Cropley et al. 2006; Waterland et al.
2006; Lillycrop et al. 2007) or modifying histones (Lillycrop
et al. 2007; Sandovici et al. 2011). Silencing the expression
of a DNA methyltransferase, Dnmt3, in honeybees induces
developmental changes similar to those induced by feeding
larvae a diet of royal jelly, suggesting that the diet of honey-
bees controls rates of epigenetic modification, which ulti-
mately regulates larval development (Kucharski et al.
2008; Elango et al. 2009); the epigenetic modifications are
associated with patterns of alternative splicing (Lyko et al.
2010). Recently, evidence for environment-sensitive rates of
methylation has been found in humans (Heijmans et al.
2008; Katari et al. 2009; Waterland et al. 2010). Other
examples of environmental effects on epigenetic state are
reviewed by Jirtle and Skinner (2007).

The dependence of phenotypic heritability on heritable
epigenetic or environmental factors has been subject to
theoretical investigations. Slatkin (2009) showed that the
epigenetic contribution to the resemblance among siblings
for a disease depends on how likely the epigenetic states are
to be induced or reset between generations. With little in-
tergenerational memory, the state may contribute greatly to
disease risk, but little to recurrence risk ratio between sib-
lings. Only when the epiallele is likely to be retained across
generations is it able to contribute significantly to recurrence
risk ratio.

In the framework of cultural evolution, several models
have addressed the role of a heritable environmental state on
phenotypic resemblance between relatives. For a culturally
transmitted phenotype, familial correlations depend strongly
on the parameters governing transmission (Cavalli-Sforza
and Feldman 1973, 1981; Feldman and Cavalli-Sforza
1979; Feldman et al. 1995, 2000; Otto et al. 1995). Similar
to the results found by Slatkin (2009), these studies showed
that more faithful transmission of a cultural trait led to
higher correlations between relatives. Tal et al. (2010) echo
these results, focusing on a statistical model of nongenetic
heritable contributions to phenotypic variance and covari-
ance between relatives. Both Feldman et al. (1995) and
Tal et al. (2010) suggest that different ways of estimating
heritability can produce very different estimates, because
the familial correlations are functions not only of genetic
relatedness, but also of the correlations in cultural, environ-
mental, and epigenetic states. For example, sibling pheno-

typic correlation may be lower than parent–offspring
correlation for some models of cultural transmission. Prog-
ress has been made toward a framework for understanding
heritability when there is inheritance of nongenetic traits,
but to date models remain very general with respect to the
epigenetic processes of inheritance and the epigenetic
effects on phenotype (Bonduriansky and Day 2009; Danchin
and Wagner 2010; Danchin et al. 2011; Day and Bondur-
iansky 2011). Recent work by Day and Bonduriansky (2011)
offers a general framework to explore many types of non-
genetic inheritance and their interaction with genetic inher-
itance. Examining epigenetic inheritance as one form of
nongenetic inheritance, Day and Bonduriansky (2011) pres-
ent a model similar to that of Tal et al. (2010) and Slatkin
(2009), demonstrating that the interaction of several forms
of inheritance (there epigenetic and genetic) can lead to
surprisingly complex evolutionary dynamics.

Little theoretical work has investigated the interaction
between epigenetic and environmental effects on heritabil-
ity when both epigenetic and environmental states are
heritable. Here we present a model in which the rates of
epigenetic change depend on the environment experienced
by the individual. Correlation between the environmental
state of an individual and those of its parents will thus
generate correlation between the epigenetic states of
parents and offspring—modeled, for example, as no meth-
ylation (0) or methylation (1) of a cytosine at a particular
autosomal CpG site (Figure 1). Therefore, a disease whose
risk depends solely on nonheritable epigenetic states may
have high heritability due to the effects of a heritable envi-
ronment. Many epigenetic modifications are reset during
gametogenesis and early development, a few are inherited,
and, during the development of an individual, new modifi-
cations may occur. The heritability of a disease thus depends
in general on the transmission of environmental states and
epigenetic states and their interaction.

We assume that individuals may experience one of two
distinct environmental states, which could reflect the
presence or absence of a cultural interaction (such as
maternal grooming of offspring), a particular diet, or even
a geographical or social position. The environments allow
population stratification such that individuals may prefer-
entially find their partners in the environment where they
develop. This is modeled by assortative mating with respect
to environment, which is equivalent to a simple geograph-
ically structured population. An individual’s phenotype is
envisioned as healthy or sick for a disease occurring in adult-
hood and is influenced by the environment and epigenotype
of the individual.

Adult epigenotypes at the studied genomic site are
determined by two processes: (1) the persistence of epige-
netic states of their parents in zygotes and (2) the sub-
sequent modification of these states during individual
development (Figure 2). The transmission of disease risk,
however, involves correlation between parents and off-
spring, and we therefore merge the two processes into one
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describing the total apparent transmission of epigenetic
state between generations. This process is governed by
two rates of epimutation: change from state 0 in parent to
state 1 in offspring (m0/1) and vice versa (m1/0). Although
we frame our model in terms of disease risk as influenced by
methylation, it may also be applied to other phenotypes and
other epigenetic modifications, such as no acetylation (0) or
acetylation (1) of a histone at a particular genomic site.

We do not include genetic contributions to disease risk,
and we assume that the epigenetic variation in question is
independent of any genetic variation in the population.
While this is not always the case, many studies demonstrate
that epigenetic variation may be independent of genetic
variation (Cubas et al. 1999; Cervera et al. 2002; Riddle and
Richards 2002; Keyte et al. 2006; Shindo et al. 2006; Vaughn
et al. 2007; Verhoeven et al. 2010; Herrera and Bazaga
2011). We also disregard the possibility of direct environmen-
tal influence on disease risk. Although we recognize that both
genetic and direct environmental contributions are relevant
in discussions of heritability, we choose to focus on the in-
teraction between environmental and epigenetic inheritance.

We find that the heritability of a disease can vary greatly
depending on rates of transmission of the epigenetic and
environmental states and that environment-sensitive rates of
epigenetic modification may produce very high heritabilities.

These results suggest that epigenetic inheritance may contribute
significantly to the heritability of diseases, in particular where
rates of epigenetic modification are environment dependent.

Model

We consider one autosomal epigenetic locus with two
epigenetic alleles (0 and 1) in diploid individuals experi-
encing one of two distinct environmental states, labeled
x and y. We assume the population is infinite, with nonover-
lapping generations, and monitor the life cycle from one
adult generation to the next adult generation through the
processes of reproduction, transmission of environmental
state, and transmission and modification of epigenotype.
The variables fu,ij represent the proportion of adult individuals
in the adult population that have epigenotype ij and live in
environment u (with i, j 2 {0, 1}, u 2 {x, y}). We assume that
the epigenetic development of a zygote does not depend on
the parental origin of the alleles; that is, epigenotype 01 is
identical to epigenotype 10, so fu,01 = fu,10. This is not typ-
ically the case for genomic imprinting, but may be a reason-
able simplifying assumption for environment-sensitive
epigenetics. The proportion of adults living in environmen-
tal state u is therefore fu = fu,00 + 2fu,01 + fu,11. The fre-
quency of epiallele 0 within environment u is pu,0 = (fu,00 +
fu,01)/fu, and pu,1 = 1 2 pu,0. The frequency of epiallele i in
the entire population is pi = fxpx,i + fypy,i.

Figure 1 Apparent epigenetic inheritance for fully reset epigenetic states.
Shown is comparison of the epigenetic states in adults and their adult
offspring at an epigenetic locus that is reset during gametogenesis. Parent–
offspring resemblance is high when both individuals have developed in the
same environment.

Figure 2 Apparent epigenetic inheritance with incompletely reset epige-
netic states. The epigenotypes of the zygotes reflect the extent of paren-
tal epigenetic modification; this transmission of epigenetic state produces
parent–offspring resemblance in both environments.
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Reproduction and transmission

Adults are assumed to mate assortatively with respect to
environmental state, but randomly with respect to epigeno-
type. The degree of environmental assortative mating is
represented by m, with a fraction 1 2 m of the population
mating randomly and a fraction m mating only with individ-
uals in the same environmental state. The probability of a
u · v mating (Muv) is thus given by

Muv ¼
�
ð12mÞ f2u þm  fu if   u ¼ v
ð12mÞ fufv if   u 6¼ v

ðu; v 2 fx; ygÞ:

The parameter m is equal to the correlation in environmen-
tal state between the two parents. The assumption of un-
altered transmission of the epialleles to the offspring entails
that a mating between an individual in environment u and
one in environment v produces an offspring of epigenotype ij
with probability Vuv;ij ¼ 1

2ðpu;ipv;j þ pv;ipu;jÞ. The form of Vuv,ij

reflects that it does not matter which allele was supplied by
the parent in a particular environmental state.

The environmental state of an offspring depends on the
environmental states of both its parents, independent of
their sex. The proportion of offspring from a u · u mating
that end up in environmental state v 6¼ u is described by the
parameter eu, while the remaining 1 2 eu stay in the paren-
tal environment. The proportion of offspring from an x · y
mating that experience environmental state x is (1 2 ex)
(1 2 a) + eya and the proportion ending up in environmen-
tal state y is ex(1 2 a) + (1 2 ey)a. The transmission of the
environmental state is thus described by the parameters
ex, ey, and a (with eu 2 [0, 0.5], a 2 [0, 1]), where 1 2 eu
represents the fidelity of transmission of the parental envi-
ronmental state u (u 2 {x, y}), and 1 2 a is a measure of the
dominance of environment x for offspring of x · y matings
expressed as a bias toward the transmission patterns of an
offspring from an x · x mating. No bias exists when a = 0.5,
and the distribution of offspring environments mimics that
from an x · x mating or a y · y mating when a = 0 or a = 1,
respectively.

Immediately after environmental inheritance, the off-
spring are considered juveniles, and the proportion of
individuals in the juvenile population that have epigenotype
ij and live in environmental state u is denoted by ~f u;ij,
namely

~f x;ij ¼ MxxVxx;ijð12 exÞ þ 2MxyVxy;ij
�ð12 exÞð12 aÞ þ eya

�
þ  MyyVyy;ijey

~f y;ij ¼ MxxVxx;ijex þ 2MxyVxy;ij
�
exð12 aÞ þ �

12 ey
�
a
�

þ  MyyVyy;ij
�
12 ey

�
:

Epigenetic modification

Epigenetic modifications are simplified by assuming conser-
vative inheritance of the parental epigenetic states and

collecting their modifications into processes that occur duing
an individual’s maturation from juvenile to adult. During an
individual’s maturation from juvenile to adult in environ-
ment u, the probability of change from epigenetic state
0 to state 1 of an allele is mu,0/1, and mu,1/0 is the proba-
bility of change from state 1 to state 0. The probabilities of
an epiallele 0 or 1 remaining unchanged are mu,0/0 = 1 2
mu,0/1 and mu,1/1 = 12 mu,1/0, respectively. We use the
term epimutation rates for mu,0/1 and mu,1/0, but stress
that they describe the combined effects of reset parental
states and de novo modifications occurring in the offspring.
After epimutation the adult frequencies of the epigenotypes
and environmental states in the next generation, denoted by
f9u,ij, are given in terms of the juvenile offspring frequencies
~f u;ij as

f 9u;00 ¼ m2
u;0/0

~f u;00 þ 2mu;0/0mu;1/0
~f u;01 þ m2

u;1/0
~f u;11

f 9u;01 ¼ mu;0/1mu;0/0
~f u;00 þ

h
mu;0/0mu;1/1 þ mu;0/1mu;1/0

i
~f u;01

þ  mu;1/0mu;1/1
~f u;11

f 9u;11 ¼ m2
u;0/1

~f u;00 þ 2mu;0/1mu;1/1
~f u;01 þ m2

u;1/1
~f u;11: (1)

Substitution of the expressions for ~f u;ij into these equations
produces the full recursion system in the adult frequencies
of epigenotypes and environmental states (given in the
Appendix).

Disease risk

The probability that an adult individual with epigenotype ij
develops disease in environment u is given as au,ij. For the
sake of clarity, we specify the effects of epigenotype as devi-
ations from the disease risk a associated with epigenotype
00, and we disregard direct effects of the environment. In
general, a 2 [0, 1],

au;00 ¼ a; au;01 ¼ au;10 ¼ aþ rd; au;11 ¼ aþ d;

with u 2 {x, y}. The parameters d and r describe the effect of
epigenetic state on disease risk, where d 2 [0, 1 2 a] rep-
resents the additive effect on disease risk of the epigenotype
11 with the effect of epiallele 0 set to zero, and r 2 [0, 1]
represents the degree of dominance of the epiallele with
respect to the disease phenotype. The disease risks are ad-
ditive when r ¼ 1

2.

Results

The proportion fx of individuals within environment x al-
ways approaches a unique equilibrium f̂ x as the evolution
progresses (proved in supporting information, File S1, sec-
tion S1). Numerical iteration of the recursion equations,
using the R programming language, allows us to monitor
the evolution of the frequencies fu,ij. Iterations using a grid
of parameters and initial conditions suggest that, for any
parameter values, the frequencies fu,ij will converge for all
initial conditions to a unique equilibrium denoted by the
frequencies f̂ u;ij. We study the inheritance of the disease
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when the population is at equilibrium and discuss it in terms
of the estimated heritability for parent–offspring pairs.

Heritability

From the equilibrium values of the frequencies and the
parameters of the model, the disease prevalence K in the
population is

K ¼
X
u

X
ij

au;ij f̂ u;ij;

the population variance in the disease phenotype in the
parental generation is VD = K(12 K), and the parent–offspring
covariance in disease state is denoted by WD (see Appendix).
These generate an estimate of the narrow sense heritability
of the disease, namely

h2 ¼ 2WD

VD

(Falconer and Mackay 1996). An alternative measure of
familial aggregation, recurrence risk ratio, is analyzed and
discussed in File S1, section S5, Figure S2, and Figure S3.

We examine two simple cases with the disease risk
parameters a = 0.1, r = 0.5, and d = 0.4. These correspond
to a relatively common disease and a high risk epiallele,
although the qualitative results discussed also hold for
a range of values of a, r, and d. The environmental trans-
mission is symmetric, with bias parameter a = 0.5 and ex =
ey = e. A bias a away from 0.5 or unequal values of ex and ey
produce qualitatively similar results, with generally lower
heritability as the bias or asymmetry increases. We examine
three values of e and two values of environmental assort-
ment m across of a range of values for mx,0/1 and my,0/1.

Case 1: Environmental and epigenetic transmission: Here
half of the transmitted methylations are reset each gener-
ation, i.e., mx,1/0 = my,1/0 = 0.5, and we explore a range of
values for mx,0/1 and my,0/1.

Figure 3 illustrates the heritability values resulting from
this case. Each of the panels shows the variation of the
estimated heritability of the disease phenotype with respect
to variation in the epimutation rates mx,0/1 and my,0/1,
with the two columns of panels distinguishing m = 0 and
0.5, and the three rows distinguishing e = 0.01, 0.1, and
0.5. The colors in each panel represent the estimated heri-
tability of the disease. The diagonal values (where mx,0/1 =
my,0/1) within each panel correspond to the single-environ-
ment model of epigenetic change discussed by Slatkin
(2009). We note that as long as there is any positive corre-
lation between the environments of parents and offspring
(that is, e , 0.5), the highest heritability values are not
along that diagonal, but occur when mx,0/1 is very high
and my,0/1 is very low or vice versa. The contours overlaid
on these panels indicate curves of equal disease prevalence
K. Interestingly, except in the case where the environmental
states of parents and offspring have no correlation (e= 0.5),

each contour of equal prevalence achieves a minimum her-
itability value when mx,0/1 = my,0/1 and a maximum when
mx,0/1 and my,0/1 are as different as possible. This demon-
strates that the heritability patterns are not simply due to
the effects of the parameters on disease prevalence. The
absolute heritability values are not interesting, because
these depend on the magnitudes of a and d, and the pre-
sented patterns are consistent across a range of values of a
and d. Heritability values can be negative because parent–
offspring correlations can be negative when parent and off-
spring are likely to have different epigenotypes at the dy-
namic equilibrium.

With assortative mating (m . 0), or very faithful tran-
smission of environmental state from parents to offspring
(e > 0.5), the magnitude of heritability is generally higher,
especially when the epimutation rates are very different in
the two environments. In the extreme case wherem= 0 and
e = 0.5, heritability is a function only of disease prevalence
(Figure 3, bottom left).

Case 2: Environmental transmission but no epigenetic
transmission: Here epigenetic modifications are not trans-
mitted to offspring (Figure 1); i.e., the likelihood of an allele
being in epigenetic state 0 or 1 in an offspring does not
depend on its state in the parent. This corresponds to
mu,0/1 = mu,1/1 (where u 2 {x, y}). Because mu,1/0 +
mu,1/1 = 1, this case is also equivalent to mu,0/1 = 1 2
mu,1/0.

With these parameters the equilibrium can be found in
a simple form (see File S1, section S2), giving the equilib-
rium parent–offspring disease covariance

WD ¼ d2
�
mx;0/12my;0/1

�2h
2rþ ð122rÞðmx;0/1 þ my;0/1Þ

i2
WE;

whereWE is the covariance between the environmental state
of a parent and its offspring. The prevalence is

K ¼ f̂ xd
�
mx;0/1 2my;0/1

�h
2rþ ð122rÞ

�
mx;0/1 þ my;0/1

�i

þ  
h
aþ d

�
2rmy;0/1 þ ð122rÞm2

y;0/1

�i
;

and the variance in disease phenotype is VD = K(1 2 K).
Figure 4 illustrates the variation in heritability in the

same way as Figure 3. Again, the heritability of the disease
is highest when mx,0/1 and my,0/1 are very different (one is
close to 0 and the other is close to 1). However, we do not
see an increase in heritability in the region where mx,0/1

and my,0/1 are both small. The reason is the antisymmetry
assumption in epimutation rates, that is, when mu,0/1 is
small, mu,1/0 is large (for u 2{x, y}), and low values of
mu,0/1 do not correspond to faithful transmission of epi-
genetic state from parent to offspring. When e = 0.5, the
parent–offspring covariance in environmental state is 0,
resulting in a heritability of 0.

Comparing different values of the environmental trans-
mission parameters, we see similar patterns to those of case
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1, with greater assortative mating and more faithful trans-
mission producing higher heritability and a more pro-
nounced pattern of increased heritability when the
epimutation rates are very different between environments.

Comparing cases: A short discussion of the relationship
between the two cases analyzed is presented in File S1,
section S3, and Figure S1.

Comparing with a genetic locus

Our model disregards genetic contributions to phenotype.
Similar disease parameters may, however, be used to
compare the heritability contributed by a genetic locus to
the heritability contributed by an epigenetic locus; i.e., the
three genotypes 00, 01, and 11 carry the three risk param-
eters a00 = a, a01 = a + rd, and a11 = a + d. When a =
0.01, d= 0.5, and r= 0.5, a high-risk allele at a frequency of
p1 = 0.05 yields a disease heritability of 0.176 (see File S1,

section S4), with a prevalence of 0.035 in the population.
The same disease parameters in the epigenetic model with
mx,1/0 = my,1/0 = 0.5 produce a heritability of 0.086 with
the same prevalence, when e = 0.1, m = 0, and the meth-
ylation rates differ only slightly between environments
(mx,0/1 = 0 and my,0/1 = 0.052). For ex = 0.12, ey =
0.01, m = 0.5, mx,0/1 = 0.5, and my,0/1 = 0, we obtain
a heritability of 0.219 again with prevalence 0.035. In fact,
with this prevalence we find heritabilities of magnitudes
similar to those of the genetic case across a range of param-
eters. Epigenetic loci with environmentally sensitive meth-
ylation rates could therefore contribute to familial
aggregation of a phenotype at levels at least as large as
those of genetic loci.

Discussion

Our model and results offer several new perspectives on
epigenetic contributions to heritability. When epigenetic
states are correlated with environmental states, both of
which can be heritable, a trait may show a high estimated
heritability without highly faithful transmission of either the
epigenetic or the environmental state. In fact, even in the
case where the epigenetic state of a gene in a juvenile does
not reflect the parental epigenetic state of that gene, the
corresponding phenotype can be heritable through the effect
of the environment on the epigenetic state of the gene. In
that case our model presents a specific dynamic explanation
of how a heritable environmental state is able to cause
heritable epigenetic modifications of a phenotype. In prac-
tice, the risk factor due to environmental exposures may be
hard to determine, so in cases where the environment

Figure 3 Dependence of heritability on epimutation rates and environ-
mental inheritance for case 1 (environmental and epigenetic transmis-
sion). The colors in each panel indicate the heritability of the disease
for that set of parameters. The environmental transmission is symmetric
(ex ¼ ey ¼ e, a ¼ 0.5), making each panel symmetric around the diagonal.
The two columns distinguish the cases of random mating (m ¼ 0) and
moderate assortative mating (m ¼ 0.5). The three rows correspond to
high (e ¼ 0.01), moderate (e ¼ 0.1), and no fidelity of environmental
transmission (e ¼ 0.5). The horizontal axis in each panel indicates the
value of mx,0/1, and the vertical axis indicates the value of my,0/1. The
contour curves represent constant disease prevalence values (K), with the
bottom left contour indicating a prevalence of 0.15 and each progressive
contour toward the top right corresponding to an increase in prevalence
of 0.05. For all panels, the other parameter values are mx,1/0 ¼ my,1/0 ¼
0.5, a ¼ 0.1, r ¼ 0.5, d ¼ 0.4, and a ¼ 0.5.

Figure 4 Dependence of heritability on epimutation rates and environ-
mental inheritance for case 2 (environmental transmission but no epige-
netic transmission). The results are presented in the same way as in Figure
3, and the fixed parameters are identical, except that now mx,1/0 = 1 2
mx,0/1 and my,1/0 = 1 2 my,0/1.
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induces epigenetic modifications, association studies based
on epigenetic variation may be a simpler way to assess the
heritable risk. This raises a more fundamental problem in
the study of epigenetic transmission, namely that it is
difficult to separate inheritance of an epigenetic state from
inheritance of an environmental exposure to which the
epigenetic state is sensitive.

We assumed in our model that the disease caused by an
individual’s epigenotype occurs after the life stage in which
epigenetic modifications occur. A more realistic model
should incorporate age structure, including the fetal state,
and would have to model epimutation at each age class. The
analysis of such a model would be considerably more com-
plex, but we expect that the qualitative results would not
differ.

The dynamics of our model might easily be modified to
incorporate selection. If the fitnesses of the different epige-
netic states depend on which environment the individual is
in, then it is not clear exactly how selective effects would
interact with environmental inheritance and epimutation.
Some effort has gone into understanding how epimutation
could be adaptive in environments that fluctuate temporally.
Considering the rate of epimutation as a trait under genetic
control, previous models of bet hedging and symmetric
stochastic switching have suggested that the optimal rates
of epimutation depend on the expected length of time an
individual remains in each environment (Lachmann and
Jablonka 1996; Kussell and Leibler 2005; Wolf et al. 2005;
King and Masel 2007; Salathe et al. 2009; Gaál et al. 2010;
Liberman et al. 2011).

Our model can be seen as an extension of that of Slatkin
(2009). Whenever the rates of epigenetic change and the
disease risk do not depend on the environment, our model
reduces to Slatkin’s single-environment model. He con-
cluded that transmissible epigenetic effects are likely to be
important to the heritability of disease phenotypes only
when many epigenetic loci contribute to disease risk, the
epialleles are highly penetrant, or the epigenetic states are
unlikely to change between generations. With multiple
inherited environments, these conditions are no longer nec-
essary. For a fixed level of disease prevalence in the popula-
tion, we show that the estimated heritability is highest when
the two environments induce very different methylation
rates (Figures 3 and 4). Also, the heritability can be signif-
icantly higher than that produced by an epigenetic process
that is not environment sensitive. Slatkin’s multiplicative
model of disease risk is a special case of our model. In par-
ticular, a background risk b and an allele-specific risk in-
crease factor of 1 + r (using the notation of Slatkin 2009)
correspond in our model to the case a = b, d = br(2 + r),
and r ¼ 1=ð2þ rÞ. Using a multiplicative disease model in
our epigenetic model did not change the qualitative results,
so we focused on the additive case (r = 0.5).

The quantitative genetic model of Tal et al. (2010) also
assumed no heritable environment, and epigenetic modifi-
cations that are reset with probability n then have a certain

probability of being reinduced. Although this model is
framed in terms of a quantitative trait and does not explicitly
incorporate discrete epigenetic states, if we imagine an en-
vironment as inducing the epigenetic state 1 in our model,
then the parameter n from Tal et al. (2010) would be equiv-
alent to m1/0 + m0/1. Their model would apply equally
well to cultural traits or a heritable environmental state.
From the covariances between different relatives they
obtained, Tal et al. (2010) demonstrated how to estimate
the epigenetic contribution to heritability as a function of
various observed familial covariances—an approach remi-
niscent of that used by Feldman et al. (1995, 2000). How-
ever, by focusing only on one transmissible nongenetic
contribution to phenotype and considering the inducing
state as independent of the current epigenetic state, envi-
ronmental effects on epigenetic state are not included in
their model. Several other heuristic or statistical models
have also been proposed for studying epigenetic contribu-
tions to heritability (Bonduriansky and Day 2009; Danchin
and Wagner 2010; Day and Bonduriansky 2011).

By specifying an explicit dynamic model of epigenetic
transmission, our model and that of Slatkin (2009) offer
a bridge between dynamic processes and statistical esti-
mates, enriching the understanding of epigenetic contribu-
tions to heritability. Our dynamical model has a most
remarkable property in the case of environmental inheri-
tance and environment-sensitive epigenetics, namely the
possibility of the stable presence of a serious, heritable, early
onset, and common disease in a population. Purely genetic
transmission of such a disease would induce strong natural
selection against the risk alleles, with decreasing disease
incidence through time, unless this evolutionary effect were
balanced—as in the case of the balance between the effects
of malaria and sickle-cell anemia. The high disease mortality
in a particular environment will of course have demographic
repercussions, but these could easily be balanced by immi-
gration into the high-risk environment—lung cancer in
heavily smoking subcultures provides an illustration of this
kind of effect. A new smoker could be considered a migrant
into the smoking environment, and someone quitting smok-
ing considered a migrant from the smoking to the nonsmok-
ing environment.

Environment-sensitive effects on disease risk during early
development have been indicated by investigations of
environmental exposures during prenatal development.
Birth cohorts prenatally exposed to famine show significant
increases in schizophrenia risk in later life. Such effects can
be traced to the Dutch Hunger Winter of 1944–1945 (Susser
and Lin 1992; Susser et al. 1996) and the Chinese Famine of
1959–1961 (St. Clair et al. 2005). These studies did not
include epigenetics, but environment-sensitive epigenetic
factors have been proposed to play a key role in the devel-
opment of schizophrenia (Tsankova et al. 2007; Rutten and
Mill 2009).

Despite the many parameters in our model, they should
be estimable from data. For example, Verhoeven et al.
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(2010) tracked rates of methylation state change across gen-
erations in common dandelions for a variety of ecological
treatments (corresponding to environments in our model).
Their data allow estimation of our epimutation parameters
mu,ij. The characteristics of methylation dynamics in plants
are not good predictors of those in mammals, but similar
investigations should be feasible. The environmental trans-
mission parameters e and a are more troublesome, although
longitudinal measurements of the environmental states of
individuals and their offspring are possible. The estimation
of the environmental risk parameters au,ij would entail
measurements of the disease phenotype as well as the envi-
ronmental and epigenetic states of individuals.

Addressing the question of missing heritability, we have
demonstrated that very high correlations between the
phenotypes of relatives can occur even in the absence of
any contribution from genetic variation to the variation in
phenotype. The estimated additive genetic variance of
a phenotype showing familial aggregation because of
a combination of genetic, epigenetic, and environmental
effects will only partly be accounted for by all the SNPs that
are associated with the phenotype. We do not attempt to
calculate heritability estimates that control for environmen-
tal or epigenetic effects in our analysis. In the presence of
nongenetic modes of inheritance, the classical narrow sense
heritability is not the most useful measure for understanding
how phenotypes aggregate or how populations will respond
to selection. Instead, a measure that incorporates variation
from all modes of inheritance will offer more explanatory
power (Danchin and Wagner 2010; Danchin et al. 2011).

The results of our analysis suggest that epigenetic factors
could play an important role in the statistics of complex
diseases and other phenotypes, with epigenetic contribu-
tions to familial covariances potentially having magnitudes
comparable to those of genetic contributions. Progress of
investigations into epigenetic disease etiology will rely on
the development of observational methodology and more
inclusive models that take account of specific epigenetic
phenomena and their interactions with environments.
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Appendix

The Full Frequency Recursions

f 9x;ij ¼ ½ðð12mÞ þm=fxÞð12 exÞ�½
�
fx;00 þ fx;01

�2
mx;0/imx;0/j
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��
fx;01 þ fx;11

��
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�
þ �
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�
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���
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�

þ �
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�
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�
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f 9y;ij ¼ ½ðð12mÞ þm=fxÞex�½ð fx;00 þ fx;01Þ2my;0/imy;0/j
þ ð fx;00 þ fx;01Þð fx;01 þ fx;11Þðmy;0/imy;1/j þ my;1/imy;0/jÞ
þ ð fx;01 þ fx;11Þ2my;1/imy;1/j�

þ ð2½ð12mÞðexð12 aÞ þ ð12 eyÞaÞ�
·  ½ð fx;00 þ fx;01Þð fy;00 þ fy;01Þmy;0/imy;0/j þ ðð fx;00 þ fx;01Þð fy;01 þ fy;11Þ

þ ð fx;01 þ fx;11Þð fy;00 þ fy;01ÞÞðmy;0/imy;1/j þ my;1/imy;0/jÞ
þ ð fx;01 þ fx;11Þð fy;01 þ fy;11Þmy;1/imy;1/j�Þ

þ ½ðð12mÞ þm=fyÞð12 eyÞ�½ð fy;00 þ fy;01Þ2my;0/imy;0/j
þ ð fy;00 þ fy;01Þð fy;01 þ fy;11Þðmy;0/imy;1/j þ my;1/imy;0/jÞ
þ ð fy;01 þ fy;11Þ2my;1/imy;1/j�:

Parent–Offspring Covariance

Here we derive a formula for the parent–offspring covariance for arbitrary values of all parameters. The disease risk of an
individual in environment u with epigenotype ij is au,ij 2 [0, 1]. Assuming equilibrium, the covariance is straightforward but
cumbersome to compute from our recursions. We compute the parent–offspring covariance in disease,WD, by summing over all
possible ways that parent and offspring can both be diseased and then subtracting off the square of the disease prevalence K.
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Before we write out the full equation for covariance, we define a few quantities to make notation simpler. We define Zuv,i
as the probability that a focal parent in environment u produces a juvenile offspring in environment v, and that offspring
receives an epiallele in state i from the nonfocal parent:

Zxx;0 ¼ p̂x;0½ð12mÞf̂ x þm�ð12 exÞ þ p̂
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h
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The quantities p̂u;i are the equilibrium frequencies of allele i within environment u. So the terms p̂u;i in the preceding
equations represent the probabilities that the mate of the focal parent is contributing an i allele. The bracketed terms
represent the probabilities of the environmental classes of matings, conditioned on the focal parent’s environment. The
purpose of defining Zuv,i is to aid in representing the quantity Zuv,ijkl, which is the probability of a focal parent in environment
u with epigenotype ij producing an offspring in environment v with adult epigenotype kl. We can define Zuv,ijkl in terms of the
values Zuv,i as

Zuv;ijkl ¼ Zuv;0

	�
mv;i/k þ mv;j/k

�
2

mv;0/l

2
þ
�
mv;i/l þ mv;j/l

�
2

mv;0/k

2




þ  Zuv;1

	�
mv;i/k þ mv;j/k

�
2

mv;1/l

2
þ
�
mv;i/l þ mv;j/l

�
2

mv;1/k

2




¼ Zuv;0

	�
mv;i/k þ mv;j/k

�
mv;0/l

4
þ
�
mv;i/l þ mv;j/l

�
mv;0/k

4




þ  Zuv;1

	�
mv;i/k þ mv;j/k

�
mv;1/l

4
þ
�
mv;i/l þ mv;j/l

�
mv;1/k

4



:

This equation separates out matings by whether the nonfocal parent contributes allele 0 or 1. Each product of the
epimutation rates corresponds to a particular combination of epialleles received from the two parents.

It is now simple to write the covariance between the adult phenotype of a focal parent and the adult phenotype of an
offspring using Zuv,ijkl, because Zuv,ijkl is the probability of a focal parent producing an adult offspring in environment v with
epigenotype kl, conditional on the environmental state and epigenotype of the focal parent. Expressed in terms of these
variables, the equilibrium covariance in a disease phenotype is

WD ¼
	X

u

X
ij

au;ij f̂ u;ij
X
v

X
kl

av;klZuv;ijkl



2K2;

where au,ij are the disease risks of an adult individual in environment u with epigenotype ij, as explained in the Disease risk
section. Our final equation for WD is therefore simply the sum over the frequencies of all parent–offspring combinations
weighted by their disease risks, minus the prevalence squared.
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SUPPORTING INFORMATION: ENVIRONMENT-SENSITIVE EPIGENETICS AND

THE HERITABILITY OF COMPLEX DISEASES

ROBERT E. FURROW, FREDDY B. CHRISTIANSEN, AND MARCUS W. FELDMAN

S1. Convergence of fx. The general recursion for fx, the proportion of individuals in

environment x, between generations is

f ′
x = f̃x,00 + 2f̃x,01 + f̃x,11

That is,

f ′
x = MxxΩxx,00(1− ex) + 2MxyΩxy,00((1− ex)(1− a) + eya) +MyyΩyy,00ey

+ 2 [MxxΩxx,01(1− ex) + 2MxyΩxy,01((1− ex)(1− a) + eya) +MyyΩyy,01ey]

+MxxΩxx,11(1− ex) + 2MxyΩxy,11((1− ex)(1− a) + eya) +MyyΩyy,11ey.

Because Ωuv,00 + 2Ωuv,01 + Ωuv,11 = 1 (since all offspring from a u-by-v mating must have

some epigenotype), our recursion system simplifies to

f ′
x = (1− ex)[(1−m)f 2

x +mfx] + 2[1− ex − a(1− ex − ey)][(1−m)fxfy]

+ ey[(1−m)f 2
y +mfy]

f ′
x = ((1− ex)(1−m)− 2[1− ex − a(1− ex − ey)](1−m) + ey(1−m)) f 2

x

+ ((1− ex − ey)(2−m− 2a+ 2am)) fx + ey(1−m+m)

f ′
x = −(1− ex − ey)(1−m)(1− 2a)f 2

x

+ (1− ex − ey)
(
(1−m)(1− 2a) + 1

)
fx + ey.

This recursion system always results in convergence of fx to a unique fixed point in

(0,1), whenever ex, ey ∈ (0, .5). To see this, we first recast our recursion as f ′
x = H(fx),
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where

H(ξ) = −(1− ex − ey)(1−m)(1− 2a)ξ2

+ (1− ex − ey)
(
(1−m)(1− 2a) + 1

)
ξ + ey.

Noting that H(0) = ey and H(1) = 1 − ex, we see that there must be exactly one value

f̂x such that f̂x = H(f̂x), because H(ξ) − ξ is a quadratic function that must cross zero

exactly once for ξ ∈ (0, 1). Hence the fixed point is unique within (0, 1). To investigate

convergence we consider the derivative Ḣ of the function H, with respect to ξ.

Ḣ(ξ) = −2(1− ex − ey)(1−m)(1− 2a)ξ + (1− ex − ey)
(
(1−m)(1− 2a) + 1

)

= (1− ex − ey) + (1− 2ξ)(1− ex − ey)(1−m)(1− 2a)

Ḣ(0) = (1− ex − ey) + (1− ex − ey)(1−m)(1− 2a)

Ḣ(1) = (1− ex − ey)− (1− ex − ey)(1−m)(1− 2a).

Because ex, ey ∈ (0, 0.5), we see that Ḣ(ξ) ∈ (0, 2) for ξ ∈ [0, 1]. Recalling that H(0) > 0

and H(1) < 1, we note that H is monotonically increasing and H(ξ) > ξ for ξ < f̂x,

H(ξ) < ξ for ξ > f̂x. This implies that there is global, non-oscillating convergence to the

fixed point f̂x from any starting value fx ∈ [0, 1].

In the special cases a = 1
2

or m = 1, the recursion for fx reduces to

f ′
x = (1− ex − ey)fx + ey.

We note that

f ′
x −

ey
ex + ey

= (1− ex − ey)

(
fx − ey

ex + ey

)
,

therefore fx converges geometrically fast to ey
ex+ey

, except in the degenerate case where

ex = ey = 0.



S2. Covariance for Case 2: Environmental transmission but no epigenetic transmis-

sion. Unlike the general case, when there is no faithful epigenetic transmission between

generations we can calculate the parent offspring covariance in disease risk in a simple

closed form. We begin by finding the parent-offspring covariance in environmental state

(WE) at equilibrium. We specify the indicator variables Lp and Lo, where Lp is 1 when the

parent is in environment x, and 0 otherwise, and Lo is 1 when the offspring of that parent

is in environment x, and 0 otherwise.

WE = Cov(Lp, Lo) = E[LpLo]− E[Lp]E[Lo] = E[LpLo]− f̂x
2
,

because E[Lp] = E[Lo] = f̂x at equilibrium, and Lp = 1 for all x-by-x matings and half of

the x-by-y matings (when the focal parent is the parent in x). From this, we evaluate WE

as

WE = Prob(both parents in x and offspring in x)

+
1

2
Prob(parents in different environments and offspring in x) − f̂x

2

= [(1−m)f̂x
2
+mf̂x](1− ex) +

1

2
∗ 2[(1−m)f̂xf̂y]((1− ex)(1− a) + eya)− f̂x

2

= [(1−m)f̂x
2
+mf̂x](1− ex) + [(1−m)f̂x(1− f̂x)]((1− ex)(1− a) + eya)− f̂x

2
.

In this case μu,0→1 = μu,1→1, αu,00 = α, αu,01 = α + rδ, and αu,11 = α + δ, for u ∈
{x, y}. We define Gu,ij to be indicator variables that are 1 when a parent in environment

u has genotype ij and 0 otherwise. G′
u,ij are the analogous variables for the offspring at

adulthood. Defining Dij as an indicator variable that is 1 when a parent with epigenotype

ij contracts the disease and 0 otherwise (and D′
ij the analogous variable for an adult

offspring), we have the disease state of a random parent in the population represented by

Lp(Gx,00D00 + 2Gx,01D01 +Gx,11D11) + (1− Lp)(Gy,00D00 + 2Gy,01D01 +Gy,11D11).



Similarly, the disease state at adulthood of a random offspring is

Lo(G
′
x,00D

′
00 + 2G′

x,01D
′
01 +G′

x,11D
′
11) + (1− Lo)(G

′
y,00D

′
00 + 2G′

y,01D
′
01 +G′

y,11D
′
11).

We note that for any random variable C independent of A, B, and AB, the relation

Cov(CA,B) = E[C]Cov(A,B) always holds. Using the independence properties of the

indicator variables defined above, the parent-offspring covariance simplifies to

WD = [α((1− μx,0→1)
2 − (1− μy,0→1)

2) + 2(α + rδ)(μx,0→1(1− μx,0→1)− μy,0→1(1− μy,0→1)

+ (α + δ)(μ2
x,0→1 − μ2

y,0→1)]
2WE

= [δ(2r(μx,0→1 − μy,0→1) + (1− 2r)(μ2
x,0→1 − μ2

y,0→1))]
2WE

= δ2(μx,0→1 − μy,0→1)
2[2r + (1− 2r)(μx,0→1 + μy,0→1)]

2WE.

The disease prevalence K in the adult population is

K = E[Lp(Gx,00D00 + 2Gx,01D01 +Gx,11D11) + (1− Lp)(Gy,00D00 + 2Gy,01D01 +Gy,11D11)]

= f̂x
(
δ(μx,0→1 − μy,0→1)[2r + (1− 2r)(μx,0→1 + μy,0→1)]

)
+
(
α + δ(2rμy,0→1(1− μy,0→1) + μ2

y,0→1

)

= f̂x
(
δ(μx,0→1 − μy,0→1)[2r + (1− 2r)(μx,0→1 + μy,0→1)]

)
+
(
α + δ(2rμy,0→1 + (1− 2r)μ2

y,0→1)
)
.

S3. Comparing heritability between Case 1 and Case 2. To understand how the two

cases relate to each other, we plot estimated heritability for parameters that range lin-

early from those used in Case 1 to those of Case 2. Each curve in Figure S1 plots

the estimated heritability on the vertical axis with respect to the parameter c ∈ [0, 1] on

the horizontal axis. The parameter c determines whether patterns of epigenetic reset

are similar to Case 1 or Case 2, where epimutation rates are related by the equation

μu,1→0 = 0.5 + c(0.5 − μu,0→1). If c = 0, then μu,1→0 = 0.5 and we are in Case 1. If c = 1,

then μu,1→0 = 1 − μu,0→1 and we are in Case 2. We see that if μx,0→1 is very different

from μy,0→1, then the case without direct epigenetic transmission (Case 2) results in much



higher heritability estimates. But if the rates of epimutation are similar in both environ-

ments, then epigenetic transmission is more important to familial covariance and Case 1

results in higher heritability estimates. The disease parameters used are again α = 0.1,

r = 0.5, δ = 0.4, and we assume μy,0→1 = 0.1, e = 0.1, a = 0.5, and m = 0.5.

S4. Covariance for a genetic locus. Here we derive the parent-offspring covariance

as if our locus were genetic, for the sake of comparison. Because rates of mutation

per nucleotide are vanishingly small in humans, we assume no mutation between parent

and offspring. In that case, we simply have Mendelian inheritance and no environmental

effects. We have three genotypes: 00, 01, and 11, and three risk parameters α00 = α,

α01 = α + rδ, and α11 = α + δ. To calculate the covariance in disease state (WD), we

will use Cov(A,B) = E[AB] − E[A]E[B]. But E[A] = E[B] = K = p20α00 + 2p0p1α01 +

p21α11, so we must simply calculate E[AB]. For this we assume that the population is in

Hardy-Weinberg equilibrium, and that the frequencies of the alleles 0 and 1 are p0 and p1,

respectively (p0 + p1 = 1). In this case, our covariance is

WD = α00p
2
0

(
α00p0 + α01p1

)
+ α012p0p1

(α00p0 + α01p1
2

+
α01p0 + α11p1

2

)

+ α11p
2
1

(
α01p0 + α11p1

)−K2.

Using this, our expression for the heritability, h2 = 2WD

VD
, is exactly the narrow sense heri-

tability, defined as the fraction of phenotypic variance attributable to additive genetic vari-

ance.

S5. Recurrence Risk Ratio. An alternative way to describe familial aggregation of a

disease uses the recurrence risk ratio, which for an individual B, related to individual A, is

λ =
E[AB]

KE[A]
.

This ratio expresses how likely a relative (B) of a diseased proband (A) is to become

diseased relative to a random individual in the population. At equilibrium, E[A] = K for
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any individual, and E[AB] = Cov(A,B) + K2. Computing the recurrence risk ratio of

an offspring (B) with respect to its affected parent (A), Cov(A,B) = WD = h2VD/2 =

h2K(1−K)/2, so we can relate λ to our heritability estimate h2 using the formula

λ =
h2(1−K)

2K
+ 1.

Case 1: Environmental and epigenetic transmission. Comparing our heritability estimate

with the recurrence risk ratio, we find similar results. Figure S2 shows side-by-side pan-

els of estimated heritability and the log of the recurrence risk ratio for identical parameter

values. However, it is worth noting that because the relationship between estimated heri-

tability and recurrence risk ratio depends on the prevalence, the patterns are not identical.

In Figure S3 we focus on the particular instance of Case 1 where μy,0→1 = 0.05 (e = 0.1,

m = 0.5, α = 0.1, δ = 0.4, r = 0.5, μx,1→0 = μy,1→0 = 0.5), and we see that the recur-

rence risk ratio is maximized for an intermediate value of μx,0→1, whereas heritability is

maximized when μx,0→1 is as large as possible.

Similar to the results for heritability, increasing assortative mating (m), or fidelity of

transmission of environmental state (1 − e), produce higher recurrence risk ratios with

higher magnitude and a more pronounced increase in λ when the epimutation rates are

very different between environments.

Case 2: Environmental transmission but no epigenetic transmission. Results for recur-

rence risk ratio are similar to those for heritability.



FIGURE S1 Comparing heritability estimates between Case 1 and Case 2. The
horizontal axis is the value of a parameter c, such that μu,1→0 = 0.5+c(0.5−μu,0→1)
for u ∈ {x,y}. The vertical axis is the estimated heritability for that set of parameters.
Each curve plotted corresponds to a different value of μx,0→1, with μy,0→1 = 0.1
throughout. For all curves, the other parameters are α = 0.1, r = 0.5, δ = 0.4,
e = 0.1, a = 0.5, and m = 0.5.
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FIGURE S2 Dependence of heritability and log recurrence risk ratio on epimutation
rates for Case 1 (μx,1→0 = μy,1→0 = 0.5). The colors in the top panel indicate
heritability, and in the bottom panel indicate the natural log of recurrence risk, ln(λ).
The horizontal axis in each panel indicates the value of μx,0→1, and the vertical
axis indicates the value of μy,0→1. The contour curves represent constant disease
prevalence values (K), with the lower left contour indicating a prevalence of 0.15,
and each progressive contour toward the upper right corresponding to an increase
in prevalence of 0.05. For both of these panels, the other parameter values are
μx,1→0 = μy,1→0 = 0.5, α = 0, r = 0.5, δ = 1, m = 0.5, e = 0.1, and a = 0.5.
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FIGURE S3 Dependence of heritability and log recurrence risk ratio on μx,0→1, the
epimutation rate in environment x, for Case 1 (μx,1→0 = μy,1→0 = 0.5). The hori-
zontal axis is the value of μx,0→1, and the vertical axis is either ln(λ) or heritability
in the left panel, and prevalence (K) in the right panel. For both panels, the other
parameter values are μy,0→1 = 0.05, μx,1→0 = μy,1→0 = 0.5, α = 0, r = 0.5, δ = 1,
m = 0.5, e = 0.1, and a = 0.5.


