
RESEARCH ARTICLE

IL-33 facilitates rapid expulsion of the

parasitic nematode Strongyloides ratti from

the intestine via ILC2- and IL-9-driven mast cell

activation

Jana Meiners1☯, Martina ReitzID
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Abstract

Parasitic helminths are sensed by the immune system via tissue-derived alarmins that pro-

mote the initiation of the appropriate type 2 immune responses. Here we establish the

nuclear alarmin cytokine IL-33 as a non-redundant trigger of specifically IL-9-driven and

mast cell-mediated immunity to the intestinal parasite Strongyloides ratti. Blockade of

endogenous IL-33 using a helminth-derived IL-33 inhibitor elevated intestinal parasite bur-

dens in the context of reduced mast cell activation while stabilization of endogenous IL-33 or

application of recombinant IL-33 reciprocally reduced intestinal parasite burdens and

increased mast cell activation. Using gene-deficient mice, we show that application of IL-33

triggered rapid mast cell-mediated expulsion of parasites directly in the intestine, indepen-

dent of the adaptive immune system, basophils, eosinophils or Gr-1+ cells but dependent on

functional IL-9 receptor and innate lymphoid cells (ILC). Thereby we connect the described

axis of IL-33-mediated ILC2 expansion to the rapid initiation of IL-9-mediated and mast cell-

driven intestinal anti-helminth immunity.

Author summary

Parasitic worms leave a trail of destruction while migrating through their host’s tissue.

Thereby they trigger the release of tissue-derived alarmin cytokines such as IL-33 that pro-

mote the initiation of efficient anti-helminth immune responses. Here we use mice

infected with the parasitic nematode Strongyloides ratti to unravel the chain of events lead-

ing from parasite sensing to parasite expulsion. S. ratti penetrates the skin of its mamma-

lian host, migrates via skin and muscle tissue to the mouth, is swallowed and reproduces
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in the small intestine. The parasite is eventually expelled from the intestine by the action

of mast cells that are activated via IL-9. Using inhibitors and enhancers for IL-33 we dem-

onstrate that the release of IL-33 during S. ratti infection activates mast cells. Blockade of

IL-33 elevated intestinal parasite burden and suppressed mast cell degranulation while sta-

bilization of endogenous IL-33 or application of recombinant IL-33 reduced intestinal

parasite burdens and increased mast cell degranulation. IL-33 mediated parasite expulsion

independently of adaptive immunity, basophils or granulocytes but dependent on IL-9,

innate lymphoid cells and mast cells. In summary we provide an example of how efficient

sensing of a tissue-migrating parasite generates a hostile environment in the intestine that

facilitates parasite expulsion.

Introduction

Helminths are large multicellular pathogens that affect one quarter of the human population

[1]. They are controlled and eradicated in the context of a canonical type 2 immune response

[2]. Thereby, the mammalian immune system needs to initiate rapid and efficient anti-hel-

minth defences while simultaneously organising the repair of inflicted mechanical damage and

re-establishing homeostasis to prevent immunopathology.

We use Strongyloides ratti [3], a rodent-specific parasitic nematode, to analyze immune

responses against a “moving target” which displays tissue migrating and intestinal life stages in

the mouse system. Infective third stage larvae (L3) penetrate the skin of their hosts and over

the following 2 days migrate via skin, head and lung to the mouth. They are swallowed, reach

the intestine and moult to adults by day 5. Immune competent mice terminate the infection in

the context of a type 2 immune response within 3–4 weeks and remain semi-resistant to subse-

quent infections [4]. Eradication of migrating Strongyloides L3 during the first 2 days of infec-

tion is mediated predominantly by eosinophilic and neutrophilic granulocytes [5–9], whereas

efficient expulsion from the intestine is executed by basophils [10] and mast cells [11,12]. Spe-

cifically mucosal mast cells are indispensable for the final eradication of Strongyloides from the

intestine as selectively mast cell-deficient mice are unable to terminate infections for more

than 20 weeks [12]. The mast cells are activated via classical antibody- (IgE and IgG) mediated

mechanisms once adaptive immunity is established [13]. However, the early mast cell degranu-

lation that facilitates intestinal parasite control during the first week of infection is indepen-

dent of adaptive immunity and promoted by IL-9 [12,14]. S. ratti actively delays this rapid IL-

9-dependent, mast cell-mediated expulsion from the intestine via expansion of Foxp3+ regula-

tory T cells (Treg) [15,16] and induction of negative regulatory receptors such as B and T Lym-

phocyte Attenuator (BTLA) on T effector cells [17]. Treg and BTLA+ T cells expand during

infection and either Treg depletion or absence of BTLA or its ligand, Herpes Virus Entry

Mediator (HVEM), results in elevated IL-9 production, accelerated mast cell activation and

rapid expulsion of S. ratti from the intestine. The factors regulating initiation of this anti-hel-

minth response, however, are still not fully understood.

IL-33 is a tissue-derived nuclear cytokine [18], that was shown to promote type 2 immune

responses during allergy and helminth infection [19,20]. Exposure to migrating parasitic nem-

atodes or intranasal application of chitin, the dominant material of the parasites cuticula, trig-

gered transcription and/or release of IL-33 in the lung [21,22] and intestine [23]. A central

function for IL-33 in host defence was established by several studies demonstrating that mice

lacking either IL-33 or the IL-33 receptor ST2 displayed increased intestinal parasite burdens

in Strongyloides venezuelensis [22], Nippostrongylus brasiliensis [24], and Heligmosomoides
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polygyrus [25] infection, increased muscle larval burdens during Trichinella spiralis [26] infec-

tion and elevated microfilaremia during Litomosoides sigmodontis [27] infection. Further evi-

dence for the importance of IL-33 in anti-helminth immunity arises from the fact that the

chronic intestinal parasitic nematode H. polygyrus [28] antagonizes IL-33 function via secre-

tion of IL-33 inhibitors [29,30].

Here we employ the H. polygyrus-derived IL-33-suppressive alarmin release inhibitor

(HpARI) [30] and an IL-33-stabilizing truncation variant of HpARI, CCP1/2 [31], to analyse

the role of IL-33 during the early immune response to S. ratti. Neutralization of endogenous

IL-33 increases intestinal parasite burdens while stabilization of endogenous IL-33 or applica-

tion of recombinant (rec.) IL-33 reciprocally reduces parasite burdens. The IL-33-triggered

reduction of intestinal parasite burdens is not established during tissue migration and is inde-

pendent of the effector cells controlling the tissue migrating larvae such as eosinophils or neu-

trophils. We show that IL-33 induces rapid activation of mucosal mast cells, preventing

embedment of arriving parasites in the intestine. Accelerated mast cell activation is indepen-

dent of the adaptive immune system, eosinophils, basophils or neutrophils, but strictly

depends on the presence of ILC and a functional IL-9 receptor. In summary, we provide evi-

dence for a non-redundant IL-33-triggered ILC2-, IL-9-, and mast cell-dependent innate path-

way facilitating the defense against intestinal helminths during the first week of infection.

Results

IL-33 promotes intestinal immunity to S. ratti
The parasitic nematode S. venezuelensis triggers IL-33 release in the lungs of infected mice

[22]. Likewise, lung explants from S. ratti-infected mice show significantly increased release of

this alarmin cytokine, while small intestinal explants showed a trend for elevated IL-33 release,

although this did not reach statistical significance (S1 Fig).

To evaluate the impact of endogenous IL-33 release in initiating the protective immune

response to S. ratti in vivo, we used the H. polygyrus-derived IL-33 inhibitor HpARI (Fig 1).

HpARI antagonizes IL-33 function in vivo by tethering IL-33 to the nuclear DNA of necrotic

cells and by blocking productive IL-33 interaction with its receptor ST2 [30]. Intranasal (i.n.)

application of HpARI prior to S. ratti infection increased the intestinal parasite burdens while

i.n. application of rec. IL-33 reciprocally decreased parasite burdens (Fig 1B). Recently, a trun-

cation of the HpARI full length protein, CCP1/2, was shown to enhance IL-33-dependent

responses to allergen administration or N. brasiliensis infection through stabilisation of the

active cytokine [31], thereby amplifying endogenous IL-33 responses in vivo. Application of

CCP1/2 prior to S. ratti infection reduced intestinal parasite burdens, thus phenocopying

application of rec. IL-33 (Fig 1C) and demonstrating the importance of the endogenous IL-33

response during the early stages of infection.

To define the site of IL-33-mediated immunity, we performed a kinetic analysis of intestinal

parasite burdens comparing mice that received rec. IL-33 to untreated mice (Fig 2A). After

subcutaneous injection into the hind foot pad, the first L3 arrived in the small intestine by day

2 p.i. and maximal numbers were present at day 3 p.i. (Fig 2B). While the numbers of newly

arrived intestinal L3 were not affected by IL-33 treatment, viable parasite numbers that were

attached to the intestine rapidly declined in the intestine of IL-33-treated mice after day 3 p.i.

The presence of S. ratti-derived DNA in the faeces of these mice on days 3 and 4 p.i. reflects

the S. ratti larvae that arrived by day 3 but did not embed successfully in the intestine of IL-

33-treated mice (Fig 2C). Untreated mice, by contrast, displayed constant numbers of intesti-

nal parasites after day 3 p.i. that moulted to adults by day 4/5 p.i., demonstrating successful

embedding of S. ratti (Fig 2B, open circles). In support of this notion, almost no S. ratti-
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derived DNA was detected in the faeces of these mice until day 4 (Fig 2C, open circles). We

did not record later time points since S. ratti adults start to reproduce by day 5 p.i. and faecal S.

ratti-derived DNA after day 5 p.i. would predominantly reflect released eggs and L1.

To further distinguish between the impact of IL-33 on immunity during tissue migration

and intestinal life stages, we next applied IL-33 at days 4 and 5 of infection, a time point when

all S. ratti L3 had reached the intestine and developed to L4 or adults (Fig 2A black and blue).

Surprisingly, i.n. application of IL-33 after completion of the tissue migration still resulted in

the same reduction of day 6 intestinal parasite burdens as induced by i.n. application of IL-33

before S. ratti infection (Fig 2D and 2E). In light of this finding we measured if i.n. application

of IL-33 would also lead to systemic distribution of the cytokine. We recorded systemic eleva-

tion of IL-33 concentration in the serum 3 hours after i.n. and after systemic, intraperitoneal

(i.p.) application of rec. IL-33 in non-infected mice (S2A and S2B Fig), suggesting that i.n.

application of IL-33 did not selectively target the lung. Indeed, repetition of the S. ratti infec-

tion experiments using i.p. application of IL-33 phenocopied the i.n. application of IL-33. Par-

asite burdens in the intestine day 6 p.i. were reduced when IL-33 was applied before infection

Fig 1. IL-33 reduces intestinal S. ratti burden. (A) Experimental procedure: BALB/c mice were treated i.n. with PBS (open

circles), 1 μg rec. IL-33 (closed circles), 5 μg rec. HpARI (closed squares) or 5 μg rec. CCP1/2 (closed triangles) in 20 μl PBS 3 h

before and 24 h post s.c. infection with 2000 S. ratti L3. (B and C) Shown are combined results from 3 independent

experiments (n = 4–5 per experiment and group), each symbol represents an individual mouse, bars show the mean and

asterisk indicate statistically significant differences of the means of untreated (PBS) or treated mice (B: one-way ANOVA, C:

students t-test).

https://doi.org/10.1371/journal.ppat.1009121.g001
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(Fig 2F) and also i.p. application of IL-33 after completion of the tissue migration phase at day

4 and 5 p.i., reduced the intestinal parasite burdens on the next day (Fig 2G).

Taken together these results show that endogenous IL-33 which is naturally produced and/

or released during S. ratti infection promoted eradication of parasites from the intestine as

blockade of endogenous IL-33 increased and stabilization of endogenous IL-33 decreased par-

asite burden. Exogenous application of rec. IL-33 phenocopied stabilisation of endogenous IL-

Fig 2. IL-33 reduces intestinal S. ratti burden independent of the tissue migration phase. (A) Experimental procedure: BALB/c mice were treated i.p. (B,C,

F, and G) or i.n. (D and E) with PBS (open circles) or 1 μg rec. IL-33 (closed circles). Treatment was performed either 3 h before and 24 h after S. ratti
infection (black circles, B,C,D, and F) or after the tissue migration phase i.e. 4 days and 5 days after S. ratti infection (blue circles, E and G). (B) Mice were

sacrificed at the indicated time points and L3, L4 and adults in the intestine were counted and (C) S. ratti-derived DNA in the feces was quantified by qPCR at

the indicated time points. Shown are the combined results of 2 independent experiments (n = 4 per experiment, group, and time point), symbols show the

mean and error bars indicate SEM (D-G). Adults in the intestine were counted at day 6 p.i. Shown are combined results from 2–3 independent experiments

(n = 3–5 each), each symbol represents an individual mouse, bars show the mean and asterisks indicate statistically significant difference of the means (B and

C: two-way ANOVA, D-G: students t-test).

https://doi.org/10.1371/journal.ppat.1009121.g002
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33. Thereby rec. IL-33 promoted S. ratti eradication (i) directly in the intestine, (ii) indepen-

dent of the tissue migration phase and (iii) whether IL-33 was delivered to the lung or

systemically.

IL-33 mediates accelerated intestinal expulsion of S. ratti parasites

independent of adaptive immunity via mucosal mast cells

Expulsion of S. ratti from the intestine is promoted by basophils [10] but predominantly exe-

cuted by mucosal mast cells [12]. Therefore, we analyzed mast cell activation by quantification

of mouse mast cell protease 1 (mMCPT-1) in the serum that is released by de-granulating

mucosal mast cells [32] (Fig 3A). Although this method does not strictly distinguish between

increased mucosal mast cell degranulation and increased numbers of degranulating mucosal

mast cells, it reflects mast cell activation as the net-effect of mastocytosis and degranulation in
vivo. S. ratti infection induced detectable mast cell activation by day 6 p.i. (Fig 3A black bars

and asterisk), as we have shown before [15,16]. S. ratti-infected and IL-33-treated mice dis-

played significant elevation in mMCPT-1 serum concentrations already by day 1 p.i. and maxi-

mal mast cell activation by day 3 p.i., i.e. the time point of L3 arrival in the intestine (Fig 3A

red bars and asterisks).

IL-33 treatment alone, in the absence of S. ratti infection, also led to rapid mast cell activa-

tion as soon as 3–10 hours post treatment, and this was sustained for 6 days i.e. 5 days after the

second IL-33 injection (Fig 3A blue bars and asterisks). Of note, systemic i.p. and “lung-tar-

geted” i.n. application of IL-33 induced mucosal mast cell activation to the same extent (S2C

Fig). Comparison of IL-33-treatment in the absence and presence of S. ratti infection revealed

even higher levels of IL-33-induced mast cell degranulation in non-infected mice, a trend that

reached statistical significance at 10 hours and 4 days post treatment/infection compared to

IL-33-treated S. ratti-infected mice (Fig 3A green asterisks).

To directly test the impact of endogenous IL-33 on mast cell activation, we next quantified

mMCPT-1 concentration in the serum of S. ratti-infected mice that received HpARI or CCP1/

2. Blockade of IL-33 via HpARI significantly reduced mast cell degranulation that was induced

by S. ratti infection day 6 p.i. (Fig 3B), while stabilization of IL-33 via CCP1/2 increased mast

cell degranulation, thus phenocopying treatment with rec. IL-33 (Fig 3C).

To provide a causal link between the IL-33-induced increased mast cell activation and the

reduced worm burdens observed in rec. IL-33-treated and S. ratti-infected mice, we employed

SCID mice that lack T and B cells and kit-independent mast cell-deficient Cpa3Cre mice [33].

IL-33-treatment reduced intestinal parasite burdens by day 6 p.i. in SCID mice i.e. in the

absence of adaptive immunity but in the presence of mast cells (Fig 3D). By contrast, IL-

33-treatment reduced intestinal parasite burdens day 6 p.i. selectively in mast cell-competent

mice but not in the mast cell-deficient littermates (Fig 3E). These results show that IL-33-treat-

ment prevented intestinal embedding of S. ratti by rapid mast cell activation within the first

days of infection, independent of adaptive immunity but strictly dependent on mast cells.

IL-33 mediates accelerated intestinal expulsion of S. ratti parasites

independent of basophilic, eosinophilic and neutrophilic granulocytes and

dependent of IL-9 receptor signalling

To analyse the contribution of additional innate effector cells in mediating the rapid IL-

33-driven S. ratti expulsion from the intestine we focused on basophilic, eosinophilic, and neu-

trophilic granulocytes that contribute to the control of Strongyloides infection alongside mast

cells [4]. Basophils are dispensable for the control of tissue-migrating S. ratti larvae but con-

tribute to early anti-Strongyloides immunity in the intestine [10]. Basophil-deficient Mcpt8Cre
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mice [34] displayed higher intestinal parasite burdens than the basophil-competent wildtype

littermates (Fig 4A left), as expected [10]. Nevertheless, rec. IL-33-treatment reduced intestinal

parasite burdens in basophil-deficient and basophil-competent mice to the same level.

Reduced intestinal parasite burdens were correlated with increased mast cell activation

Fig 3. IL-33 treatment induces rapid mast cell activation that mediates accelerated intestinal parasite expulsion.

(A) BALB/c mice were either left uninfected (white and blue bars) or infected with 2000 S. ratti L3 s.c. (black and red

bars). Mice received PBS (white bars, black bars) or 1 μg rec. IL-33 (blue bars, red bars) either 3 h before and 24 h post

S. ratti infection or mock infection. mMCPT-1 in the serum was quantified by ELISA at the indicated time points.

Graph shows combined results of 2–3 independent experiments (n = 3–5 per experiment and time point, n = 2 for PBS

control), bars indicate the mean and error bar show SEM. Asterisks indicate statistically significant differences of the

mean of S. ratti + PBS to PBS in black; IL-33 to PBS in red: S. ratti + IL-33 to S. ratti + PBS in blue and S. ratti + IL-33

to IL-33 in green (one-way ANOVA performed for the 4 groups at each time point separately). (B and C) BALB/c

mice received PBS (open circles) or (B) 5 μg rec. HpARI (closed squares) or (C) 5 μg rec. CCP1/2 (closed triangles) i.

p. 3 h before and 24 h post s.c. infection with 2000 S. ratti L3. mMCPT-1 in the serum was quantified by ELISA at the

indicated time points. (D) SCID mice or (E) Cpa3Cre mice (squares) and wildtype littermates (circles) were treated

with 1 μg rec. IL-33 (closed symbols) or with PBS (open symbols) 3 h before and 24 h post S. ratti infection. Mice were

sacrificed day 6 p.i. to count adults in the intestine. Graphs show the combined results of 2–4 independent experiments

(n� 3–5 per experiment and group), each symbol represents an individual mouse, bars show the mean and asterisks

indicate statistically significant differences of the mean, numbers indicate p value (B,C, and E: students t-test D:

Mann-Whitney test).

https://doi.org/10.1371/journal.ppat.1009121.g003
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Fig 4. IL-33 mediates accelerated intestinal expulsion of S. ratti parasites independent of basophilic, eosinophilic

and neutrophilic granulocytes but dependent of IL-9. (A) BALB/c Mcpt8Cre mice (squares) and non-transgenic

littermates (circles) or (B) ΔdblGATA mice (squares) and co-housed BALB/c mice (circles) or (C) BALB/c mice

treated with anti Gr-1 mAb (depletion protocol and control is shown in S3 Fig) (squares) or isotype control, and (D)

BALB/c IL-9 receptor-deficient mice (squares) and co-housed BALB/c mice (circles) were treated i.p. with 1 μg of IL-

33 (closed symbols) or with PBS (open symbols) 3 h before and 24 h post S. ratti infection. mMCPT-1 concentration in

the sera was quantified day 2 p.i. and parasitic adults in the intestine counted day 6 p.i. Graphs show combined results

from 2–4 independent experiments (n = 3–8 per experiment and group). Each symbol represents an individual mouse,

bars show the mean, asterisks indicate statistically significant differences of the mean, numbers indicate p value

(Mann-Whitney and students t-test).

https://doi.org/10.1371/journal.ppat.1009121.g004
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indicated by elevated mMCPT-1 serum concentrations day 2 p.i., in the presence and absence

of basophils (Fig 4A right).

Neutrophils and eosinophils predominantly mediate killing of tissue-migrating larvae,

while their direct impact in intestinal expulsion is less clear [4,6,7]. In particular, eosinophils

were associated with IL-33-mediated reduction of parasite load during S. venezuelensis infec-

tion [22]. ΔdblGATA mice that lack eosinophilic granulocytes displayed elevated intestinal

parasite burdens compared to wildtype BALB/c mice. Despite their almost ten-fold increased

numbers of parasitic adults in the intestine, ΔdblGATA mice responded to rec. IL-33 applica-

tion with a significant reduction of intestinal parasite load that was accompanied by increased

mast cell activation (Fig 4B).

Depletion of all granulocytes including neutrophils by application of an anti-Gr-1 mAb in
vivo one day before and one day after S. ratti infection (S3 Fig) phenocopied ΔdblGATA mice.

Intestinal parasite burdens were higher in granulocyte-depleted mice compared to non-

depleted mice but were still significantly reduced by additional treatment with rec. IL-33 in the

context of accelerated mast cell activation (Fig 4C). These combined results show that out of

all innate effector cell populations contributing to S. ratti eradication, IL-33 selectively targeted

mast cells to accelerate intestinal expulsion.

Since mast cells express the IL-33 receptor ST2 [35] and can be activated by IL-33 [36,37], it

is conceivable that they responded directly to IL-33. However, we have previously shown that

the rapid early mast cell activation during S. ratti infection depended on functional IL-9 recep-

tor signalling [14] and that IL-9 production during S. ratti infection was actively antagonized

by the parasite as a strategy of immune evasion [16,17]. Therefore, we tested a putative contri-

bution of IL-9 to accelerated mast cell activation and parasite expulsion observed in IL-

33-treated mice. IL-9 receptor-deficient (IL-9R-/-) mice displayed increased intestinal parasite

burdens (Fig 4D), as expected [14]. Treatment with rec. IL-33 did not reduce parasite numbers

and did not increase the early mast cell activation day 2 p.i. (Fig 4D). This was not due to the

general elevation of intestinal parasite burdens in IL-9R-/- mice because similarly elevated par-

asite burdens were readily reduced by rec. IL-33 treatment in basophil- eosinophil- and granu-

locyte-deficient mice (Fig 4A–4C).

IL-33-expanded ILC2 contribute to rapid mast cell activation and

expulsion of S. ratti from the intestine

Since the dominant innate source of IL-9 are ILC2s [38], we compared BALB/c RAG-/- mice

that lack adaptive immunity but are ILC-competent to BALB/c RAG-/-γc-/- mice which are

additionally ILC-deficient (Fig 5). ILC2s were defined as lineage- CD127+ Eomes- RORγt-

GATA3+ cells (S4 Fig). ILC2s were completely absent in lung, spleen and peritoneum of both,

untreated and IL-33-treated RAG-/-γc-/- mice, while IL-33 treatment of BALB/c RAG-/- mice

expanded ILC2s (Fig 5A and 5B). IL-33 treatment reduced parasite burdens in the context of

accelerated mast cell activation in BALB/c RAG-/- mice (Fig 5C and 5D circles) thereby reiter-

ating our previous results recorded in SCID mice (Fig 3D). Additional absence of ILCs in

BALB/c RAG-/-γc-/- mice increased intestinal parasite burdens, thus highlighting the general

contribution of ILC2s to the anti-Strongyloides immune response (Fig 5C squares). IL-33 treat-

ment did not induce detectable mast cell activation in BALB/c RAG-/-γc-/- mice at day 3 or day

6 p.i., and parasite burdens were not significantly reduced in IL-33-treated BALB/c RAG-/-γc-/-

mice (Fig 5C and 5D). These results strongly suggest that ILC2s contributed to the IL-

33-induced acceleration of mast cell activation and subsequent improved expulsion of S. ratti
from the intestine. It should be noted that we recorded a non-significant trend (p = 0.075) to

reduced parasite burdens in IL-33-treated BALB/c RAG-/-γc-/- mice (i.e. in the complete
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Fig 5. ILC promote IL-33-mediated S. ratti expulsion from the intestine. (A-D) BALB/c RAG-/- mice (circles) and BALB/c RAG-/- γc-/- mice (squares)

were treated i.p. with 1 μg of IL-33 (closed symbols) or with PBS (open symbols) 3 h before and 24 h post S. ratti infection. (A) Representative dot blots

showing frequency of ILC2 in spleens of BALB/c RAG-/- mice or BALB/c RAG-/- γc-/- mice with or without IL-33 treatment. Cells were measured using an

LSRII Cytometer (BD, Germany) and analyzed by FlowJo software. (B) Frequencies of lung, spleen and PEC cells day 6 p.i. Graphs show combined results

from 1 (lung), 2 (spleen) or 3 (PEC) independent experiments. (C) Parasitic adults in the intestine were counted 6 days p.i. and (D) mMCPT-1 concentration

in the sera was quantified at indicated time points p.i. Graphs show combined results from 3 independent experiments (n = 4 per experiment and group) or 1

experiment (day 6 mMCPT-1). Each symbol represents an individual mouse, bars show the mean, asterisks indicate statistically significant differences of the

mean, numbers indicate p value (Mann-Whitney test (B and D) and students t-test (C).

https://doi.org/10.1371/journal.ppat.1009121.g005
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absence of ILC2), with no evidence of mast cell activation measured by serum mMCPT-1.

This may reflect the existence of an alternative ILC- and mast cell-independent axis of IL-

33-mediated immunity that compensates for the absent ILC and is visualised in these extreme

models of effector cell deficiency.

Discussion

The tissue-derived alarmin cytokine IL-33 plays a central role in the initiation of rapid and

appropriate immune responses to parasitic helminths. Taking advantage of the IL-33 inhibitor

HpARI [30], and a truncation mutant of HpARI (CCP1/2) which amplifies IL-33 responses in
vivo [31], we tested the impact of endogenous IL-33 on the early immune response to S. ratti.

The activity of HpARI is due to specific and high-affinity binding directly to the IL-33 cyto-

kine. In doing so, HpARI blocks interaction of IL-33 with its receptor, ST2. Furthermore,

HpARI binds to genomic DNA: this dual DNA/IL-33 binding allows HpARI to tether IL-33

within necrotic cells, preventing release of the cytokine [30]. The CCP1/2 truncation mutant

of HpARI was shown to amplify rather than suppress IL-33 responses in vitro and in vivo, in a

range of cytokine-, allergen-, and infection-driven systems [31]. CCP1/2 retains the ability to

bind to DNA and IL-33, however cannot block the interaction of the cytokine with its receptor.

This non-blocking binding appears to stabilise the cytokine in its active form, extending its

half-life in vivo and amplifying endogenous IL-33 responses.

Application of HpARI prior to S. ratti infection increased the intestinal parasite numbers

day 6 p.i. in the context of reduced mast cell activation, while either stabilization of endoge-

nous IL-33 by application of CCP1/2 or direct application of rec. IL-33 reciprocally reduced

parasite burdens in the context of increased mast cell activation. Using these IL-33-specific

enhancers and inhibitors, we thereby establish a biologic function for endogenous IL-33 that is

released during S. ratti infection in mast cell-mediated parasite control.

Our further experiments using application of rec. IL-33 strongly suggest that the IL-

33-mediated anti-S. ratti immunity was not established during tissue migration, but rather

during the later intestinal phase. Kinetic analyses of intestinal parasite burdens revealed that

while similar parasite numbers arrived in the intestine of rec. IL-33 treated mice day 3 p.i., IL-

33 treatment prevented successful embedding in the intestine. Application of rec. IL-33 at days

4 and 5 p.i., that is after the tissue migration phase, still reduced intestinal parasite burdens,

thus excluding a role for IL-33 in eradicating the tissue migrating L3. Furthermore, deficiency

of either eosinophils or granulocytes that have been shown to mediate killing of migrating

Strongyloides larvae in the tissues [5–9] did not abrogate the IL-33-mediated reduction of

intestinal parasite burdens. Even though the initial parasite numbers in the intestine increased

ten-fold in eosinophil-deficient ΔdblGATA and granulocyte-depleted mice, IL-33 treatment

still caused a significant reduction.

Our results are in contrast with two studies suggesting that IL-33 promoted eosinophil-

dependent eradication of tissue-migrating S. venezuelensis larvae in C57BL/6 mice via ILC2-

derived IL-5 [22,39]. The authors reported that IL-33 deficiency increased S. venezuelensis fae-

cal egg release at day 8 p.i. and simultaneously abrogated lung ILC2 expansion, IL-5 produc-

tion and lung eosinophilia, while i.n. application of recombinant IL-33 rescued these features

in IL-33-/- mice [22]. A previous S. venezuelensis infection rendered C57BL/6 mice also more

resistant to subsequent N. brasiliensis infection, reducing intestinal parasite burden in an IL-

33-, ILC-, IL-5- and eosinophil-dependent manner but independent of CD4+ T cells [39].

Direct evidence for a role of IL-33 in enhancing Th2-mediated attack of migrating parasitic

nematodes in the lung arises from two other studies: IL-33 release triggered by house dust

mite allergen administration reduced numbers of Ascaris lumbricoides larvae in the lung
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during subsequent infection [40], while H. polygyrus infection-induced IL-33 reduced N. brasi-
liensis larvae counts in the lungs of C57BL/6 mice [41]. Reduction of migrating larvae was

dependent on IL-5 and eosinophils, but also on a functional adaptive immune system in both

studies.

In the current study, we rule out a comparable impact of IL-5-activated eosinophils, since

administration of rec. IL-33 reduced intestinal S. ratti parasite burdens in eosinophil-deficient

mice and in granulocyte-depleted mice to the same extent as in wildtype mice. This discrep-

ancy may reflect the different migration routes that are almost exclusively the lung route for S.

venezuelensis, A. lumbricoides and N. brasiliensis while S. ratti also migrates via skin and mus-

cle tissues directly to the mouth. Moreover, the functions of IL-33 in enhancing adaptive type

2 immunity and thereby improving larval attack in secondary infections will be different from

the rapid and innate function IL-33 exerts during the first week of infection that we study here.

Finally, most of the cited studies used C57BL/6 mice [22,39,41] while we used BALB/c mice in

our current study. As we have reported mouse strain-specific differences in the regulation of

anti-S. ratti immune response in BALB/c and C57BL/6 mice previously [16] it is conceivable

that the role of eosinophils in mediating IL-33 triggered anti-helminth immunity may be dif-

ferent in C57BL/6 mice.

Our combined results regarding S. ratti-infected BALB/c mice rather support a model

where IL-33 administration triggered rapid activation of mucosal mast cells in the intestine,

thereby preventing successful embedding of arriving parasites because (i) rec. IL-33 adminis-

tration led to detectable mucosal mast cell degranulation within 3 hours that peaked at 3 days,

i.e. the timepoint when larvae reach the intestine, (ii) newly arriving S. ratti larvae did not

attach to the intestine in IL-33-treated mice but were detected in faeces, and (iii) IL-33 reduced

intestinal parasite burdens only in the presence of mast cells while neither eosinophils, neutro-

phils, nor basophils that also contribute to controlling intestinal parasite burdens [10,11], were

needed to translate IL-33 application into reduced intestinal parasite burdens.

Although mast cells express the IL-33 receptor ST2 [18,36] and direct induction of cytokine

production but not degranulation of mast cells by IL-33 was demonstrated in vitro [36,37], we

provide evidence that mast cells were predominantly activated indirectly via ILC2s and IL-9.

In line with previous studies [42–44] we observed that treatment with rec. IL-33 induced ILC2

expansion. Absence of either ILC2s in BALB/c RAG-/-γc-/- mice and/or absence of functional

IL-9 receptor signalling in IL-9R-deficient mice abrogated both, IL-33-mediated reduction of

intestinal parasite burdens and activation of mast cells. These findings reveal that ILC2s and

IL-9 acted upstream of the mast cell activation in a non-redundant manner.

We did not attempt to identify the cellular source(s) of IL-9 in this study, as we have previ-

ously shown that T cells and lineage-negative cells that most likely represent ILC2 produce IL-

9 during S. ratti infection [16]. A central contribution of IL-9-producing Th9 cells in eradica-

tion of intestinal helminths was demonstrated in N. brasiliensis infected mice [45] and may be

important at later time points of S. ratti infection as well. However, the rapid induction of IL-

33-mediated mast cell activation reported in the current study was established in SCID and

RAG-/- mice independently of T cells and thus independently of T cell-derived IL-9. As ILC2s

are the major innate producers of IL-9 [38], our results are in line with the following chain of

events illustrated in Fig 6: (i) migrating S. ratti induce release and/or production of IL-33, (ii)

IL-33 activates ILC2 that produce IL-9 which further activates ILC2, (iii) IL-9 directly and/or

indirectly activates mucosal mast cells to degranulate and promote intestinal immunity (iv)

independently of T and B cells, eosinophils, basophils or neutrophils, (v) resulting in newly

arriving larvae encountering a hostile environment in the intestine and failing to embed into

the mucosa.
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Our working hypothesis (Fig 6) is supported by several studies. (i) Release of IL-33 protein

and upregulation of IL-33 transcription is induced by a range of damaging stimuli to the

organs that S. ratti migrates through, such as tape stripping-induced mechanical damage of

the skin [46], protease-containing allergen damage to the lung [47], and migration of S. vene-
zuelensis, N. brasiliensis or T. muris parasites through the lung [21,22] or intestine [23]. (ii) IL-

33, in concert with other alarmin cytokines such as IL-25 was shown to mediate expansion of

ILC2s [42–44] that are the dominant source of innate IL-9 [21,38]. (iii) IL-9 promotes mucosal

mast cell activation [14] and (v) activated mast cells mediate S. ratti expulsion from the intes-

tine [12].

In summary, by treating mice with IL-33 inhibitors and stabilizers in this study, we provide

direct evidence that endogenous IL-33 that is produced naturally during S. ratti infection pro-

motes mast cell activation and intestinal parasite control in a non-redundant manner. Using

application of exogenous rec. IL-33 allowed us to sensitively dissect the role of IL-33 in this sys-

tem. Paired with the experiments assessing endogenous IL-33 responses we highlight the

importance of an IL-33 –ILC2 –IL-9 –mast cell axis in the initiation of a type 2 immune

response to tissue-migrating parasites, leading to rapid generation of a hostile environment in

the intestine that facilitates parasite expulsion. A deeper understanding of the specific immune

pathways that lead to parasite expulsion may facilitate development of more potent treatments

for chronic helminth infections.

Material and methods

Ethics statement

Animal experiments were conducted in agreement with the German animal protection law

and experimental protocols were approved by Federal Health Authorities of the State of

Fig 6. Role of IL-33 during S. ratti infection. The cartoon illustrates the proposed functions of IL-33 during S. ratti infection. (i) Migrating S.

ratti larvae induce IL-33 that (ii) activates ILC2 to produce IL-9 that further activates ILC2, (iii) IL-9 directly and/or indirectly activates mucosal

mast cells (iv) independently of T and B cells, eosinophils, basophils or neutrophils, (v) to promote ejection of S. ratti from the intestine.

https://doi.org/10.1371/journal.ppat.1009121.g006
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Hamburg (permission-numbers 55/13, 111/16 and A029/18). All mice were bred in the animal

facility of the BNITM and kept in individually ventilated cages under specific pathogen-free

conditions. Mice were sacrificed by an overdosed CO2 narcosis followed by cervical disloca-

tion in accordance with the German animal protection law.

Mice

BALB/c RAG-/-, BALB/c RAG-/-γc-/-, IL-9R-deficient BALB/c mice [48], mast cell-deficient

BALB/c Cpa3Cre mice [33], basophil-deficient Mcpt8Cre mice [34], and eosinophil-deficient

ΔdblGATA mice have been described before. For all experiments, male and female mice were

used at 7 to 10 weeks of age, but experimental groups were matched for sex and age with maxi-

mally 7 days variance.

Parasites and Infection

The S. ratti cycle was maintained in Wistar rats and infections were performed by s.c. infection

of 2000 L3 in in 30 μl PBS into the hind footpad of mice as described [49,50]. Parasite burden

in tissue and intestine and quantification of the S. ratti 28S RNA-coding DNA in the faeces of

infected mice was performed as described [50]. For IL-33 treatment 1μg rec IL-33 (Biolegend,

Catalogue Nr. 580508) was applied either i.p. in 200 μl PBS or i.n. in 20 μl PBS either 3 h before

and 1 day after S. ratti infection or at days 4 and 5 of S. ratti infection. Some mice received

350 μg anti Gr-1 (clone RB6-8C5) at -1 and day 1 of S. ratti infection. Depletion of cells was

verified by flow cytometry (S3 Fig).

HpARI and CCP1/2

The HpARI and CCP1/2 proteins were produced in Expi293 cells and purified as previously

described [30,31]. Briefly, Expi293 cells (ThermoFisher) were transfected with pSecTAG2A

plasmids (Thermofisher Scientific) containing inserts encoding HpARI or CCP1/2 (with C-

terminal Myc and 6-His tags), using Expifectamine transfection and enhancer reagents (Ther-

mofisher Scientific) and following manufacturer´s instructions. Culture supernatants were col-

lected 7 days after transfection, and tagged proteins purified by sequential Nickel column

purifications on HisTRAP excel and HiTRAP chelating HP columns (Merck). Proteins were

eluted from columns using an imidazole gradient, and fractions containing proteins of interest

were pooled, dialysed to PBS, filter sterilised and protein concentration calculated by A280

measurements.

Flow Cytometry

Lung, spleen and peritoneal cavity cells (PECs) were isolated and single cell suspension pre-

pared. Single cells were isolated from the lung as described before [14]. For surface staining,

3–5 x 106 cells were stained for 25 minutes at 4˚C with Biotin-labeled (lineage cocktail) target-

ing mouse CD11b (clone M1/70), CD8 (clone 53–6.7), CD19 (clone 6D5), CD11c (clone

N418), CD3 (clone 17A2), TCRβ (clone H57-97), TCRγδ (Clone GL3), Gr-1 (clone RB-8C5),

CD5 (clone 53–7.3), CD49b (clone DX5), TER-119 (clone TER-119) and NK1.1 (clone

PK136), BV510-labeled anti-mouse CD4 antibody (clone RM4-5), AF700-labeled anti-mouse

CD45 antibody (clone 30-F11), PE-Cy7-labeled anti-mouse CD90.2 antibody (Clone30-H12)

and BV421-labeled anti-mouse CD127 antibody (clone A7R34). Subsequently, cells were

washed and stained for 15 minutes at 4˚C with PerCP Cy5.5-labeled Streptavidin. For intracel-

lular staining, first cells were fixed and permeabilized using the Thermofisher Scientific

Foxp3/Transcription factor staining buffer set according to the manufacturer’s protocol.
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Intracellular staining was performed using the following antibodies: AF488-labeled anti-

mouse GATA3 antibody (clone L50-823, from BD), PE-labelled anti-mouse Eomes antibody

(clone Dan11mag), APC-labelled anti-mouse RorγT antibody (clone Q31-378, from BD) and

PE/Dazzle594-labeled anti-mouse T-bet antibody (clone 4B10). Antibodies were purchased

from BioLegend or Thermofisher Scientific if not stated otherwise. Samples were analysed on

a LSRII (Becton Dickinson) using FlowJo software (TreeStar). The gating strategy for ILC2 is

shown in S4 Fig.

Mast cell activation

Blood was collected from infected mice at the indicated time points and allowed to coagulate

for 1 h at room temperature (RT). Serum was collected after centrifugation (10.000 x g) for 10

min at RT. mMCPT-1 concentration was quantified using MCPT-1 Ready-SET-Go kit (Ther-

mofisher Scientific) according to the manufacturer’s recommendations.

Statistical analysis

All data were assessed for normality and groups were compared by using Student’s t-test, one-

way ANOVA, two-way ANOVA (parametric), Mann Whitney-U test, or Kruskal-Wallis test

(non-parametric) using GraphPad Prism software (San Diego) as indicated in the figure leg-

ends. P values of�0.05 were considered to indicate statistical significance. Asterisk indicate sta-

tistically significant differences � p< 0.05; �� p< 0,01; ��� p< 0,001.The numerical data used

to generate Figs 1–5 and S1–S3 Figs are provided in the supplementary files (S1–S8 Data).

Supporting information

S1 Fig. (related to Fig 1). IL-33 release by tissue explants BALB/c mice were left naïve (open

circles) or s.c. infected with 2000 S. ratti L3 (closed circles). Mice were sacrificed day 2 and day

6 p.i. and lungs and small intestine prepared. Tissue explants corresponding to half a lung (ca

100 mg) or one tenth of the small intestine (ca 150 mg) were weighed, placed in 48 well plates

in 250 μl serum-free RPMI 1640 medium supplemented with 100 U/ml Penicillin/Streptavidin

and cOmplete Protease Inhibitor cocktail (Roche) and incubated for 24 h at 37˚C. IL-33 in the

SN was quantified using an IL-33 ELISA Kit (Invitrogen by Thermfisher Scientific) according

to the manufacturer‘s recommendation and normalized to the weight of the explants. Graphs

show the combined results of 1 (day 2) or 3 independent experiments (n = 2–8 per group and

experiment). Each symbol represents an individual mouse, bars show the mean, number indi-

cate the p value and asterisk indicate statistically significant differences between groups

(Mann-Whitney test).

(PDF)

S2 Fig. (related to Fig 2). Intranasal application of IL-33 results in systemic elevation of IL-

33 concentration and mucosal mast cell activation (A) Experimental procedure: BALB/c

mice were treated i.n. (open circles) or i.p. (closed circles) with 1 μg rec. IL-33 3 h before and

24 h post S. ratti infection. Serum samples were taken at the indicated time points and (B) IL-

33 and (C) mMCPT-1 concentration in the sera were quantified pre-treatment (0), 3 h, 1 and

3 days after treatment by ELISA. Shown are combined results from 2 independent experiments

(n = 3–5; pre-treatment n = 2 per experiment and group) each symbol represents an individual

mouse, bars show the mean and asterisk indicate statistically significant difference of the

means compared to pre-treatment (one-way ANOVA).

(PDF)
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S3 Fig. (related to Fig 4). Depletion of Gr-1+ cells (A) Experimental procedure: BALB/c mice

received i.p. 350μg anti-Gr-1 mAb (clone RB6-8C5, squares) or isotype control (circles) one

day before and one day after S. ratti infection. Mice were additionally treated with 1 μg of IL-

33 (closed symbols) or with PBS (open symbols) 3 h before and 24 h post S. ratti infection. Fre-

quency of Gr-1+ CD11b+ cells in the leukocyte gate of PBS were measured by flow cytometry

at day 1 p.i. To this end cells were stained with anti-mouse/human CD11b-PerCP-Cy5.5 (M1/

70) and anti-mouse Gr-1-BV421 (RB6-8C5) (both BioLegend, Germany), measured with an

LSRII Cytometer (BD, Germany) and analyzed by FlowJo software. (B) Representative dot

blots and (C) combined results of 2 independent experiments (n�� 4 per experiment and

group) showing frequency of granulocytes within PBL-leukocytes of the indicated groups are

shown. Each symbol represents an individual mouse, bars represent the mean and asterisk

indicate statistically significant differences of indicated groups (Kruskal-Wallis test with

Dunn‘s post test).

(PDF)

S4 Fig. (related to Fig 5). Gating of ILC2 ILC2 gating strategy is displayed for splenic cells iso-

lated from a BALB/c RAG-/- mouse treated with 1 μg rec. IL-33. Cells were stained for 25 min-

utes at 4˚C with Biotin-labeled lineage cocktail (targeting mouse CD11b, CD8, CD19, CD11c,

CD3, TCRβ, TCRγδ, Gr-1, CD5, CD49b, TER-119 and NK1.1) and PE-Cy7-labeled anti-

mouse CD90.2 antibody and BV421-labeled anti-mouse CD127 antibody. Subsequently, cells

were washed and stained for 15 minutes at 4˚C with PerCP Cy5.5-labeled Streptavidin. For

intracellular staining, first cells were fixed and permeabilized using the Thermofisher Scientific

Foxp3/Transcription factor staining buffer set according to the manufacturer’s protocol. Intra-

cellular staining was performed using the following antibodies: AF488-labeled anti-mouse

GATA3 antibody, PE-labelled anti-mouse Eomes antibody, APC-labeled anti-mouse RorγT

antibody, and PE/Dazzle594-labeled anti-mouse T-bet antibody. Cells were measured using an

LSRII Cytometer (BD, Germany) and analyzed by FlowJo software.

(PDF)

S1 Data. Prism File containing the numerical data used to generate Fig 1.

(PZFX)

S2 Data. Prism File containing the numerical data used to generate Fig 2.

(PZFX)

S3 Data. Prism File containing the numerical data used to generate Fig 3.

(PZF)

S4 Data. Prism File containing the numerical data used to generate Fig 4.

(PZFX)

S5 Data. Prism File containing the numerical data used to generate Fig 5.

(PZFX)

S6 Data. Prism File containing the numerical data used to generate S1 Fig.

(PZFX)

S7 Data. Prism File containing the numerical data used to generate S2 Fig.

(PZFX)

S8 Data. Prism File containing the numerical data used to generate S3 Fig.

(PZF)
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Rudolf, Wiebke Hartmann.

Resources: Jan-Eric Turner, Henry J. McSorley.

Supervision: Minka Breloer.

Writing – original draft: Minka Breloer.

Writing – review & editing: Jana Meiners, Jan-Eric Turner, Wiebke Hartmann, Henry J.

McSorley, Minka Breloer.

References
1. King CH. Helminthiasis Epidemiology and Control: Scoring Successes and Meeting the Remaining

Challenges. Adv Parasitol. 2019; 103:11–30. https://doi.org/10.1016/bs.apar.2018.08.001 PMID:

30878055

2. Allen JE, Maizels RM. Diversity and dialogue in immunity to helminths. Nat Rev Immunol. 2011; 11

(6):375–88. https://doi.org/10.1038/nri2992 PMID: 21610741

3. Viney ME, Lok JB. The biology of Strongyloides spp. WormBook. 2015:1–17.

4. Breloer M, Abraham D. Strongyloides infection in rodents: immune response and immune regulation.

Parasitology. 2017; 144(3):295–315. https://doi.org/10.1017/S0031182016000111 PMID: 26905057

5. Bonne-Annee S, Kerepesi LA, Hess JA, Wesolowski J, Paumet F, Lok JB, et al. Extracellular traps are

associated with human and mouse neutrophil and macrophage mediated killing of larval Strongyloides

stercoralis. Microbes Infect. 2014; 16(6):502–11. https://doi.org/10.1016/j.micinf.2014.02.012 PMID:

24642003

6. Bonne-Annee S, Hess JA, Abraham D. Innate and adaptive immunity to the nematode Strongyloides

stercoralis in a mouse model. Immunol Res. 2011; 51(2–3):205–14. https://doi.org/10.1007/s12026-

011-8258-2 PMID: 22101674

7. Watanabe K, Noda K, Hamano S, Koga M, Kishihara K, Nomoto K, et al. The crucial role of granulo-

cytes in the early host defense against Strongyloides ratti infection in mice. Parasitol Res. 2000; 86

(3):188–93. https://doi.org/10.1007/s004360050030 PMID: 10726988

8. O’Connell AE, Hess JA, Santiago GA, Nolan TJ, Lok JB, Lee JJ, et al. Major basic protein from eosino-

phils and myeloperoxidase from neutrophils are required for protective immunity to Strongyloides ster-

coralis in mice. Infect Immun. 2011; 79(7):2770–8. https://doi.org/10.1128/IAI.00931-10 PMID:

21482685

9. Bonne-Annee S, Kerepesi LA, Hess JA, O’Connell AE, Lok JB, Nolan TJ, et al. Human and mouse mac-

rophages collaborate with neutrophils to kill larval Strongyloides stercoralis. Infect Immun. 2013; 81

(9):3346–55. https://doi.org/10.1128/IAI.00625-13 PMID: 23798541

10. Reitz M, Brunn ML, Voehringer D, Breloer M. Basophils are dispensable for the establishment of protec-

tive adaptive immunity against primary and challenge infection with the intestinal helminth parasite

Strongyloides ratti. PLoS Negl Trop Dis. 2018; 12(11):e0006992. https://doi.org/10.1371/journal.pntd.

0006992 PMID: 30496188

PLOS PATHOGENS IL-33 promotes IL-9 and mast cell mediated intestinal immunity to Strongyloides ratti

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009121 December 22, 2020 17 / 20

https://doi.org/10.1016/bs.apar.2018.08.001
http://www.ncbi.nlm.nih.gov/pubmed/30878055
https://doi.org/10.1038/nri2992
http://www.ncbi.nlm.nih.gov/pubmed/21610741
https://doi.org/10.1017/S0031182016000111
http://www.ncbi.nlm.nih.gov/pubmed/26905057
https://doi.org/10.1016/j.micinf.2014.02.012
http://www.ncbi.nlm.nih.gov/pubmed/24642003
https://doi.org/10.1007/s12026-011-8258-2
https://doi.org/10.1007/s12026-011-8258-2
http://www.ncbi.nlm.nih.gov/pubmed/22101674
https://doi.org/10.1007/s004360050030
http://www.ncbi.nlm.nih.gov/pubmed/10726988
https://doi.org/10.1128/IAI.00931-10
http://www.ncbi.nlm.nih.gov/pubmed/21482685
https://doi.org/10.1128/IAI.00625-13
http://www.ncbi.nlm.nih.gov/pubmed/23798541
https://doi.org/10.1371/journal.pntd.0006992
https://doi.org/10.1371/journal.pntd.0006992
http://www.ncbi.nlm.nih.gov/pubmed/30496188
https://doi.org/10.1371/journal.ppat.1009121


11. Mukai K, Karasuyama H, Kabashima K, Kubo M, Galli SJ. Differences in the Importance of Mast Cells,

Basophils, IgE, and IgG versus That of CD4+ T Cells and ILC2 Cells in Primary and Secondary Immu-

nity to Strongyloides venezuelensis. Infect Immun. 2017; 85(5).

12. Reitz M, Brunn ML, Rodewald HR, Feyerabend TB, Roers A, Dudeck A, et al. Mucosal mast cells are

indispensable for the timely termination of Strongyloides ratti infection. Mucosal Immunol. 2017; 10

(2):481–92. https://doi.org/10.1038/mi.2016.56 PMID: 27381924

13. Matsumoto M, Sasaki Y, Yasuda K, Takai T, Muramatsu M, Yoshimoto T, et al. IgG and IgE collabora-

tively accelerate expulsion of Strongyloides venezuelensis in a primary infection. Infect Immun. 2013;

81(7):2518–27. https://doi.org/10.1128/IAI.00285-13 PMID: 23630966

14. Reitz M, Hartmann W, Rudiger N, Orinska Z, Brunn ML, Breloer M. Interleukin-9 promotes early mast

cell-mediated expulsion of Strongyloides ratti but is dispensable for generation of protective memory.

Sci Rep. 2018; 8(1):8636. https://doi.org/10.1038/s41598-018-26907-2 PMID: 29872093

15. Blankenhaus B, Klemm U, Eschbach ML, Sparwasser T, Huehn J, Kuhl AA, et al. Strongyloides ratti

infection induces expansion of Foxp3+ regulatory T cells that interfere with immune response and para-

site clearance in BALB/c mice. J Immunol. 2011; 186(7):4295–305. https://doi.org/10.4049/jimmunol.

1001920 PMID: 21335490

16. Blankenhaus B, Reitz M, Brenz Y, Eschbach ML, Hartmann W, Haben I, et al. Foxp3(+) regulatory T

cells delay expulsion of intestinal nematodes by suppression of IL-9-driven mast cell activation in BALB/

c but not in C57BL/6 mice. PLoS Pathog. 2014; 10(2):e1003913. https://doi.org/10.1371/journal.ppat.

1003913 PMID: 24516385

17. Breloer M, Hartmann W, Blankenhaus B, Eschbach ML, Pfeffer K, Jacobs T. Cutting Edge: the BTLA-

HVEM regulatory pathway interferes with protective immunity to intestinal Helminth infection. J Immu-

nol. 2015; 194(4):1413–6. https://doi.org/10.4049/jimmunol.1402510 PMID: 25595777

18. Cayrol C, Girard JP. Interleukin-33 (IL-33): A nuclear cytokine from the IL-1 family. Immunol Rev. 2018;

281(1):154–68. https://doi.org/10.1111/imr.12619 PMID: 29247993

19. Molofsky AB, Savage AK, Locksley RM. Interleukin-33 in Tissue Homeostasis, Injury, and Inflamma-

tion. Immunity. 2015; 42(6):1005–19. https://doi.org/10.1016/j.immuni.2015.06.006 PMID: 26084021

20. Liew FY, Girard JP, Turnquist HR. Interleukin-33 in health and disease. Nat Rev Immunol. 2016; 16

(11):676–89. https://doi.org/10.1038/nri.2016.95 PMID: 27640624

21. Mohapatra A, Van Dyken SJ, Schneider C, Nussbaum JC, Liang HE, Locksley RM. Group 2 innate lym-

phoid cells utilize the IRF4-IL-9 module to coordinate epithelial cell maintenance of lung homeostasis.

Mucosal Immunol. 2016; 9(1):275–86. https://doi.org/10.1038/mi.2015.59 PMID: 26129648

22. Yasuda K, Muto T, Kawagoe T, Matsumoto M, Sasaki Y, Matsushita K, et al. Contribution of IL-33-acti-

vated type II innate lymphoid cells to pulmonary eosinophilia in intestinal nematode-infected mice. Proc

Natl Acad Sci U S A. 2012; 109(9):3451–6. https://doi.org/10.1073/pnas.1201042109 PMID: 22331917

23. Humphreys NE, Xu D, Hepworth MR, Liew FY, Grencis RK. IL-33, a potent inducer of adaptive immu-

nity to intestinal nematodes. J Immunol. 2008; 180(4):2443–9. https://doi.org/10.4049/jimmunol.180.4.

2443 PMID: 18250453

24. Hung LY, Lewkowich IP, Dawson LA, Downey J, Yang Y, Smith DE, et al. IL-33 drives biphasic IL-13

production for noncanonical Type 2 immunity against hookworms. Proc Natl Acad Sci U S A. 2013; 110

(1):282–7. https://doi.org/10.1073/pnas.1206587110 PMID: 23248269

25. Coakley G, McCaskill JL, Borger JG, Simbari F, Robertson E, Millar M, et al. Extracellular Vesicles from

a Helminth Parasite Suppress Macrophage Activation and Constitute an Effective Vaccine for Protec-

tive Immunity. Cell Rep. 2017; 19(8):1545–57. https://doi.org/10.1016/j.celrep.2017.05.001 PMID:

28538175

26. Scalfone LK, Nel HJ, Gagliardo LF, Cameron JL, Al-Shokri S, Leifer CA, et al. Participation of MyD88

and interleukin-33 as innate drivers of Th2 immunity to Trichinella spiralis. Infect Immun. 2013; 81

(4):1354–63. https://doi.org/10.1128/IAI.01307-12 PMID: 23403558

27. Ajendra J, Specht S, Neumann AL, Gondorf F, Schmidt D, Gentil K, et al. ST2 deficiency does not

impair type 2 immune responses during chronic filarial infection but leads to an increased microfilaremia

due to an impaired splenic microfilarial clearance. PLoS One. 2014; 9(3):e93072. https://doi.org/10.

1371/journal.pone.0093072 PMID: 24663956

28. Robinson M, Wahid F, Behnke JM, Gilbert FS. Immunological relationships during primary infection

with Heligmosomoides polygyrus (Nematospiroides dubius): dose-dependent expulsion of adult worms.

Parasitology. 1989; 98 (Pt 1):115–24. https://doi.org/10.1017/s0031182000059758 PMID: 2717211

29. McSorley HJ, Blair NF, Smith KA, McKenzie AN, Maizels RM. Blockade of IL-33 release and suppres-

sion of type 2 innate lymphoid cell responses by helminth secreted products in airway allergy. Mucosal

Immunol. 2014; 7(5):1068–78. https://doi.org/10.1038/mi.2013.123 PMID: 24496315

PLOS PATHOGENS IL-33 promotes IL-9 and mast cell mediated intestinal immunity to Strongyloides ratti

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009121 December 22, 2020 18 / 20

https://doi.org/10.1038/mi.2016.56
http://www.ncbi.nlm.nih.gov/pubmed/27381924
https://doi.org/10.1128/IAI.00285-13
http://www.ncbi.nlm.nih.gov/pubmed/23630966
https://doi.org/10.1038/s41598-018-26907-2
http://www.ncbi.nlm.nih.gov/pubmed/29872093
https://doi.org/10.4049/jimmunol.1001920
https://doi.org/10.4049/jimmunol.1001920
http://www.ncbi.nlm.nih.gov/pubmed/21335490
https://doi.org/10.1371/journal.ppat.1003913
https://doi.org/10.1371/journal.ppat.1003913
http://www.ncbi.nlm.nih.gov/pubmed/24516385
https://doi.org/10.4049/jimmunol.1402510
http://www.ncbi.nlm.nih.gov/pubmed/25595777
https://doi.org/10.1111/imr.12619
http://www.ncbi.nlm.nih.gov/pubmed/29247993
https://doi.org/10.1016/j.immuni.2015.06.006
http://www.ncbi.nlm.nih.gov/pubmed/26084021
https://doi.org/10.1038/nri.2016.95
http://www.ncbi.nlm.nih.gov/pubmed/27640624
https://doi.org/10.1038/mi.2015.59
http://www.ncbi.nlm.nih.gov/pubmed/26129648
https://doi.org/10.1073/pnas.1201042109
http://www.ncbi.nlm.nih.gov/pubmed/22331917
https://doi.org/10.4049/jimmunol.180.4.2443
https://doi.org/10.4049/jimmunol.180.4.2443
http://www.ncbi.nlm.nih.gov/pubmed/18250453
https://doi.org/10.1073/pnas.1206587110
http://www.ncbi.nlm.nih.gov/pubmed/23248269
https://doi.org/10.1016/j.celrep.2017.05.001
http://www.ncbi.nlm.nih.gov/pubmed/28538175
https://doi.org/10.1128/IAI.01307-12
http://www.ncbi.nlm.nih.gov/pubmed/23403558
https://doi.org/10.1371/journal.pone.0093072
https://doi.org/10.1371/journal.pone.0093072
http://www.ncbi.nlm.nih.gov/pubmed/24663956
https://doi.org/10.1017/s0031182000059758
http://www.ncbi.nlm.nih.gov/pubmed/2717211
https://doi.org/10.1038/mi.2013.123
http://www.ncbi.nlm.nih.gov/pubmed/24496315
https://doi.org/10.1371/journal.ppat.1009121


30. Osbourn M, Soares DC, Vacca F, Cohen ES, Scott IC, Gregory WF, et al. HpARI Protein Secreted by a

Helminth Parasite Suppresses Interleukin-33. Immunity. 2017; 47(4):739–51 e5. https://doi.org/10.

1016/j.immuni.2017.09.015 PMID: 29045903

31. Chauche C, Vacca F, Chia SL, Richards J, Gregory WF, Ogunkanbi A, et al. A Truncated Form of

HpARI Stabilizes IL-33, Amplifying Responses to the Cytokine. Front Immunol. 2020; 11:1363. https://

doi.org/10.3389/fimmu.2020.01363 PMID: 32695116

32. Reynolds DS, Stevens RL, Lane WS, Carr MH, Austen KF, Serafin WE. Different mouse mast cell pop-

ulations express various combinations of at least six distinct mast cell serine proteases. Proc Natl Acad

Sci U S A. 1990; 87(8):3230–4. https://doi.org/10.1073/pnas.87.8.3230 PMID: 2326280

33. Feyerabend TB, Weiser A, Tietz A, Stassen M, Harris N, Kopf M, et al. Cre-mediated cell ablation con-

tests mast cell contribution in models of antibody- and T cell-mediated autoimmunity. Immunity. 2011;

35(5):832–44. https://doi.org/10.1016/j.immuni.2011.09.015 PMID: 22101159

34. Ohnmacht C, Schwartz C, Panzer M, Schiedewitz I, Naumann R, Voehringer D. Basophils orchestrate

chronic allergic dermatitis and protective immunity against helminths. Immunity. 2010; 33(3):364–74.

https://doi.org/10.1016/j.immuni.2010.08.011 PMID: 20817571

35. Moritz DR, Rodewald HR, Gheyselinck J, Klemenz R. The IL-1 receptor-related T1 antigen is expressed

on immature and mature mast cells and on fetal blood mast cell progenitors. J Immunol. 1998; 161

(9):4866–74. PMID: 9794420

36. Enoksson M, Lyberg K, Moller-Westerberg C, Fallon PG, Nilsson G, Lunderius-Andersson C. Mast

cells as sensors of cell injury through IL-33 recognition. J Immunol. 2011; 186(4):2523–8. https://doi.

org/10.4049/jimmunol.1003383 PMID: 21239713

37. Ho LH, Ohno T, Oboki K, Kajiwara N, Suto H, Iikura M, et al. IL-33 induces IL-13 production by mouse

mast cells independently of IgE-FcepsilonRI signals. J Leukoc Biol. 2007; 82(6):1481–90. https://doi.

org/10.1189/jlb.0407200 PMID: 17881510

38. Wilhelm C, Hirota K, Stieglitz B, Van Snick J, Tolaini M, Lahl K, et al. An IL-9 fate reporter demonstrates

the induction of an innate IL-9 response in lung inflammation. Nat Immunol. 2011; 12(11):1071–7.

https://doi.org/10.1038/ni.2133 PMID: 21983833

39. Yasuda K, Adachi T, Koida A, Nakanishi K. Nematode-Infected Mice Acquire Resistance to Subsequent

Infection With Unrelated Nematode by Inducing Highly Responsive Group 2 Innate Lymphoid Cells in

the Lung. Front Immunol. 2018; 9:2132. https://doi.org/10.3389/fimmu.2018.02132 PMID: 30283458

40. Gazzinelli-Guimaraes PH, de Queiroz Prado R, Ricciardi A, Bonne-Annee S, Sciurba J, Karmele EP,

et al. Allergen presensitization drives an eosinophil-dependent arrest in lung-specific helminth develop-

ment. J Clin Invest. 2019; 130:3686–701. https://doi.org/10.1172/JCI127963 PMID: 31380805

41. Filbey KJ, Camberis M, Chandler J, Turner R, Kettle AJ, Eichenberger RM, et al. Intestinal helminth

infection promotes IL-5- and CD4(+) T cell-dependent immunity in the lung against migrating parasites.

Mucosal Immunol. 2019; 12(2):352–62. https://doi.org/10.1038/s41385-018-0102-8 PMID: 30401814

42. Moro K, Yamada T, Tanabe M, Takeuchi T, Ikawa T, Kawamoto H, et al. Innate production of T(H)2

cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells. Nature. 2010; 463(7280):540–

4. https://doi.org/10.1038/nature08636 PMID: 20023630

43. Neill DR, Wong SH, Bellosi A, Flynn RJ, Daly M, Langford TK, et al. Nuocytes represent a new innate

effector leukocyte that mediates type-2 immunity. Nature. 2010; 464(7293):1367–70. https://doi.org/10.

1038/nature08900 PMID: 20200518

44. Price AE, Liang HE, Sullivan BM, Reinhardt RL, Eisley CJ, Erle DJ, et al. Systemically dispersed innate

IL-13-expressing cells in type 2 immunity. Proc Natl Acad Sci U S A. 2010; 107(25):11489–94. https://

doi.org/10.1073/pnas.1003988107 PMID: 20534524

45. Licona-Limon P, Henao-Mejia J, Temann AU, Gagliani N, Licona-Limon I, Ishigame H, et al. Th9 Cells

Drive Host Immunity against Gastrointestinal Worm Infection. Immunity. 2013; 39(4):744–57. https://

doi.org/10.1016/j.immuni.2013.07.020 PMID: 24138883

46. Leyva-Castillo JM, Galand C, Kam C, Burton O, Gurish M, Musser MA, et al. Mechanical Skin Injury

Promotes Food Anaphylaxis by Driving Intestinal Mast Cell Expansion. Immunity. 2019; 50(5):1262–75

e4. https://doi.org/10.1016/j.immuni.2019.03.023 PMID: 31027995

47. Scott IC, Majithiya JB, Sanden C, Thornton P, Sanders PN, Moore T, et al. Interleukin-33 is activated by

allergen- and necrosis-associated proteolytic activities to regulate its alarmin activity during epithelial

damage. Sci Rep. 2018; 8(1):3363. https://doi.org/10.1038/s41598-018-21589-2 PMID: 29463838

48. Steenwinckel V, Louahed J, Orabona C, Huaux F, Warnier G, McKenzie A, et al. IL-13 mediates in vivo

IL-9 activities on lung epithelial cells but not on hematopoietic cells. J Immunol. 2007; 178(5):3244–51.

https://doi.org/10.4049/jimmunol.178.5.3244 PMID: 17312173

49. Eschbach ML, Klemm U, Kolbaum J, Blankenhaus B, Brattig N, Breloer M. Strongyloides ratti infection

induces transient nematode-specific Th2 response and reciprocal suppression of IFN-gamma

PLOS PATHOGENS IL-33 promotes IL-9 and mast cell mediated intestinal immunity to Strongyloides ratti

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009121 December 22, 2020 19 / 20

https://doi.org/10.1016/j.immuni.2017.09.015
https://doi.org/10.1016/j.immuni.2017.09.015
http://www.ncbi.nlm.nih.gov/pubmed/29045903
https://doi.org/10.3389/fimmu.2020.01363
https://doi.org/10.3389/fimmu.2020.01363
http://www.ncbi.nlm.nih.gov/pubmed/32695116
https://doi.org/10.1073/pnas.87.8.3230
http://www.ncbi.nlm.nih.gov/pubmed/2326280
https://doi.org/10.1016/j.immuni.2011.09.015
http://www.ncbi.nlm.nih.gov/pubmed/22101159
https://doi.org/10.1016/j.immuni.2010.08.011
http://www.ncbi.nlm.nih.gov/pubmed/20817571
http://www.ncbi.nlm.nih.gov/pubmed/9794420
https://doi.org/10.4049/jimmunol.1003383
https://doi.org/10.4049/jimmunol.1003383
http://www.ncbi.nlm.nih.gov/pubmed/21239713
https://doi.org/10.1189/jlb.0407200
https://doi.org/10.1189/jlb.0407200
http://www.ncbi.nlm.nih.gov/pubmed/17881510
https://doi.org/10.1038/ni.2133
http://www.ncbi.nlm.nih.gov/pubmed/21983833
https://doi.org/10.3389/fimmu.2018.02132
http://www.ncbi.nlm.nih.gov/pubmed/30283458
https://doi.org/10.1172/JCI127963
http://www.ncbi.nlm.nih.gov/pubmed/31380805
https://doi.org/10.1038/s41385-018-0102-8
http://www.ncbi.nlm.nih.gov/pubmed/30401814
https://doi.org/10.1038/nature08636
http://www.ncbi.nlm.nih.gov/pubmed/20023630
https://doi.org/10.1038/nature08900
https://doi.org/10.1038/nature08900
http://www.ncbi.nlm.nih.gov/pubmed/20200518
https://doi.org/10.1073/pnas.1003988107
https://doi.org/10.1073/pnas.1003988107
http://www.ncbi.nlm.nih.gov/pubmed/20534524
https://doi.org/10.1016/j.immuni.2013.07.020
https://doi.org/10.1016/j.immuni.2013.07.020
http://www.ncbi.nlm.nih.gov/pubmed/24138883
https://doi.org/10.1016/j.immuni.2019.03.023
http://www.ncbi.nlm.nih.gov/pubmed/31027995
https://doi.org/10.1038/s41598-018-21589-2
http://www.ncbi.nlm.nih.gov/pubmed/29463838
https://doi.org/10.4049/jimmunol.178.5.3244
http://www.ncbi.nlm.nih.gov/pubmed/17312173
https://doi.org/10.1371/journal.ppat.1009121


production in mice. Parasite Immunol. 2010; 32(5):370–83. https://doi.org/10.1111/j.1365-3024.2010.

01199.x PMID: 20500666

50. Nouir NB, Eschbach ML, Piedavent M, Osterloh A, Kingsley MT, Erttmann K, et al. Vaccination with

Strongyloides ratti heat shock protein 60 increases susceptibility to challenge infection by induction of

Th1 response. Vaccine. 2012; 30(5):862–71. https://doi.org/10.1016/j.vaccine.2011.11.110 PMID:

22172506

PLOS PATHOGENS IL-33 promotes IL-9 and mast cell mediated intestinal immunity to Strongyloides ratti

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009121 December 22, 2020 20 / 20

https://doi.org/10.1111/j.1365-3024.2010.01199.x
https://doi.org/10.1111/j.1365-3024.2010.01199.x
http://www.ncbi.nlm.nih.gov/pubmed/20500666
https://doi.org/10.1016/j.vaccine.2011.11.110
http://www.ncbi.nlm.nih.gov/pubmed/22172506
https://doi.org/10.1371/journal.ppat.1009121

