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Abstract

Background: The average 5-year survival rate of lung adenocarcinoma patients is only 15% to

17%, which is primarily due to late-stage diagnosis and a lack of specific prognostic evaluations

that can recommend effective therapies. Additionally, there is no clinically recognized biomarker

that is effective for early-stage diagnosis.

Methods: Tissue samples from 10 lung adenocarcinoma patients (both tumor and non-tumor

tissues) and 10 benign lung tumor samples were collected. The significantly differentially repre-

sented metabolites from the three groups were analyzed by liquid chromatography and tandem

mass spectrometry.

Results: Pathway analysis indicated that central carbon metabolism was the top altered pathway

in lung adenocarcinoma, while protein digestion and absorption, and central carbon metabolism

were the top altered pathways in benign lung tumors. Receiver operating characteristic curve

analysis revealed that adenosine 30-monophosphate, creatine, glycerol, and 14 other differential

metabolites were potential sensitive and specific biomarkers for the diagnosis and prognosis of

lung adenocarcinoma.

Conclusion: Our findings suggest that the metabolomics approach may be a useful method to

detect potential biomarkers in lung adenocarcinoma patients.
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Introduction

Lung cancer is a type of malignant tumor

that seriously endangers human health and
life because it has high morbidity and mor-

tality worldwide.1 Lung adenocarcinoma, a
subtype of lung cancer, is the leading cause

of cancer-related deaths in the United

States. Lung adenocarcinoma has an aver-
age 5-year survival rate of 15% to 17%,

which is primarily due to late-stage diagno-
sis and no available clinical tests that

can provide therapy recommendations.2

Additionally, the etiology of lung adenocar-
cinoma is complicated, and it is difficult to

achieve early-stage diagnoses with existing
imaging, histopathology, and bronchosco-

py methods. Thus, most patients are

diagnosed with advanced-stage lung adeno-
carcinoma on admission.3 Therefore, there

is an urgent need to find early diagnostic
markers for lung adenocarcinoma that are

conducive to the early detection and treat-

ment of this malignancy, as these would
improve patient survival rates.

Proteomics is a cross-discipline that has

emerged in the post-genomics era and is
used to identify all proteins in a given

sample. The goal of proteomics is to ana-
lyze the interactions and connections

between proteins from a holistic perspec-

tive, revealing the rules of protein function
and cellular activities.4 Among these meth-

ods, non-targeted metabolomics can quan-
tify metabolites in biological systems,

maximizing the information from metabo-

lites.5 Because of the large number of
small molecule metabolites in biological

samples and the large dynamic range of
their concentrations, chromatography-mass

spectrometry is the most important tool
for metabolomics research. Liquid chroma-
tography and tandem mass spectrometry
(LC-MS/MS) is a series analysis platform
with high performance liquid chromatogra-
phy as the separation system and high-
resolution mass spectrometry as the
detection system. Compared with other
chromatographic-mass spectrometry tech-
niques, LC-MS/MS is more suitable for
the analysis of metabolites with low volatil-
ity or poor thermal stability. Ultra-high
performance liquid chromatography col-
umns packed with 1.7-lm ultrafine particles
are at least 10� faster than conventional
HPLC, with several times higher
sensitivity and resolution.6 Currently,
ultra-performance liquid chromatography
and quadrupole-time-of-flight (Q-TOF)
mass spectrometry have been widely used
in metabolomics research. Therefore, pro-
tein metabolomics technologies have
become an indispensable tool for studying
tumor biology, and this field has shown
rapid development.7

In the process of searching for lung
cancer biomarkers, blood,7,8 urine,9,10

saliva,11 and lung tissue12 have been used
as research samples. Protein metabolomics
techniques are used to identify differences
in metabolite expression between cancerous
and normal lung tissues, thereby screening
for biomarkers for the early diagnosis of
lung cancer. So far, many lung cancer bio-
markers have been identified. As previously
reported, volatile organic compounds
(VOCs)13 can be used as biomarkers for
detecting lung cancer during breathing.
Previous studies have clarified that metab-
olites such as cyclophilin (CYP-A),
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macrophage migration inhibitory factor
(MIF),14 polymeric immunoglobulin recep-
tor (PIGR), 14-3-3g,15 thymosin b4
(TMSB4), ubiquitin, acyl-CoA-binding
protein (ACBP), cysteine protease inhibitor
A (CSTA), Cytochrome C,16 thioredoxin
(TXN), human S100 calcium binding pro-
tein A6 (S100A6), thymopoietin (TMPO),
ribosomal proteins L39 and S30, peroxidase
(peroxidase, PRDX) 1 and 3 (PRDX1,
PRDX3), enolase-1 (ENO1), histone
H2A.2,17 haptoglobin (HP),17 and SAA1
and SAA218 are overexpressed in cancer tis-
sues, suggesting that they can be used as
specific diagnostic biomarkers for lung
cancer. Furthermore, Li et al.19 showed
that leucine-rich alpha-2-glycoprotein
(LRG1) is highly expressed in urine samples
from lung cancer patients compared with
healthy subjects. However, these studies
are far from enough with regard to the com-
plex associations between metabolomics
and lung adenocarcinoma. A systemic anal-
ysis of metabolites of lung adenocarcinoma
tissues is urgently needed to offer more can-
didates for the diagnosis and mechanism of
early-stage lung adenocarcinoma.

In this study, a comprehensive metabo-
lomics analysis of lung adenocarcinoma tis-
sues was performed by LC-MS/MS. The
selected differentially expressed metabolites
could be used as clinical biomarkers for
incipient diagnosis and prognosis of lung
adenocarcinoma.

Materials and methods

Sample collection and preparation

In this study, tissue samples from 10 lung
adenocarcinoma patients, including tumor
and non-tumor tissues, and tissue samples
from 10 benign lung tumor patients were
collected. The clinical characteristics of
these 20 patients are shown in Table 1. All
patients provided written informed consent,
and ethics approval was obtained from the

Ethics Committees of the First Affiliated

Hospital of University of South China.
Each sample weighed 60mg and was

sequentially added to 200 lL of water for

homogenization, and then 800 lL of a pre-

cooled methanol/acetonitrile solution (1:1,

v/v). The mixture was vortexed and sonicat-

ed twice for 30 minutes, incubated at �20�C
for 1 hour, centrifuged at 14,000 �g for

4 minutes at 4�C, and then the supernatant

was vacuum dried. The material obtained

from vacuum drying was reconstituted in

100 lL of an aqueous acetonitrile solution

(acetonitrile: water¼ 1:1, v/v), followed by

vortexing and centrifugation at 14,000 �g

for 5 minutes at 4�C. Quality control (QC)

samples, a mixture of the three samples in

equal amounts, were used to determine the

instrument state prior to injection, to bal-

ance the chromatography-mass spectrome-

try system, and to evaluate system stability

throughout the experiment. The superna-

tant of the above samples were taken for

LC-MS/MS analysis.

Chromatography and mass spectrometry

Samples were separated on an Agilent

1290 Infinity LC Ultra Performance

Liquid Chromatography System (Agilent

Technologies Inc., Santa Clara, CA, USA)

Table 1. Clinical characteristics of the lung cancer
and benign lung tumor patients.

Lung cancer

patients

(Cancer 1–10)

Benign lung

tumors patients

(Lump 1–10)

N (male/female) 10 (6/4) 10 (8/2)

Age (median/range) 61/50–74 54/48–62

Smoker/non-smoker 4/6 5/5

c or p stages

(I–II/III–IV)

8/2

Tumor metastasis

(yes/no)

3/7 0/10

c stage (clinical stage) and p stage (pathological stage)

were based on the TNM classification.
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with HILIC columns at 25�C, a flow rate of

0.3mL/minute, and an injection volume of

2 lL. Solutions A (water, 25mM ammoni-

um acetate, and 25mM ammonia) and B

(acetonitrile) were used as the mobile

phases. The gradient started at 95% B,

reached 65% B from 1 to 14 minutes,

40% B in the next 2 minutes, and then
reached 95% B from 18 to 18.1 minutes,

and was maintained at 95% B from 18.1

to 23 minutes. Samples were placed in an

autosampler at 4�C throughout the analy-

sis. The separated samples were subjected to

mass spectrometry using a Triple TOF 5600

mass spectrometer (AB SCIEX). Mass spec-

trometry was performed using electrospray

ionization (ESI), with positive and negative

ion modes, respectively.

Data processing and statistical analyses

Principal component analysis (PCA), par-

tial least squares discriminant analysis

(PLS-DA), and orthogonal partial least

squares discriminant analysis (OPLS-DA)

were performed to maximize the separation
between groups using SIMCA-Pþ 14.1

software (Umetrics, Umeå, Sweden).

Statistical significance was analyzed using

the Student’s t-test, and statistical signifi-

cance was defined as p< 0.05.
Pathway analysis combined with expres-

sion data has recently been emphasized to

reveal potential functional interactions

between multiple candidate metabolites.

Functional interactions between the different

groups of differentially expressed metabolites

were examined using the Kyoto Encyclopedia

of Genes and Genomes (KEGG) pathway

database (http://www.kegg.jp/).20

Receiver operating characteristic (ROC)

curve analysis

We performed ROC curve analysis using
IBM SPSS Statistics for Windows, version

19.0 (IBM Corp., Armonk, NY, USA) to

analyze each candidate biomarker and
inspect its utility for predicting lung adeno-
carcinoma or benign lung tumors.
Sensitivity and specificity trade-offs were
summarized for each variable using the
area under the ROC curve (AUC). The
AUCs of the selected metabolites were com-
pared to judge the performance of the can-
didate metabolites in lung adenocarcinoma.
An AUC value of 1.0 corresponded to a
prediction model with 100% sensitivity
and 100% specificity, whereas an AUC
value of 0.5 corresponded to a poor predic-
tive model. The level of significance was set
at p< 0.05.

Results

Quality control of the experiments

The system stability of this project was ana-
lyzed and evaluated by QC sample spec-
trum comparison and PCA analysis. The
results of comparing the total ion flow
charts (TIC) of QC samples showed that
the response intensity and retention time
of each chromatographic peak basically
overlapped, which indicated that the
variation caused by instrument errors was
small during the experiment. Additionally,
the PCA of the total sample showed that
the QC samples were closely clustered in
the positive and negative ion modes, dem-
onstrating that the experiment had good
repeatability. Moreover, Hotelling’s T2
analysis of population samples showed
that all samples were within 99% confi-
dence interval, without outlier samples.
Therefore, these findings clarified that the
system of this study was stable and could
be used for subsequent analysis.

Identification of differently expressed
metabolites

The data produced by LC-MS/MS
were analyzed to identify significantly
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differentially expressed metabolites. We

compared the levels of metabolites between

the lung adenocarcinoma and control

groups. As shown in Supplemental Table

1 and Supplemental Figure 1, 119 metabo-

lites in tumor tissues showed significant dif-

ferences compared with non-tumor normal

tissue (p< 0.05). Meanwhile, 105 metabo-

lites were detected in benign lung tumors

tissue, indicating significant differences

compared with control groups (p< 0.05)

(Supplemental Table 2 and Supplemental

Figure 2). Additionally, 32 metabolites in

lung adenocarcinoma tissue were significant-

ly altered compared with benign lung tumors

tissue (p< 0.05) (Supplemental Table 3 and

Supplemental Figure 3). Therefore, these

remarkably different metabolites were select-

ed for subsequent bioinformatics analysis.

Statistical analysis of differentially

expressed metabolites

PCA, PLS-DA, and OPLS-DA were used

to evaluate differences in the expression of

tissue metabolites between lung adenocarci-

noma patients (both tumor and non-tumor

tissues) and the benign lung tumor patients.

PCA analysis showed that there was appar-

ent distinct clustering between the control

and lung adenocarcinoma tissues of

patients with lung adenocarcinoma.

Meanwhile, the comparison between

benign lung tumor tissue and control

tissue was consistent with those of lung ade-

nocarcinoma tissue and benign lung tumor

tissue. To further distinguish the differences

of benign lung tissue, lung adenocarcinoma

tissue, and para-cancerous tissue, PLS-DA

and OPLS-DA were used to supervise anal-

yses of pattern recognition. In PLS-DA and

OPLS-DA, the score plots showed good

visual separation among benign lung

tissue, lung adenocarcinoma, and para-

cancerous tissue (Figure 1–2 and Table 2).

Metabolic pathway and functional
analysis

KEGG pathway analysis of the differential
expression data was used to reveal potential
functional interactions between multiple
candidate metabolites by Student t-test.
The results showed a significant enrichment
of 43 pathways out of 112 pathways in lung
adenocarcinoma tissue (p< 0.05). Among
them, the most significantly enriched 10 sig-
naling pathways were central carbon metab-
olism in cancer (p¼ 0), protein digestion and
absorption (p¼ 8.88E-16), aminoacyl-tRNA
biosynthesis (p¼ 1.26E-13), mineral absorp-
tion (p¼ 8.29E-11), ABC transporters
(p¼ 4.85E-09), choline metabolism in cancer
(p¼ 5.62E-06), alanine, aspartate, and gluta-
mate metabolism (p¼ 6.84E-06), glycine,
serine, and threonine metabolism (p¼
4.89E-05), alcoholism (p¼ 9.78E-05), and
purine metabolism (p¼ 1.65E-04) (Figure 3a).

A significant enrichment (p< 0.05) of 39
pathways out of 116 pathways was found
by the KEGG pathway analysis in benign
lung tumor tissue. The most significantly
enriched 10 signaling pathways included
protein digestion and absorption (p¼ 0),
central carbon metabolism in cancer
(p¼ 0), aminoacyl-tRNA biosynthesis
(p¼ 4.17E-14), mineral absorption (p¼
1.35E-12), ABC transporters (p¼ 1.92E-10),
choline metabolism in cancer (p¼ 4.04E-
06), glycine, serine, and threonine
metabolism (p¼ 3.00E-05), retrograde endo-
cannabinoid signaling (p¼ 8.64E-05),
purine metabolism (p¼ 9.37E-05), and glyc-
erophospholipid metabolism (p¼ 2.99E-04)
(Figure 3b).

By comparing lung adenocarcinoma
tissue with benign lung tumor tissue, we
found that 17 of the 85 pathways were sig-
nificantly enriched (p< 0.05). The most sig-
nificantly enriched 10 signaling pathways
included ABC transporters (p¼ 3.28E-05),
taurine and hypotaurine metabolism
(p¼ 6.08E-05), beta-alanine metabolism
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(p¼ 0.000278), retrograde endocannabinoid

signaling (p¼ 0.00087), galactose metabo-

lism (p¼ 0.001138), ascorbate and aldarate

metabolism (p¼ 0.001235), unsaturated

fatty acid biosynthesis (p¼ 0.00208), panto-

thenate and CoA biosynthesis (p¼
0.002759), long-term depression (p¼
0.003555), and central carbon metabolism

in cancer (p¼ 0.006142) (Figure 3c).

Variation in the levels of metabolites

involved in central carbon metabolism

Among the metabolites involved in central

carbon metabolism, 17 were observed in

lung adenocarcinoma tissue and para-

cancerous tissue, and the levels of the fol-

lowing metabolites were significantly

changed: L-alanine, L-arginine, L-

asparagine, L-aspartate, L-glutamate, L-glu-

tamine, L-histidine, L-leucine, L-malic acid,

L-methionine, L-tryptophan, L-tyrosine,

L-valine, D-glucose 6-phosphate, glycine,

L-isoleucine, and L-serine. In the benign

lung tumor tissue, 16 metabolites were sig-

nificantly changed, including, L-alanine,

L-arginine, L-asparagine, L-glutamate,

L-glutamine, L-histidine, L-leucine, L-methi-

onine, L-phenylalanine, L-tryptophan, L-

tyrosine, L-valine, D-glucose 6-phosphate,

glycine, L-isoleucine, and L-serine.

Variation in the levels of metabolites

involved in protein digestion

and absorption

Seventeen metabolites that were significant-

ly altered in lung adenocarcinoma tissue

Figure 1. PCA, PLS-DA, and OPLS-DA score maps from the positive ion mode. PCA, principle component
analysis; PLS-DA, partial least squares discriminant analysis; OPLS-DA, orthogonal partial least squares
discriminant analysis.
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and para-cancerous tissue were related to
protein digestion and absorption, including
indole, L-alanine, L-arginine, L-asparagine,
L-aspartate, L-glutamate, L-glutamine,
L-histidine, L-leucine, L-methionine, L-

tryptophan, L-tyrosine, L-valine, glycine,
L-isoleucine, L-serine, and L-threonine. In
benign lung tumor tissue, levels of the fol-
lowing 18 metabolites were significantly
altered compared with the control group:

Figure 2. PCA, PLS-DA, and OPLS-DA score maps from the negative ion mode. PCA, principle component
analysis; PLS-DA, partial least squares discriminant analysis; OPLS-DA, orthogonal partial least squares
discriminant analysis.

Table 2. Model parameters for PCA, PLS-DA, and OPLS-DA.

Models

Model

parameter

Cancer-Control Lump-Control Cancer-Lump

Positive

ions

Negative

ion

Positive

ions

Negative

ion

Positive

ions

Negative

ion

PCA RX
2 (cum) 0.693 0.552 0.676 0.57 0.601 0.625

PLS-DA RY
2 (cum) 0.983 0.991 0.973 0.997 0.682 0.888

Q2 (cum) 0.839 0.892 0.892 0.878 0.0307 0.00537

OPLS-DA R Y
2 (cum) 0.998 0.999 0.992 1 0.682 0.991

Q2 (cum) 0.876 0.783 0.892 0.848 �0.00178 0.359

PCA, principle component analysis; PLS-DA, partial least squares discriminant analysis; OPLS-DA, orthogonal partial least

squares discriminant analysis.
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L-alanine, L-arginine, L-asparagine,
L-glutamate, L-glutamine, L-histidine, L-
leucine, L-methionine, L-phenylalanine,

L-tryptophan, L-tyrosine, L-valine, glycine,
L-cystine, L-isoleucine, L-serine, L-threo-
nine, and tyramine.

Figure 3. KEGG pathway analysis of differential expression data. (a) Cancer vs. control; (b) lump vs.
control; and (c) cancer vs. lump. KEGG, Kyoto Encyclopedia of Genes and Genomes

8 Journal of International Medical Research



Variation in the levels of metabolites
involved in fatty acid metabolism

Twenty-five significantly altered fatty
acids and their derivatives were detected
in tissues from lung adenocarcinoma patients
and the control groups: 1-Aminocyclopropa-
necarboxylic acid, all cis-(6,9,12)-linolenic
acid, cis-9-ialmitoleic acid, DL-Indole-
3-lactic acid, D-pipecolinic acid, palmitic
acid, L-pipecolic acid, L-pyroglutamic acid,
trans-2-hydroxycinnamic acid, argininosuc-
cinic acid, phenyllactic acid, 2-hydroxy-
3-methylbutyric acid, caproic acid,
caprylic acid, DL-3-phenyllactic acid,
DL-mandelic acid, erucic acid, hydroxyphe-
nyllactic acid, N-acety lneuraminic acid,
stearic acid, 2-oxoadipic acid, alpha-
linolenic acid, dodecanoic acid, L-malic
acid, and N-acetyl-L-aspartic acid. In the
benign lung tumor tissues, levels of the
following 21 metabolites were notably
changed compared with the control groups:
16-hydroxypalmitic acid, 1-aminocyclopro-
panecarboxylic acid, 20-hydroxyarachidonic
acid, all cis-(6,9,12)-linolenic acid, arachidon-
ic Acid (peroxide free), DL-indole-3-lactic
acid, eicosapentaenoic acid, linoleic acid,
L-pyroglutamic acid, N-acetylneuraminic
acid, cis-9-palm itoleic acid, D-pipecolinic
acid, phenyllactic acid, trans-2-
hydroxycinnamic acid, 2-oxoadipic acid,
erucic acid, hydroxyphenyllactic acid,
alpha-linolenic acid, caproic acid, caprylic
acid, and palmitic acid.

Variation in the levels choline-associated
metabolites

In the lung adenocarcinoma patients, levels
of 1,2-dioleoyl-sn-glycero-3-phosphatidylch
oline, 1-palmitoyl-sn-glycero-3-phosphocho
line, 1-stearoyl-2-hydroxy-sn-glycero-3-pho
sphocholine, 1-stearoyl-sn-glycerol 3-phos
phocholine, choline, glycerophosphocholine,
phosphorylcholine, 1-oleoyl-sn-glycero-3-
phosphocholine, and 1-stearoyl-2-oleoyl-sn-

glycerol 3-phosphocholine (SOPC) were sig-
nificantly changed compared with the
control group. In tissues from benign
lung tumor patients, levels of 1,2-dioleoyl-
sn-glycero-3-phosphatidylcholine, 1-oleoyl-
sn-glycero-3-phosphocholine, 1-palmitoyl-
sn-glycero-3-phosphocholine, 1-stearoyl-2-
hydroxy-sn-glycero-3-phospho choline, 1-ste
aroyl-sn-glycerol 3-phosphocholine, choline,
glycerophosphocholine, phosphorylcholine,
and SOPC were significantly changed com-
pared with the control group.

Differential metabolites involved in
enrichment pathways between lung
adenocarcinoma and benign lung
tumor tissues

By comparing lung adenocarcinoma tissue
with benign lung tumor tissue, we found 17
differential metabolites involved in ABC
transporters, taurine and hypotaurine
metabolism, and beta-alanine metabolism.
The specific metabolites that were signifi-
cantly differentially expressed in lung adeno-
carcinoma and benign lung tumor tissues
were acetyl phosphate, D-galactarate, eico-
sapentaenoic acid, glycerol, L-alanine,
L-glutamate (both positive and negative
ions), L-gulonic gamma-lactone, linoleic
acid, L-threonate, oleic acid, arachidonic
acid (peroxide free), myo-inositol, dihy-
drouracil, L-histidine, stachyose, and uracil.

Validation of differential metabolites
as potential biomarkers for lung
adenocarcinoma or benign lung tumors

All metabolites involved in the 10 most sig-
nificantly enrichment pathways from each
group were compared with the differential
metabolites from the mass spectrometry
results, and finally metabolites involved in
both were selected. The relationship
between sensitivity and 1�specificity was
plotted to construct a ROC curve, and the
AUC was calculated; the ROC and AUC

Mo et al. 9



values of the selected candidate biomarkers

were calculated using binary logistic

regression.
The ROC curves that distinguished

cancer from the control group showed

that the AUC values of the following 15

metabolites were all greater than 0.850:

adenosine 30-monophosphate, creatine,

glycerol, guanosine 50-monophosphate

(GMP), indole, L-alanine, L-glutamate,

phosphorylcholine, taurine, xanthine, xan-

thosine, glycine, L-serine, N-acetyl-D-glu-

cosamine, and phosphatidylcholine (PC)

(16:0/16:0) (p< 0.05) (Table 3). Similarly,

in the lump group vs. control group, the

ROC curve showed the AUC values of

16 metabolites were greater than 0.850

(p< 0.05): adenosine 30-monophosphate,

creatine, GMP, inosine, L-alanine, L-aspar-

agine, L-methionine, O-phosphoethanol-

amine, phosphorylcholine, sn-glycerol 3-

phosphoethanolamine, arachidonic acid

(peroxide free), glycerophosphocholine,

L-cystine, L-threonine, N-acetyl-D-glucos-

amine, and PC (16:0/16:0) (Table 4).

Moreover, compared with the lump

group, only four cancer-associated metabo-

lites had AUC values greater than 0.850: D-

galactarate (0.890� 0.074), L-alanine (0.890

� 0.073), myo-inositol (0.850� 0.100),

and uracil (0.850� 0.104) (all, p< 0.05)

(Table 5). To make the results more intuitive,

three different metabolites were selected for

display as ROC curves (Figure 4).

Discussion

In this study, adenocarcinoma and para-

cancerous tissues from 10 patients with

lung cancer, as well as benign lung tumor

tissue from 10 patients with benign tumors

were studied using LC-MS/MS-based

metabolomics to discover potential lung

adenocarcinoma biomarkers for the diag-

nosis and prognosis of early-stage lung ade-

nocarcinoma. The results showed that

compared with para-cancerous tissue, 119

and 105 significant differential metabolites

were identified from lung adenocarcinoma

and benign tumor tissues, respectively.

Moreover, the comparison between the

cancer group and lump group screened 32

Table 3. The AUC, specificity, and sensitivity of the diagnostic efficacy of potential lung cancer biomarkers
in a comparison of the cancer and control groups (AUC> 0.850).

Potential biomarkers p value AUC� Sem Sensitivity Specificity

Adenosine 3’-monophosphate 0.000924 0.860� 0.083 0.800 0.800

Creatine 0.00061 0.930� 0.069 1.000 0.900

Glycerol 0.000229 0.960� 0.044 1.000 0.900

Guanosine 5’-monophosphate (GMP) 0.001083 0.930� 0.056 1.000 0.800

Indole 0.00019 0.980� 0.026 0.900 1.000

L-Alanine 8.13E-05 0.990� 0.016 0.900 1.000

L-Glutamate 0.002521 0.880� 0.080 0.800 0.900

Phosphorylcholine 0.015352 0.970� 0.035 0.900 1.000

Taurine 0.00155 0.880� 0.078 0.800 0.900

Xanthine 0.000752 0.860� 0.087 1.000 0.700

Xanthosine 0.003153 0.900� 0.073 1.000 0.800

Glycine 0.002043 0.900� 0.076 1.000 0.800

L-Serine 0.005319 0.870� 0.085 0.900 0.800

N-Acetyl-D-glucosamine 0.000394 0.950� 0.045 0.800 1.000

PC (16:0/16:0) 0.000512 0.900� 0.073 1.000 0.800

AUC, area under the ROC curve.
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significant differential metabolites. Based
on the KEGG pathway analysis, 43 and
39 significantly enriched metabolic path-
ways were determined from lung adenocar-
cinoma and benign lung tumor samples,
respectively. Moreover, when the lung ade-
nocarcinoma group was compared with the
lump group, 17 enriched pathways were
detected.

Previous studies have demonstrated that
lung cancer may alter levels of the metabo-
lites involved in the TCA cycle and its relat-
ed signaling pathways.21,22 In this study,
levels of metabolites involved with central

carbon metabolism in cancer; i.e., L-ala-
nine, L-arginine, L-glutamate, and
L-asparagine were found. Most cancer
cells depend on aerobic glycolysis rather
than oxidative phosphorylation for energy
production, and the presence of glutamine
has a significant effect on the production of
ATP in cancer cells. Additionally, gluta-
mine is also a major component of cancer
cells,23 which is in line with our results.
Therefore, central carbon metabolism for
energy production in cancer cells is different
from that in normal cells. Thus, differences
in metabolic pathways may result in

Table 4. The AUC, specificity, and sensitivity of the diagnostic efficacy of potential lung cancer biomarkers
in a comparison of the lump and control groups (AUC> 0.850).

Potential biomarkers p value AUC� Sem Sensitivity Specificity

Adenosine 3’-monophosphate 0.000271 0.910� 0.065 0.800 0.900

Creatine 0.001514 0.900� 0.080 0.900 0.900

Guanosine 5’-monophosphate (GMP) 0.000218 0.970� 0.032 0.800 1.000

Inosine 0.024261 0.850� 0.085 0.600 1.000

L-Alanine 0.000193 0.970� 0.035 1.000 0.900

L-Asparagine 0.009937 0.860� 0.099 0.900 0.800

L-Methionine 0.012289 0.860� 0.083 0.600 1.000

O-Phosphoethanolamine 0.004335 0.880� 0.080 0.700 1.000

Phosphorylcholine 0.02622 0.880� 0.075 0.600 1.000

sn-Glycerol 3-phosphoethanolamine 0.010908 0.870� 0.087 0.900 0.800

Arachidonic Acid (peroxide free) 0.002591 0.880� 0.075 0.900 0.700

Glycerophosphocholine 0.004279 0.900� 0.073 1.000 0.800

L-Cystine 0.037211 0.890� 0.073 0.800 0.900

L-Threonine 0.005467 0.880� 0.078 0.900 0.800

N-Acetyl-D-glucosamine 0.002906 0.920� 0.060 0.900 0.800

PC (16:0/16:0) 0.000388 0.940� 0.051 1.000 0.800

AUC, area under the ROC curve.

Table 5. The AUC, specificity, and sensitivity of the diagnostic efficacy of potential lung cancer biomarkers
in a comparison of the cancer and lump groups (AUC> 0.850).

Potential biomarkers p value AUC� Sem Sensitivity Specificity

D-Galactarate 0.044737 0.890� 0.074 1.000 0.700

L-Alanine 0.015104 0.890� 0.073 0.800 0.900

myo-Inositol 0.011372 0.850� 0.100 1.000 0.700

Uracil 0.008811 0.850� 0.104 0.900 0.900

AUC, area under the ROC curve.
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changes in the levels of certain metabolites
in lung adenocarcinoma tissues.

Several studies have revealed that
aminoacyl-tRNAs function to transfer
amino acids to ribosomes during protein
synthesis; therefore, the increased protein
synthesis rate of cancer cells indicates that
the level of aminoacyl-tRNA in cancer

tissues is significantly higher than in
normal tissue.23–25 In this study, levels of
following metabolites related to the
aminoacyl-tRNA biosynthesis in cancer
were altered: L-alanine, L-arginine, and L-
asparagine. These differential metabolites
in lung adenocarcinoma tissue affect the
synthesis of aminoacyl-tRNA biosynthesis,

Figure 4. ROC curve analysis was used to examine the diagnostic efficacy of the metabolite candidates.
(a) Cancer vs. control; (b) lump vs. control; and (c) cancer vs. lump. AUC, area under the ROC curve; ROC,
receiver operating characteristic.
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which affect protein synthesis and further
regulate tumor cell proliferation. Levels of
most amino acids in lung adenocarcinoma
tissues were higher than in normal tissues.
Therefore, the levels of metabolites related
to the protein digestion and absorption
were significantly altered in cancer and
normal tissues.

Choline is essential for the synthesis of
the major membrane phospholipid phos-
phatidylcholine (PC), the methyl donor
betaine, and the neurotransmitter acetyl-
choline (ACh). It has been reported that
abnormal choline metabolism is a metabol-
ic hallmark of oncogenesis and tumor
progression.26 Previous studies have dem-
onstrated abnormalities in choline uptake
and choline phospholipid metabolism in
cancer cells by imaging tumors with posi-
tron emission tomography (PET) and mag-
netic resonance spectroscopy (MRS).27

Higher levels of choline and up-regulated
choline kinase activity have been detected
in various cancers.26,28 Consistently,
metabolites in this study, such as 1,2-dio-
leoyl-sn-glycero-3-phosphatidylcholine, 1-p
almitoyl-sn-glycero-3-phosphocholine, and
1-stearoyl-2-hydroxy-sn-glycero-3-phospho
choline, increased choline levels in lung ade-
nocarcinoma and benign lung tumor tissues
compared with non-cancer tissues.

Furthermore, it was worth noting that
seven metabolites, namely adenosine 30-
monophosphate, creatine, GMP, L-alanine,
phosphorylcholine, N-acetyl-D-glucos-
amine, and PC (16:0/16:0), were involved
in the enriched pathways and were signifi-
cantly differentially expressed in either the
cancer group or the lump group compared
with the control group. Early studies have
reported the expression and application
of L-alanine, phosphorylcholine, and
N-acetyl-D-glucosamine in lung malignan-
cies.29–31 In a recent study of non-small cell
carcinoma, Ye et al.32 combined N-acetyl-
D-glucosamine with TRAIL, and their
results uncovered the molecular mechanism

through which GlcNAc sensitized cancer

cells to TRAIL-induced apoptosis. Thus,

with more verification in the future, these

metabolites could be used for lung tumor

screening.
In summary, this study presents prelimi-

nary comparative proteomics data from the

discovery of serum biomarkers in lung ade-

nocarcinoma, and generates a robust set of

candidate proteins for lung adenocarcino-

ma diagnosis. However, the sample size of

this study was relatively small, and a larger

sample size is required for future systematic

studies. To the best of our knowledge, this

is the first time that differences between

metabolites and metabolic pathways have

been detected by LC-MS/MS among differ-

ent lung tissues. The clinical utility of these

candidate lung adenocarcinoma serum bio-

marker proteins needs to be validated with

additional analytical platforms as well as in

independent case/control sample sets in the

future.
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