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Abstract: By collecting the panel data of 29 regions in China from 2008 to 2017, this study used the
spatial Durbin model (SDM) to explore the spatial effect of PM2.5 exposure on the health burden
of residents. The most obvious findings to emerge from this study are that: health burden and
PM2.5 exposure are not randomly distributed over different regions in China, but have obvious
spatial correlation and spatial clustering characteristics. The maximum PM2.5 concentrations have
a significant positive effect on outpatient expense and outpatient visits of residents in the current
period, and the impact of PM2.5 pollution has a significant temporal lag effect on residents’ health
burden. PM2.5 exposure has a spatial spillover effect on the health burden of residents, and the PM2.5

concentrations in the surrounding regions or geographically close regions have a positive influence
on the health burden in the particular region. The impact of PM2.5 exposure is divided into the direct
effect and the indirect effect (the spatial spillover effect), and the spatial spillover effect is greater than
that of the direct effect. Therefore, we conclude that PM2.5 exposure has a spatial spillover effect and
temporal lag effect on the health burden of residents, and strict regulatory policies are needed to
mitigate the health burden caused by air pollution.
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1. Introduction

With the rapid development of China’s economy, the living standard and health of residents have
been greatly improved, but ambient air pollution remains a serious problem. The Global Burden of
Disease (GBD) and the World Bank ranked air pollution as the fifth and fourth global health risk factor,
respectively (Global Burden of Disease (GBD), 2015; World Bank, 2016). Air pollution is associated
with increased incidence of diseases (WHO, 2012). As air pollution is one of causes of death and
disability, it is increasingly recognized as a worldwide public health concern [1–7]. Atmospheric
particle matter (PM), especially those having an aerodynamic diameter less than 2.5 um (PM2.5),
is considered one of the priority pollutants in air [8–10]. As the smog worsened, PM2.5 pollution
became the main air pollutant in China and played a non-negligible role in affecting Chinese residents’
health [11–13]. For example, in 2018, only 35.8% of 338 cities satisfied air-quality standards in China,
while the rest of the cities exceeded them. In 2018, all the 338 cities experienced on average 8.05 days
with severe air pollution, and the average annual PM2.5 concentrations in 56.20% of the cities exceeded
35.74 µg/m3. Also, of the 169 key cities, 140 cities had PM2.5 as the main pollutant, and 30% cities
had an air quality index (AQI) greater than 100 (Air quality index (AQI) is a quantitative description
of air quality. The larger the value is, the more serious the air pollution is, and the more harmful it
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will be to human health. The main pollutants for air quality evaluation are particulate matter (PM2.5),
inhalable particulate matter (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), ozone (O3) and
carbon monoxide (CO)) [14].

PM2.5 often contains heavy metals such as arsenic, chromium, and manganese, and PM2.5

concentrations in the region mainly depend on its energy efficiency [15–18]. Frequent exposure to
PM2.5 can cause great damage to human health, and then leads to the increment of patient visits and
health expense, which brings great economic burden to residents. According to China’s National
Statistics Bureau (CSB), the total health expenditure increased from 359.39 billion RMB in 2008 to
1639.91 billion RMB in 2018, with an average annual growth rate of 18.73% (CSB, 2018). Share of
health expenditure increased from 4.55% in 2008 to 6.57% in 2018 (Share of health expenditure refers to
the ratio of total health expenditure to gross domestic product (GDP)). Per capita health expenditure
rose from 1094.5 RMB in 2008 to 4237 RMB in 2018, and its average annual growth rate was 15.49%
(Per capita health expenditure refers to the ratio of total health expenditure to the total population.).
Besides, per capita outpatient visits increased from 3.7 times in 2008 to 6.0 times in 2018 (Per capita
outpatient visits refers to the ratio of total number of outpatient visits to the total population) [19].
This suggests that the Chinese government is increasingly investing in health expenditure to improve
public health and make or become less the burden of residents.

In recent years, there has been an increasing amount of literature on PM2.5 exposure and
health [20,21]. Several studies have explained that PM2.5 exposure can cause many kinds of diseases,
such as respiratory diseases [22–25], cardiopulmonary diseases [26,27], cardiovascular diseases [24,28],
lung cancer [25,27,29,30], and brain damage [31–34], and it is even closely related to mortality [35].
Although studies have directly or indirectly proved the health effects of PM2.5 exposure, conclusions
are inconsistent for the differences in the sample selection or data characteristics (such as time series,
panel data, experimental data, etc). Some studies found that PM2.5 exposure can harm the residents’
health, reduce their labor capacity and shorten their life expectancy, thus further increasing health
expenses, and imposing huge economic burden on the whole society [36–39]. For example, Yang et
al. [37] found that the economic loss caused by PM2.5 pollution in Beijing in 2013 was 1.11 billion RMB.
Zeng et al. [40] used the spatial interpolation method to explore the PM2.5 exposure in China in 2007,
and found that economic loss was 1,262.5 billion RMB. Although some studies have begun to explore
the impact of PM2.5 exposure on economic losses, few studies analyze the PM2.5 exposure on health
burden in detail.

Moreover, with the unprecedented economic development and urbanization in recent decades
in China, energy consumption has increased significantly and PM2.5 pollution has become a serious
problem [41]. Because of the different economic development and urbanization in different regions in
China, PM2.5 pollution varies significantly in different regions. More importantly, different regions
are not independent with each other, and some phenomena in one region are closely related to the
same phenomena in other regions [42–45]. From here, it is necessary to take the spatial correlation
and spatial spillover effects into account when analyzing the impact of PM2.5 on health burden. If the
study ignores the spatial effect, the conclusion may not be accurate. However, exiting studies have
rarely considered the spatial spillover effect of PM2.5 exposure on health burden [46–48].To fill the gaps
mentioned above, we devoted this study to explore the impact of PM2.5 exposure on the health burden
from the perspective of spatial spillover effect. The main novelties and contributions of this paper
were listed as follows:

(1) This study explored the impact of PM2.5 exposure on the residents’ health burden, further
enriching the research perspective of economic loss brought by air pollution.

(2) The spatial econometric models were applied to examine the spatial spillover effects of PM2.5

exposure on residents’ health burden, and its spatial dependence and correlation were also discussed.
(3) The temporal lag effect was investigated in this study. Besides, outpatient expense and

outpatient visits were presented to measure the health burden, as well as the number of hospitalizations
was selected to test robustness.
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2. Research Design

2.1. Data

This study focused on the spatial impact of PM2.5 exposure on health burden. We selected 29 regions
in China from 2008 to 2017 as samples. These regions including: Beijing, Tianjin, Hebei, Shanxi, Inner
Mongolia, Liaoning, Jilin, Heilongjiang, Shanghai, Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi, Shandong,
Henan, Hubei, Hunan, Guangdong, Guangxi, Chongqing, Sichuan, Guizhou, Yunnan, Shaanxi, Gansu,
Qinghai, Ningxia and Xinjiang. As China only began releasing the ground-level PM2.5 concentrations
data in 2013, this study adopted the long-term data published by Columbia University Center for
Socio-Economic Data and Applications [49]. The PM2.5 concentration data in different regions of China
is aerosol optical depth (AOD) data from satellite retrieval of surface PM2.5 concentration retrievals.
The other indicator data were collected from the Chinese Health Statistics Yearbook 2008-2017 [50],
including outpatient expense, outpatient visits, the number of hospitalizations, the number of medical
institutions, the number of hospital beds and the number of doctors. The data of GDP and the ratio of
urban population was from China Statistics Yearbook 2008–2017 [51].

2.2. Variable

2.2.1. Dependent Variable: Health Burden

Most existing studies only adopted the number of outpatient visits to measure the health burden
of residents [52,53]. But it cannot accurately measure the health burden of residents since the results
may be biased [54,55]. Also, some literature used the number of hospitalization to measure health
burden [56,57]. However, Chinese residents have a habit of not seeking medical treatment if they
are not seriously ill, and the number of hospitalization used may underestimate the health burden.
Therefore, to ensure the reliability of the results, this study measured health burden using outpatient
expense (exp_out) and outpatient visits (num_out). Outpatient expense is expressed as the ratio of the
total outpatient expense to the total number of outpatient visits, and outpatient visits are expressed as
the ratio of the total number of outpatient visits to the total population. Besides, a robustness test was
performed by using the number of hospitalizations (num_hos) which is expressed as the ratio of the
total number of hospitalizations to the total population.

2.2.2. Independent Variable: PM2.5 Exposure

PM2.5 exposure has a significant impact on the health burden of residents. This study utilized
the PM2.5 concentration data to analyze the spatial impact of PM2.5 exposure on health burden.
In fact, the accurate estimation of PM2.5 concentrations is one of the most critical preconditions.
This study adopted the PM2.5 data in 2007–2017 published by Columbia University (The average
PM2.5 concentrations and the maximum PM2.5 concentrations the of 29 regions in China from 2007 to
2017 are listed in Tables A1 and A2). Some literature used average PM2.5 concentrations to measure
PM2.5 exposure [48,58]. However, severe air pollution, such as the maximum concentrations of PM2.5,
may cause more harm to residents’ health. Therefore, this study used maximum PM2.5 concentrations
(PM2.5_max) to measure PM2.5 exposure. Meanwhile, due to the temporal lag effect of PM2.5 exposure
on residents’ health burden [48], this study also used the maximum of PM2.5 concentrations lags by
one stage (PM2.5_max(-1)) as the independent variable to verify whether the temporal lag effect exists.
In addition, average PM2.5 concentrations (PM2.5_avg) was used as a substitute variable for PM2.5

exposure to test the robustness of the results.

2.2.3. Control Variable

As all know, health burden is affected not only by PM2.5 exposure, but also by many others.
Referring to the existing studies [30,48], this study controlled the following variables: per capita gross
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domestic product (PGDP), the ratio of urban population (urban), the number of medical institutions
(num_inst), the number of hospital beds (num_bed) and the number of doctors (num_doctor).

The variables and their definitions were presented in Table 1, and the descriptive statistics of all
were shown in Table 2.

Table 1. Description of the variable.

Type Variable Symbol Definition

Dependent variable
Outpatient expense exp_out

The ratio of the total outpatient expense to the
total number of outpatient visits in the form of

the natural logarithm

Outpatient visits num_out
The ratio of the total number of outpatient visits

to the total population in the form of the
natural logarithm

The number of hospitalization num_hos The ratio of the total number of hospitalization to
the total population

Independent variable

Maximum PM2.5 concentrations PM2.5_max
The maximum values of PM2.5 concentrations in

the form of natural logarithm

Maximum PM2.5 concentrations
lag by one stage PM2.5_max(−1)

The maximum values of the last year’s PM2.5
concentrations in the form of the

natural logarithm

Average PM2.5 concentrations PM2.5_avg
The average values of PM2.5 concentrations in

the form of the natural logarithm
Average PM2.5 concentrations

lag by one stage
PM2.5_avg(−1) The average values of the last year’s PM2.5

concentrations in the form of natural logarithm

Control variable

Per capita GDP PGDP The ratio of gross domestic product to the total
population in the form of the natural logarithm

The ratio of urban population urban The ratio of the urban population to the
total population

The number of medical
institutions num_inst

The ratio of the total number of medical
institutions to the total population in the form of

the natural logarithm

The number of hospital beds num_bed
The ratio of the total number of hospital beds to

the total population in the form of the
natural logarithm

The number of doctors num_doctor
The ratio of the total number of doctors to the

total population in the form of the
natural logarithm

Table 2. Descriptive statistics.

Variable Obs Mean S.D. Min Median Max

exp_out 290 5.230 0.297 4.385 5.242 6.248
num_out 290 1.548 0.324 0.832 1.501 2.397
num_hos 290 0.125 0.043 0.039 0.126 0.224
PM2.5_max 290 3.847 0.413 2.605 3.903 4.575

PM2.5_max(−1) 290 3.841 0.414 2.605 3.897 4.575
PM2.5_avg 290 3.446 0.534 1.938 3.519 4.404

PM2.5_avg(−1) 290 3.422 0.549 1.938 3.488 4.404
PGDP 290 1.368 0.514 −0.010 1.369 2.557
urban 290 0.548 0.134 0.291 0.530 0.896

num_inst 290 1.786 0.510 0.208 1.949 2.455
num_bed 290 3.773 0.236 3.140 3.802 4.227

num_doctor 290 4.293 0.198 3.689 4.310 4.978

2.3. Method

2.3.1. Spatial Autocorrelation Test

To comprehensively explore the spatial spillover effect of PM2.5 exposure, we used the global
and the local spatial correlation indices in Exploratory Spatial Data Analysis (ESDA) [59] to test the
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spatial correlation. The global and the local spatial correlation indices were measured by Moran’s
index (Moran’s I), and their calculation formulas were shown as follows:

I =

n∑
i=1

n∑
j=1

wi j(xi − x)(x j − x)

S2
n∑

i=1

n∑
j=1

wi j

, x =
1
n

n∑
i=1

xi, S2 =
1
n

n∑
i=1

(xi − x)
2

(1)

Ii =
(xi − x)

S2

n∑
j=1

wi j(x j − x), x =
1
n

n∑
i=1

xi, S2 =
1
n

n∑
i=1

(xi − x)
2

(2)

where, xi and xj represent the observed values of region i and region j, respectively; n represents the
number of all regions; wij is the element in the spatial weight matri x; x is the mean value of the sample,
and S2 is the variance of the sample.

For Moran’s I, its value range is [−1,1]. If its value is greater than 0, it indicates that there is a
positive spatial correlation among variables. If its value is smaller than 0, it indicates that there is a
negative spatial correlation among variables. Meanwhile, the values of Moran’s I in different regions
can be plotted as scatter plots to view the degree of spatial agglomeration in the regions. The slope of
the regression line of the scatter plot is equal to the value of global Moran’s I.

In the spatial econometric analysis, it is necessary to introduce spatial weighting matrices to
describe the relationship among different regions. To systematically explore the spatial correlation
characteristics among different regions in China, this study modeled the following three spatial weight
matrices: spatial contiguity matrix W1, spatial distance matrix W2, and spatial economy matrix W3.

The spatial contiguity matrix is most widely used in spatial econometric analysis, but sometimes
the relationship among regions is so simplified that research conclusions are biased. The elements of
spatial contiguity matrix W1 were defined as follows [47]:

wi j =

{
1, i , j
0, i = j

i, j = 1, 2, · · · , n (3)

To enhance the robustness of the analysis results, we also constructed the spatial distance matrix.
The elements of spatial distance matrix W2 were defined as follows [47]:

wi j =

{
1/di j, i , j
0, i , j

i, j = 1, 2, · · · , n (4)

where dij represents road distance between region i and region j.
The spatial contiguity matrix and spatial distance matrix only reflect the influence of geographical

location, but do not reflect the economic correlation among regions and their influence. For example,
the influence of Hebei province on Beijing municipal is much smaller than that of Beijing municipal on
Hebei province. Referring to the related studies [47], this study defined the spatial economy matrix W3

as follows:
W3 = W1 ∗

1
Y

diag(Y1, Y2, · · · , Yn)

Yi =
1

t1−t0+1

t1∑
t=t0

Yit, Y = 1
n

n∑
i=1

Yi
i, j = 1, 2, · · · , n (5)

where Yit is the per capita real GDP of region i in year t; Yi represents the annual average of per capita
real GDP of region i. Y is the average of Yi for all the regions. As can be seen from the formula (5),
if the per capita real GDP of region i is greater than that of other regions, the region also has more
influence on the other regions.
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2.3.2. Spatial Econometric Model

This study used spatial econometric models to analyze the impact of PM2.5 exposure on residents’
health burden in China, and to measure the direct effect and the spatial spillover effect. Three widely
used spatial econometric models were adopted to examine the spatial effects, including the spatial
autoregression model (SAR), spatial errors model (SEM) and spatial Durbin model (SDM) [60]. SAR only
includes the lag term of the spatial dependent variable, and SEM only includes spatial spillover effects
of independent variables, while SDM includes both the lag term of the spatial dependent variable and
spatial spillover effects of independent variables. Based on this, these three spatial econometric models
were constructed as follows:

SAR:
Yit = α + ρW ∗Yit + β1PM2.5_maxit + β2PM2.5_max(−1)it

+β3PGDPit + β4urbanit + β5num_instit
+β6num_bedit + β7num_doctorit + εit

(6)

SEM:
Yit = α+ β1PM2.5_maxit + β2PM2.5_max(−1)it

+β3PGDPit + β4urbanit + β5num_instit
+β6num_bedit + β7num_doctorit + uit

uit = λWuit + εit, ε ∼ N(0, σ2In)

(7)

SDM:
Yit = α+ ρW ∗Yit + β1PM2.5_maxit + β1PM2.5_max(−1)it

+β3PGDPit + β4urbanit + β5num_instit + β6num_bedit
+β7num_doctorit + σW ∗Xkit + εit

(8)

where Y is the dependent variable; PM2.5_max and PM2.5_max(−1) are the core independent variable;
PGDP, urban, num_inst, num_bed, and num_doctor are the control variables; X represents all of the
above core independent variables and control variables; W is the spatial weighting matrix; εit and µit

are normally distributed random error vector; α denotes the intercept item; β denotes the influence
coefficient of independent variables on dependent variable; ρ denotes the spatial autoregressive
coefficient; λ denotes the spatial error coefficient; θ denotes the space lag coefficient of the independent
variables; i represents regions, and t represents year.

2.3.3. Model Test

In general, the Lagrange multiplier tests (i.e., LM-lag and LM-err) were used to determine a proper
spatial econometric model [61], but these methods were only suitable for sectional data. For panel
data, referring to the study of Belotti et al. [62], this study tested the conditions given in Table 3 to
select the spatial econometric model.

Table 3. The selection results of spatial autoregression model (SAR), spatial errors model (SEM), and
spatial Durbin model (SDM).

Name Model Selection Criteria Chi-Square Value p-Value

SAR y = ρWy + Xβ+ ε λ = 0 32.32 0.0000
SEM y = Xβ+ u, u = λWu + ε λ = −ρβ 31.37 0.0000
SDM y = ρWy + Xβ+ λWX + ε λ , 0&λ , −ρβ

Hausman test: The Chi-square value is 11.35, and the p-value is 0.0782.

In Table 3, the test results are all significant at the 1% level (p < 1), and we should reject these
null assumptions that λ = 0 and λ = −ρβ. In other words, SDM cannot be simplified into SAR or SEM,
and should be adopted to analyze the effect of PM2.5 exposure on residents’ health burden in China.
Also, through the Hausman test (i.e., space fixed effect or time fixed effect), the result shows that the



Int. J. Environ. Res. Public Health 2019, 16, 4695 7 of 23

spatial econometric model should adopt fixed effect (χ2 = 11.35, p = 0.0782 < 10%). From here, this
study should use the SDM model with fixed effect to analyze.

3. Spatial Distribution and Spatial Autocorrelation Analysis

3.1. Spatial Distribution

Figure 1 shows the spatial distribution of PM2.5 concentrations (Figure 1(a1,a2)), outpatient expense
(Figure 1(b1,b2)), outpatient visits (Figure 1(c1,c2)) and the number of hospitalization (Figure 1(d1,d2))
in all selected regions of China in 2008 and 2017. In absolute terms, compared with 2008, PM2.5

concentrations, outpatient visits and the number of hospitalization in different regions of China
increased in 2017, whereas outpatient expense varied slightly. In relative terms, Chinese regions
displayed similarities during the periods. For PM2.5 concentrations, outpatient visits and outpatient
expense, regions with high-values were concentrated in the eastern districts, while regions with
low-values were concentrated in the western and central districts. For the number of hospitalization,
regions with high-values were concentrated in the western and central districts, and regions with
low-values were concentrated in the eastern districts. Due to space limitation, we only chose the
spatial distribution of PM2.5 concentrations, outpatient expense, outpatient visits and the number of
hospitalizations in 2008 and 2017 to analyze.

From Figure 1(a2), we can see that PM2.5 pollution is the worst in Beijing, Hebei, Tianjin, and
Henan, followed by Shaanxi, Hubei, Anhui, and Xinjiang. While the regions of southwest, southeast,
and northeast in China, such as Yunnan, Qinghai, Guizhou, and Fujian, have the least pollution. What
stands out in this figure is that PM2.5 concentration distribution in China has obvious spatial clustering
characteristics. That is, the regions with the most serious PM2.5 pollution are concentrated together,
and the regions with the least pollution are also concentrated together.

Figure 1(b2,c2,d2) present the distribution of residents’ health burden in all the selected regions of
China. Similar to PM2.5 pollution, the distribution of residents’ health burden in China also shows
obvious spatial clustering characteristics. Figure 1(b2,c2) show that outpatient expense and outpatient
visits are positively correlated with the economic level in all different regions. For example, outpatient
expense and outpatient visits in developed regions are significantly greater than those in backward
regions. Besides, outpatient expense and outpatient visits are also significantly higher in regions with
serious PM2.5 pollution than in regions with less pollution, such as Beijing, Shandong, Jiangsu, etc.
However, for Figure 1(d2), the number of hospitalization per capita in western China is higher than
that in eastern China. Since the medical treatment insurance system of the western regions in China is
not perfect, some patients are hospitalized to get medical insurance compensation, even if they do
not meet the standards of hospitalization, resulting in false hospitalization [63]. Because of the above
shortages, this study chose outpatient expense and outpatient visits as the main independent variables.



Int. J. Environ. Res. Public Health 2019, 16, 4695 8 of 23

Int. J. Environ. Res. Public Health 2019, 16, x 8 of 24 

8 
 

 

Figure 1. The spatial distribution of the core variables in 2008 and 2017. 

a2. The spatial distribution of PM2.5 in 2017 a1. The spatial distribution of PM2.5 in 2008 

b2. The spatial distribution of exp_out in 2017 b1. The spatial distribution of exp out in 2008 

c2. The spatial distribution of num_out in 2017 c1. The spatial distribution of num_out in 2008 

d2. The spatial distribution of num_hos in 2017 d1. The spatial distribution of num_hos in 2008 

Figure 1. The spatial distribution of the core variables in 2008 and 2017.



Int. J. Environ. Res. Public Health 2019, 16, 4695 9 of 23

3.2. Spatial Autocorrelation Analysis

Global Moran’s I of exp_out and PM2.5_max based on the three spatial matrices from 2008 to
2017 were shown in Table 4. The results indicate that all the Moran’s I of exp_out and PM2.5_max are
significantly positive at the 5% level for the three spatial matrices, except that Moran’s I of PM2.5_max

are not all significant in the spatial economic matrix. These suggest that exp_out and PM2.5_max are not
randomly distributed in different regions of China, but have obvious spatial correlation and spatial
clustering characteristics during the study period. In a word, the residents’ health expense and PM2.5

pollution in different regions of China are characterized by high-high (H-H) value aggregation and
low-low (L-L) value aggregation. Therefore, the spatial correlation must be considered when studying
the impact of PM2.5 exposure on health burden of residents in China, otherwise, the research results
may be biased.

Table 4. Global Moran’s I values of exp_out and PM2.5_max (2008–2017).

Year
exp_out PM2.5_max

W1 W2 W3 W1 W2 W3

2008 0.201 ** 0.058 ** 0.079 * 0.527 *** 0.238 *** 0.097 *
2009 0.278 *** 0.167 *** 0.307 *** 0.519 *** 0.243 *** 0.091 *
2010 0.270 *** 0.168 *** 0.296 *** 0.514 *** 0.233 *** 0.080
2011 0.256 *** 0.163 *** 0.339 *** 0.504 *** 0.236 *** 0.067
2012 0.227 *** 0.149 *** 0.310 *** 0.511 *** 0.225 *** 0.038
2013 0.215 *** 0.136 *** 0.267 *** 0.512 *** 0.256 *** 0.062
2014 0.197 *** 0.122 *** 0.254 *** 0.542 *** 0.242 *** 0.064
2015 0.170 *** 0.101 *** 0.234 *** 0.525 *** 0.261 *** 0.112 *
2016 0.167 *** 0.102 *** 0.245 *** 0.545 *** 0.289 *** 0.081
2017 0.163 ** 0.091 *** 0.245 *** 0.468 *** 0.239 *** 0.099 *

Note: ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively; The Moran’s I values of other
variables are not reported for space limitation.

To analyze the local agglomeration characteristics of all the selected regions in China, Figure 2
presents the local Moran’s I scatter plots of exp_out and PM2.5_max based on spatial contiguity
matrix W1 for all the regions in 2008 and 2017. In the local Moran’s I scatter plot, the horizontal axis
represents the observations of the local region, and the vertical axis represents observations of the
adjacent regions. In other words, the first quadrant and the third quadrant point out the existence of
positive spatial correlation, representing high-high (H-H) value clustering and low-low (L-L) value
clustering, respectively. While the second quadrant and the fourth quadrant mark the existence of
negative spatial correlation, representing low-high (L-H) value clustering and high-low (H-L) value
clustering, respectively.

As can be seen from Figure 2, for both 2008 and 2017, most of the regions are located in the first
quadrant or the third quadrant, indicating that there is a positive spatial correlation between residents’
health expense and PM2.5 concentrations in most regions. This means that the residents’ health burden
and PM2.5 concentrations of different regions in China are not random but show significantly positive
spatial autocorrelation. For example, for the local Moran’s I scatter plots of exp_out in 2017, there are 9
regions located in the first quadrant, such as Beijing, Tianjin, Shanghai, Jiangsu, etc., and 10 regions are
in the third quadrant, including Yunnan, Sichuan, Guizhou, Gansu, etc. The others are in the second or
fourth quadrants. In the scatter plots of PM2.5_max in 2017, there are 23 regions located in the first or
third quadrants, such as Beijing, Tianjin, Hebei, Shanghai, etc. In a word, there is a positive spatial
correlation between PM2.5 concentrations and residents’ health burden, which is consistent with the
previous conclusion.
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Figure 2. Local Moran’s I scatter plot in 2008 and 2017. Note: Numbers 1 to 29 represent Beijing,
Tianjin, Hebei, Shanxi, Inner Mongolia, Liaoning, Jilin, Heilongjiang, Shanghai, Jiangsu, Zhejiang,
Anhui, Fujian, Jiangxi, Shandong, Henan, Hubei, Hunan, Guangdong, Guangxi, Chongqing, Sichuan,
Guizhou, Yunnan, Shaanxi, Gansu, Qinghai, Ningxia and Xinjiang, respectively.

We also used hot spot analysis [64] to study the local agglomeration characteristics, and Figure 3
presents the analysis results of exp_out and PM2.5_max for all the regions in China in 2008 and 2017.
By calculating the Z value (namely Getis-Ord Gi*), we can identify hot spots and cold spots with
statistical significance. If the absolute value of Z of the region is smaller than 1.65, it indicates that the
region is less likely to be related to its neighboring regions. While if the absolute value is greater than
1.65, it indicates that there is a close connection among the regions [64]. Furthermore, the positive Z
value indicates that the region is a hot spot, that is, the values of exp_out or PM2.5_max of the region
and its neighboring regions are all high. While the negative Z value indicates that the region is a cold
spot, that is, the values of exp_out or PM2.5_max of the region and its neighboring regions are all low.
Meanwhile, 1.65, 1.96 and 2.58 are the threshold of 10%, 5%, and 1% significance level, respectively.
As can be seen from Figure 3, for residents’ health expenses, Liaoning, Jilin, and Zhejiang are hot spots
in 2008, and Liaoning, Jilin, Shangdong, and Jiangsu are hot spots in 2017. Gansu, Sichuan, Yunnan,
and Chongqing are cold spots in 2008, and Sichuan, Yunnan, and Chongqing are cold spots in 2017. It
can be seen that hot spots are distributed in the eastern districts, and cold spots in the western districts.
For PM2.5 concentrations, there are a great number of hot spots and cold spots. Hot spots are mainly
distributed in the Beijing–Tianjin–Hebei regions, central districts, southeast districts, Liaoning and
Jilin, whereas cold spots are mainly distributed in northwest districts and Sichuan.
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4. Empirical Analysis and Discussion

This study used SDM to explain the impact of PM2.5 exposure on residents’ health burden in China.
In this section, we discussed the influence of PM2.5 exposure on outpatient expense and outpatient
visits, respectively. According to the test results of the models, the fitting degree of the SDM under
the space and time fixed effect is superior to other models, and the following tests are based on it
(The results of SDM model with space-fixed effect and time-fixed effect were also tested. The SDM
model based on the space-and-time fixed effect was superior to the above two models. Therefore, this
study adopted the SDM model with space-and-time fixed effect for empirical testing).

4.1. Impact of PM2.5 Exposureon Outpatient Expense

The results based on the three spatial weight matrices for the whole sample were presented in
Table 5. Among them, the column (1), column (3) and column (5) in Table 5 are the results of the impact
of PM2.5 concentrations (PM2.5_max) on outpatient expense (exp_out) based on spatial contiguity matrix
W1, spatial distance matrix W2 and spatial economy matrix W3, respectively. The column (2), column
(4) and column (6) in Table 5 are the results of the influence of one stage lag of PM2.5 concentrations
(PM2.5_max(−1)) on outpatient expense (exp_out) when spatial contiguity matrix W1, spatial distance
matrix W2 and spatial economy matrix W3 are adopted, respectively.
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Table 5. Estimation results of the impact of PM2.5 exposure on outpatient expense.

Variable
Spatial Contiguity Matrix W1 Spatial Distance Matrix W2 Spatial Economy Matrix W3

(1) (2) (3) (4) (5) (6)

PM2.5_max
0.1017 *** 0.1282 *** 0.1773 ***

(2.79) (4.41) (8.58)

PM2.5_max(−1) 0.0971 *** 0.1186 *** 0.1713 ***
(2.65) (4.16) (8.34)

PGDP
−0.2317 *** −0.2323 *** −0.3029 *** −0.3097 *** −0.1916 *** −0.1975 ***

(−4.76) (−4.76) (−5.39) (−5.51) (−2.70) (−2.77)

urban
1.3876 *** 1.3840 *** 1.7333 *** 1.7686 *** 1.2335 *** 1.2656 ***

(7.32) (7.30) (10.04) (10.22) (6.86) (7.03)

num_inst
−0.0710 ** −0.0717 ** −0.0469 * −0.0449 * −0.0226 −0.0191

(−2.47) (−2.49) (−1.76) (−1.68) (−0.78) (−0.66)

num_bed
0.4853 *** 0.4929 *** 0.3549 *** 0.3659*** 0.3868 *** 0.3915 ***

(5.76) (5.85) (5.29) (5.47) (5.57) (5.58)

num_doctor
0.0178 0.0118 0.1052 0.0887 −0.0487 −0.0556
(0.23) (0.15) (1.26) (1.06) (−0.57) (−0.64)

W*PM2.5_max
0.1531 *** 0.4066 ** 0.0106

(2.76) (2.12) (0.17)

W*PM2.5_max(−1) 0.1551 *** 0.4771 ** 0.0012
(2.78) (2.55) (0.02)

W*PGDP
−0.4213 *** −0.4178 *** −1.4444 *** −1.4888 *** −0.0383 −0.0382

(−4.62) (−4.58) (−4.70) (−4.84) (−0.31) (−0.31)

W*urban
2.7245 *** 2.7882 *** 5.4106 *** 5.6841 *** 0.7962 0.8438 *

(6.62) (6.77) (4.43) (4.66) (1.56) (1.65)

W*num_inst
0.1294 * 0.1458 ** −0.3039 −0.2645 −0.3431 *** −0.3369 ***
(1.87) (2.08) (−1.23) (−1.07) (−4.05) (−3.95)

W*num_bed
0.3319 * 0.3426 ** 0.2244 0.3220 −0.0646 −0.0803
(1.91) (1.96) (0.47) (0.68) (−0.30) (−0.37)

W*num_doctor
−0.7153 *** −0.7542 *** 0.0433 −0.0844 −0.0392 −0.0449

(−3.55) (−3.71) (0.08) (−0.15) (−0.15) (−0.17)

ρ −0.1312 −0.1230 −0.7074 *** −0.7217 *** −0.2088 * −0.2034 *
−1.49) (−1.40) (−2.95) (−3.01) (−1.78) (−1.73)

sigma2_e 0.0122 *** 0.0123 *** 0.0118 *** 0.0118 *** 0.0123 *** 0.0124 ***
(11.94) (11.95) (12.03) (12.03) (12.30) (12.29)

N 290 290 290 290 290 290

Notes: ***, **, and * represent significance at the 1%, 5% and 10% levels, respectively; The numbers in brackets are t
statistic values.

First, when the three different spatial weight matrices are used, all these coefficients of PM2.5_max

are significantly positive at the 1% level. This shows that PM2.5 exposure will increase the outpatient
expense of residents during the research period. Since exposure to air pollutants, such as PM2.5, causes
health problems of residents, including increased incidence of respiratory and cardiovascular diseases,
and then increases outpatient expense. Also, when the spatial contiguity matrix W1 and the spatial
distance matrix W2 are used, the spatial lag coefficients of PM2.5_max are also significantly positive at
the 5% level. While the spatial lag coefficient of PM2.5_max is positive, but it does not exceed the 10%
significance level when the spatial economic matrix W3 is used. This suggests that the increase of
PM2.5 concentrations in geographically close regions will cause an increase of outpatient expense, and
increase the health burden of residents in a particular region. But the increase of PM2.5 concentrations
in economically related regions has almost no impact on outpatient expense in a particular region.
Therefore, the spatial effect of PM2.5 exposure on health burden is more influenced by neighboring or
geographically close regions.

Second, the coefficients of PM2.5_max(−1) are positive at the 1% significance level when the
three spatial weight matrices are used, respectively. This expresses indirectly that PM2.5 exposure
has a long-term impact on residents’ health burden during the research period. Because long-term
PM2.5 exposure can increase the incidence of chronic diseases such as cardiovascular disease, cancer,
and diabetes [65–67]. As for the spatial lag of PM2.5_max(−1), the coefficients are positive at the 1%
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level and 5% level, respectively, when we use the spatial contiguity matrix W1 and the spatial distance
matrix W2. While the coefficient is positive based on the spatial economic matrix W3, it does not pass
the 10% significance level test. This points out that the increase of PM2.5 concentrations in neighboring
or geographically close regions will promote the increase of outpatient expense in this region, while
the increase of PM2.5 concentrations in economically similar regions will not have a significant impact
on the outpatient expense in the local region.

Third, the spatial autoregressive coefficients ρ are significantly negative at the 1% and 10%
levels, respectively, when the spatial distance matrix W2 and spatial economy matrix W3 are adopted.
However, when we apply the spatial contiguity matrix W1, the spatial autoregressive coefficients are
negative but do not pass the significant 10% level test. This suggests that there is a negative correlation
of outpatient expense between a particular region and geographically or economically similar regions,
and PM2.5 exposure has a spatial spillover effect on outpatient expense. That is to say, health expense
in a particular region is not only affected by PM2.5 exposure in the region, but also influenced by
outpatient expense in neighboring or economically connected regions. Therefore, if the spatial spillover
effect and temporal lag effect are ignored, the research conclusion will be biased, and the impact of
PM2.5 exposure on residents’ health burden will be greatly underestimated.

Finally, for all the control variables, the direct coefficients and the spatial lag coefficients of
PGDP are significant negatives at the 10% level, suggesting that there is clear evidence for a negative
correlation between PGDP and residents’ health burden. Moreover, with the improvement of economic
level, the medical conditions will be improved and the possibility of getting sick is reduced to a certain
extent. For the urbanization rate, the direct coefficients and the spatial lag coefficients are positive
at the significant 10% level, indicating that urbanization in the region and its adjacent regions can
significantly promote the increase of outpatient expense. As for the number of medical institutions on
the impacts of outpatient expense, the direct coefficients are significantly negative at the 10% level
based on the matrices W1 and W2, while the spatial lag coefficients are not robust. These results
indicate that the increase in the number of medical institutions will increase the degree of competition,
promote the institutions to improve the medical level and lower the medical price, and then make or
become less the outpatient expense. For the number of hospital beds, the coefficients are all positive
at significant 1% level, but the spatial lag coefficients are positive at significant 10% level when the
matrix W1 is adopted. However, as for the number of doctors, the direct coefficients and the spatial lag
coefficients have not passed the significant tests except for the spatial contiguity matrix W1.

Given the particularity of the spatial econometric model, we cannot directly find out the spatial
spillover effect from the above models. This study calculated the direct effect, the spatial spillover
effect and the total effect of PM2.5 concentrations on outpatient expense, respectively. The results were
given in Table 6.

Table 6. The direct effects, the spatial spillover effects and the total effects of SDM (the dependent
variable is exp_out).

Type Variable Coefficient t−Value p−Value

Direct effects
PM2.5_max 0.0987 ** 2.55 0.011

PM2.5_max(−1) 0.0942 ** 2.42 0.015

Spatial Spillover
Effects

PM2.5_max 0.1245 ** 2.37 0.018
PM2.5_max(−1) 0.1283 ** 2.42 0.016

Total Effects
PM2.5_max 0.2232 *** 7.11 0.000

PM2.5_max(−1) 0.2225 *** 7.02 0.000

Note: *** and ** represent significance at the 1% and 5% levels, respectively.

The direct effect, the spatial spillover effect and the total effect of PM2.5_max and PM2.5_max(−1) are
all significantly positive at the significance 5% level. Specifically, the direct effect value of PM2.5_max

is 0.0987, the spatial spillover effect value of PM2.5_max is 0.1245, the total effect value of PM2.5_max is
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0.2232, and the spatial spillover effect accounts for about 55.78% of the total effect. This suggests that
for every 1% increase in PM2.5 concentrations in the local region and adjacent regions, the outpatient
expense will increase by approximately 9.87% and 12.45%, respectively. As for the PM2.5_max(−1),
the direct effect value is 0.0942, the spatial spillover effect value of PM2.5_max is 0.1283, the total effect
value of PM2.5_max is 0.2225, and the spatial spillover effect accounts for about 57.66% of the total effect.
This points out that every 1% increase in PM2.5 concentrations in a particular region and adjacent
regions, outpatient expense will increase about 9.42% and 12.83%, respectively. In other words, the
influence of PM2.5 exposure on outpatient expense in China is mainly due to spatial spillover effect. This
further proves that the spatial spillover effects of PM2.5 exposure on health burden cannot be ignored.

4.2. Impact of PM2.5 Exposure on Outpatient Visits

As the health burden of residents is a comprehensive concept, this study adopted another variable,
outpatient visits, to measure the health burden of residents. The results of the impact of PM2.5 exposure
on outpatient visits were presented in Table 7. Among them, the column (1), column (3) and column
(5) in Table 7 are the results of PM2.5 exposure (PM2.5_max) on outpatient visits (num_out) based on
the three spatial matrices from W1 to W3. The column (2), column (4) and column (6) in Table 7 are
the results of the influence of one stage lag of PM2.5 exposure (PM2.5_max(−1)) on outpatient visits
(num_out) when the spatial weight matrices change from W1 to W3.

Table 7. The results of the spatial impact of PM2.5 exposure on outpatient visits.

Variable
Spatial Contiguity Matrix W1 Spatial Distance Matrix W2 Spatial Economy Matrix W3

(1) (2) (3) (4) (5) (6)

PM2.5_max
0.2114 *** 0.3311 *** 0.0070

(4.10) (8.56) (0.24)

PM2.5_max(−1) 0.2154 *** 0.3169 *** 0.0178
(4.16) (8.22) (0.61)

PGDP
0.1840 *** 0.1874 *** 0.3900 *** 0.3944 *** 0.3556 *** 0.3569 ***

(2.74) (2.79) (5.25) (5.23) (3.50) (3.52)

urban
0.6517 ** 0.6314 ** −0.4861 ** −0.5139 ** 0.2340 0.2304

(2.54) (2.46) (−2.13) (−2.22) (0.90) (0.90)

num_inst
−0.0963 ** −0.1007 ** −0.2164 *** −0.2206 *** −0.1941 *** −0.1933 ***

(−2.40) (−2.52) (−6.12) (−6.16) (−4.68) (−4.68)

num_bed
−0.7171 *** −0.7150 *** −0.6721 *** −0.6841 *** −0.4667 *** −0.4541 ***

(−6.10) (−6.09) (−7.50) (−7.54) (−4.70) (−4.57)

num_doctor
0.8027 *** 0.8038 *** 0.9740 *** 0.9828 *** 0.4070 *** 0.3994 ***

(7.65) (7.65) (8.75) (8.71) (3.34) (3.28)

W*PM2.5_max
−0.3241 *** −2.3216 *** −0.2375 ***

(−4.33) (−9.33) (−2.66)

W*PM2.5_max(−1) −0.3232 *** −2.1647 *** −0.2460 ***
(−4.29) (−8.76) (−2.77)

W*PGDP
−0.1371 −0.1416 0.6240 0.6221 −0.3989 ** −0.3803 **
(−1.11) (−1.15) (1.53) (1.50) (−2.21) (−2.11)

W*urban
−1.7539 *** −1.7123 *** −2.6430 −2.9903 * 1.9654 *** 1.8389 ***

(−3.23) (−3.16) (−1.62) (−1.83) (2.78) (2.61)

W*num_inst
−0.5490 *** −0.5367 *** −0.8454 ** −0.8419 ** −0.3412 *** −0.3607 ***

(−5.05) (−4.90) (−2.47) (−2.42) (−2.83) (−2.99)

W*num_bed
−0.1504 −0.1298 −3.0001 *** −2.7721 *** 0.3599 0.3428
(−0.59) (−0.51) (−4.66) (−4.27) (1.17) (1.12)

W*num_doctor
0.6217 ** 0.5846 * 2.2185 *** 2.1068 *** −1.2269 *** −1.2073 ***

(1.96) (1.83) (2.89) (2.69) (−3.29) (−3.26)

ρ 0.2720 *** 0.2758 *** 0.1090 0.1156 −0.2840 ** −0.2862 **
(3.51) (3.56) (0.56) (0.59) (−2.36) (−2.38)

sigma2_e 0.0238 *** 0.0238 *** 0.0208 *** 0.0213 *** 0.0252 *** 0.0251 ***
(11.95) (11.93) (12.08) (12.09) (12.13) (12.14)

N 290 290 290 290 290 290

Note: ***, **, and * represent significance at the 1%, 5% and 10% levels, respectively; The numbers in brackets are t
statistic values.



Int. J. Environ. Res. Public Health 2019, 16, 4695 15 of 23

First, the direct coefficients of PM2.5_max and PM2.5_max(−1) are significantly positive at the
1% level when the spatial contiguity matrix W1 and spatial distance matrix W2 are used. While the
coefficients are positive but not significant at 10% level based on the spatial economy matrix W3.
This indicates that PM2.5 exposure has a positive impact on outpatient visits, and the influence of PM2.5

exposure on outpatient visits has a temporal lag effect. The main reason is that, with the increase of
PM2.5 concentration, the incidence of acute and chronic diseases such as respiratory system diseases
and cardiovascular diseases will increase, which leads to an increase in outpatient visits.

Second, as for the spatial lag of PM2.5_max and PM2.5_max(−1), the coefficients are all negative at
the 1% significance level when the spatial weight matrices change from W1 to W3, showing that there is
a negative spatial spillover effect of PM2.5_max and PM2.5_max(−1) on outpatient visits in China. In other
words, whether in the short or long term, the increase of PM2.5 concentrations in geographically close or
economically similar regions will promote the decrease of outpatient visits in a particular region. These
results are different from the spatial impact of PM2.5 exposure on outpatient expense discussed above.

Third, the spatial autoregressive coefficients ρ are significantly positive at the 1% level when the
spatial matrix is W1, and significantly negative at the 1% level based on the spatial economy matrix
W3. However, they do not pass the significant test when the spatial matrix is W2. This proves that
the outpatient visits of adjacent regions have a positive influence on that of the particular region,
while there is a negative correlation of outpatient visits between the particular region and economically
similar regions. Therefore, spatial spillover effect should be considered when analyzing the impact of
PM2.5 exposure on health burden of residents.

We also calculated the direct effect, the spatial spillover effect and the total effect of PM2.5

concentrations on outpatient visits of residents, respectively, and the results are shown in Table 8.
The results suggest that the direct effect of PM2.5_max and PM2.5_max(−1) are significantly positive at
the 1% level, while both the spatial spillover effect and the total effect are significantly negative at the
significance level of 5%. These results are consistent with the above conclusions.

Table 8. The direct effects, the spatial spillover effects and the total effects of SDM (the dependent
variable is num_out).

Type Variable Coefficient t-Value p-Value

Direct Effects
PM2.5_max 0.1944 *** 3.92 0.000

PM2.5_max(−1) 0.1984 *** 3.99 0.000

Spatial Spillover
Effects

PM2.5_max −0.3516 *** −4.09 0.000
PM2.5_max(−1) −0.3497 *** −4.03 0.000

Total Effects
PM2.5_max −0.1572 ** −2.26 0.024

PM2.5_max(−1) −0.1513 ** −2.16 0.031

Note: *** and ** represent significance at the 1% and 5% level, respectively.

For the coefficient value of PM2.5_max, the direct effect value is 0.1944, the spatial spillover effect
value is −0.3516, and the total effect value is −0.1572. The spatial spillover effect of PM2.5_max is much
larger than the direct effect. This indicates that for every 1% increase in PM2.5 concentrations in a
particular region and adjacent regions, it will lead to an increase of about 19.44% and a decrease of
35.16% in outpatient visits in the particular region, respectively.

As for the PM2.5_max(−1), the direct effect value is 0.1984, the spatial spillover effect value is
−0.3497, and the total effect value is −0.1513. The value of the spatial spillover effect is also larger
than that of the direct effect. The conclusions further confirm that PM2.5 exposure has an important
spatial spillover effect on residents’ health burden. It also points out that if the spatial models are not
adopted, the direct impact of PM2.5 exposure may be overestimated and the spatial spillover effect
may be underestimated.
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4.3. Robustness Tests

4.3.1. Alternative Independent Variable Estimation

This study took the maximum value of PM2.5 concentrations as the core independent variable to
analyze the spatial impact of PM2.5 exposure on residents’ health burden. To avoid the selection bias of
the independent variable, the mean value of PM2.5 concentrations were selected as the substitution
variable of PM2.5 exposure for the robustness test. The results were given in column (1) and column (2)
of Table 9.

Table 9. Results of the robustness tests.

Variable
exp_out exp_out num_hos num_hos GMM GMM

(1) (2) (3) (4) (5) (6)

PM2.5_max
0.0335 ***

(8.60)

PM2.5_max(−1) 0.0329 ***
(8.33)

PM2.5_avg
0.0603 ***

(3.16)

PM2.5_avg(−1) 0.0607 ***
(3.35)

PGDP
−0.3068 *** −0.3404 *** 0.0141 *** 0.0143 *** 1.3684 *** 1.3684 ***

(−5.21) (−5.81) (2.73) (2.76) (45.35) (45.35)

urban
1.7402 *** 1.8307 *** −0.0923 *** −0.0956 *** 0.5480 *** 0.5480 ***

(9.64) (10.21) (−4.61) (−4.74) (69.55) (69.55)

num_inst
−0.0421 −0.0398 −0.0112 *** −0.0119 *** 1.7864 *** 1.7864 ***
(−1.48) (−1.42) (−3.66) (−3.86) (59.62) (59.62)

num_bed
0.3559 *** 0.3656 *** 0.0985 *** 0.0997 *** 3.7732 *** 3.7732 ***

(5.36) (5.23) (11.01) (11.07) (271.75) (271.75)

num_doctor
0.1363 0.1422 * 0.0051 0.0053 4.2932 *** 4.2932 ***
(1.55) (1.64) (0.63) (0.65) (370.05) (370.05)

W*PM2.5_max
−0.0484 *** 3.8471 ***

(−8.44) (158.76)

W*PM2.5_max(−1) −0.0472 *** 3.8407 ***
(−8.11) (157.95)

W*PM2.5_avg
0.2953 **

(2.18)

W*PM2.5_avg(−1) 0.4607 ***
(3.31)

W*PGDP
−1.3705 *** −1.6526 *** −0.0333 *** −0.0341 ***

(−4.18) (−4.94) (−3.49) (−3.55)

W*urban
5.3744 *** 5.8229 *** 0.1284 *** 0.1368 ***

(4.27) (4.68) (3.09) (3.28)

W*num_inst
−0.3455 −0.3123 −0.0004 0.0010
(−1.34) (−1.23) (−0.05) (0.12)

W*num_bed
−0.3486 −0.0944 −0.0570 *** −0.0556 ***
(−0.75) (−0.20) (−3.04) (−2.92)

W*num_doctor
0.4873 0.5663 −0.0430 ** −0.0472 **
(0.83) (0.97) (−2.00) (−2.17)

ρ −0.5548 ** −0.6443 *** 0.6150 *** 0.6131 ***
(−2.38) (−2.72) (11.86) (11.75)

sigma2_e 0.0132 *** 0.0128 *** 0.0001 *** 0.0001 ***
(12.04) (12.03) (11.57) (11.58)

N 290 290 290 290 290 290

Notes: ***, **, and * represent significance at the 1%, 5% and 10% level, respectively; The numbers in brackets are t
statistic values.
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The results show that the direct coefficient and the spatial lag coefficient of PM2.5_avg are
significantly positive at the 1% level when the spatial matrix is W1. As for the PM2.5_avg(−1), the direct
coefficient and the spatial lag coefficient are also significantly positive at 5% level based on the spatial
contiguity matrix W1. This suggests that the average of PM2.5 concentrations in a particular region or
the adjacent regions has a positive impact on outpatient expense in the particular region, with spatial
spillover effect and temporal lag effect. The results are consistent with the above conclusions, indicating
that the results are stable and reliable. In other words, PM2.5 exposure has temporal lag effect and
spatial spillover effect on residents’ health burden.

4.3.2. Alternative Dependent Variable Estimation

In this study, outpatient visits and outpatient expenses were selected as the substitution variables
of health burden. To eliminate bias in the selection of indicators, this study used the number of
hospitalizations (num_hos) as the dependent variable for robustness tests. The results were given
in column (3) and column (4) of Table 9. The direct coefficients of PM2.5_max and PM2.5_max(−1) are
all significant positive at 1% level when the spatial matrix is W1, while the spatial lag coefficients
are significantly negative at 1% level. The results are consistent with the above conclusions and are
robust, suggesting that PM2.5 exposure has spatial spillover effect and temporal lag effect on residents’
health burden.

4.3.3. Endogenous Test

Due to the two-way influence between the dependent variable and the independent variable
or some important omitted variables, there may be endogenous problems between PM2.5 exposure
and health burden. To reduce the possibility of estimation errors caused by endogenous problems,
this study used the spatial Generalized Method of Moments (GMM) [60] to verify the reliability of
the main empirical results. Kelejian et al. [68] proposed that W(1− λW)−1Xβ was the relatively ideal
instrumental variable, but the value of λ cannot be obtained in advance. Referring to the study
of Yu and Liu [69], W*PM2.5_max and W*PM2.5_max(−1) were selected as the instrumental variables
of the spatial GMM method, and Hansen J test was used to verify the rationality of the selected
instrumental variables.

The results of the spatial GMM method were presented in column (5) and column (6) of Table 9.
As can be seen from the results, the p values of Hansen J test are 0.2952 and 0.2276, respectively, indicating
that W*PM2.5_max and W*PM2.5_max(−1) are suitable as instrumental variables. The coefficients are
all significant positive at the 1% level, indicating that the results of the spatial GMM estimation are
consistent with the previous results. Therefore, the results of this paper are robust and reliable.

5. Conclusions

Using the panel data of 29 Chinese regions from 2007 to 2017, this study used the spatial Durbin
model (SDM) under space and time fixed effect to estimate the direct and the spatial lag effects of PM2.5

exposure on residents’ health burden in China based on three representative spatial weight matrices.
The main conclusions drawn were as follows:
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(1) Residents’ health burden and PM2.5 exposure are not randomly distributed among different
regions in China, but have obvious spatial correlation and spatial clustering characteristics. There
is a positive spatial correlation between PM2.5 concentrations and residents’ health burden. Also,
the health burden in a particular region is not only affected by PM2.5 exposure in this region, but also
influenced by the health burden in neighboring or economically similar regions.

(2) PM2.5 exposure has a significant positive impact on the health burden of residents in China.
For example, PM2.5 pollution will increase outpatient expense and outpatient visits of residents.
The possible reason is that exposure to air pollutants, such as PM2.5, makes the incidence of acute
and chronic diseases such as respiratory diseases and cardiovascular diseases increase, and then the
outpatient expense and outpatient visits will also increase.

(3) PM2.5 exposure has a spatial spillover effect on health burden. The increase of PM2.5

concentrations in surrounding regions or geographically close regions will lead to an increase of
outpatient expense, but reduce outpatient visits in a particular region. Moreover, the value of the
spatial spillover effect is larger than that of the direct effect, and the influence of PM2.5 exposure on
health burden in China is mainly due to the spatial spillover effect.

(4) PM2.5 exposure has a long-term impact on residents’ health burden, that is to say, it has a
temporal lag effect. Health burden in a particular region is not only affected by PM2.5 exposure in
this region for a long time, but also affected by PM2.5 exposure in adjacent or geographically close
regions for a long time. Long-term PM2.5 exposure can increase the incidence of chronic diseases such
as cardiovascular disease, cancer, and diabetes.

According to the conclusions above, we have drawn some policy implications as follows:
(1) The impact of PM2.5 exposure on the health burden of residents in China must be given

attention in the future. Frequent exposure to PM2.5 pollution can cause many acute and chronic
diseases, which, eventually, brings great economic burden to residents. Hence, the government should
strengthen environmental inspection and punishment, and shut down the enterprises with high
pollution and low efficiency.

(2) Governments at all levels should break the administrative monopolies and achieve
cross-regional cooperation in the field of environmental protection. The influence of PM2.5 exposure
on health burden in China is mainly due to the spatial spillover effect, and this non-negligible fact
urgently requires governments at all levels to strengthen the sense of cooperation, share information
and technology of pollution control, and establish a common environmental protection system.

(3) Governments should establish a warning system and a long-term governance mechanism
for environmental pollution. The impact of PM2.5 exposure on health burden is a long-term process,
which can be easily overlooked. Therefore, the government should increase environmental protection
publicity and improve residents’ awareness of environmental protection, so as to reduce residents
health damage caused by environmental pollution.
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Appendix A

Table A1. Average PM2.5 concentrations of 29 regions in China from 2007 to 2017 (µg/m3).

Region 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Beijing 50.81 48.21 47.35 48.59 43.02 48.06 41.55 50.00 44.06 48.46 45.00
Tianjin 81.93 74.84 74.95 78.14 70.81 71.88 62.03 81.79 71.47 74.82 70.79
Hebei 62.95 60.32 54.69 57.14 52.64 53.13 49.84 61.00 53.52 55.35 55.99
Shanxi 33.98 33.93 26.71 27.76 26.56 27.11 24.82 30.08 25.37 25.92 24.97

Inner Mongolia 11.07 12.28 11.92 11.77 12.04 10.52 10.12 21.05 10.88 13.52 12.49
Liaoning 33.02 34.49 37.19 38.34 35.85 33.13 28.49 35.81 34.47 47.66 34.61

Jilin 28.82 29.79 32.65 34.62 32.59 29.42 26.24 33.24 32.12 47.53 34.47
Heilongjiang 19.23 18.36 20.39 21.83 21.59 18.42 16.83 22.09 22.49 32.68 26.69

Shanghai 52.07 56.95 56.78 58.01 51.61 49.96 44.70 54.15 47.31 61.08 50.85
Jiangsu 61.23 61.74 59.58 60.00 59.97 58.06 50.20 60.65 57.22 65.39 58.31

Zhejiang 33.38 37.86 38.35 34.29 33.81 31.62 31.70 34.90 34.27 33.21 28.58
Anhui 49.57 58.11 55.19 52.24 53.38 49.67 45.46 53.13 53.81 57.02 46.15
Fujian 23.73 24.65 23.23 21.74 20.68 19.96 19.56 20.37 21.29 19.91 20.00
Jiangxi 37.63 41.04 39.74 37.46 36.72 33.67 34.56 34.93 37.99 34.86 31.36

Shandong 64.44 69.31 60.95 58.24 64.12 57.36 55.35 64.77 57.81 61.65 62.53
Henan 60.31 65.44 50.66 50.87 54.51 52.10 48.74 61.33 51.56 52.56 48.91
Hubei 45.82 49.18 46.88 45.58 49.40 45.47 40.35 46.29 48.14 47.29 37.68
Hunan 41.63 46.79 45.02 43.05 40.58 37.99 39.47 37.93 40.88 36.55 31.43

Guangdong 31.33 34.20 35.28 34.32 30.74 29.13 28.60 28.93 33.49 26.75 25.49
Guangxi 35.25 38.76 38.20 37.71 33.92 34.51 36.17 35.08 36.97 29.95 28.67

Chongqing 39.01 36.18 32.13 32.30 35.43 30.37 30.77 30.94 28.98 25.90 23.28
Sichuan 37.16 29.48 29.71 28.39 34.60 30.00 29.68 31.11 28.53 23.14 22.85
Guizhou 29.93 29.19 29.71 29.98 28.55 28.81 28.77 26.41 28.93 23.14 20.74
Yunnan 16.27 16.09 16.37 16.61 16.57 17.62 15.75 18.07 17.26 14.77 14.25
Shaanxi 32.31 32.74 25.68 27.36 28.21 28.07 26.32 31.82 25.76 26.28 24.23
Gansu 21.39 22.11 19.39 18.22 18.44 17.71 16.32 21.05 18.34 15.15 15.38

Qinghai 9.71 9.93 10.04 9.10 10.92 8.70 8.16 10.65 9.70 6.94 7.85
Ningxia 24.02 20.85 20.51 19.92 21.03 17.34 16.91 21.94 19.60 17.32 17.30
Xinjiang 9.04 7.78 9.06 8.39 8.69 7.70 7.75 9.77 8.72 10.43 11.50

Table A2. Maximum PM2.5 concentrations of 29 regions in China from 2007 to 2017 (µg/m3).

Region 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Beijing 102.10 90.80 88.70 89.70 85.60 92.00 78.60 97.00 84.30 93.50 88.90
Tianjin 96.10 89.00 88.50 90.80 83.80 87.00 75.00 96.20 86.10 84.60 84.10
Hebei 90.24 86.91 80.84 84.26 78.54 80.29 74.94 88.25 81.16 81.97 84.65
Shanxi 62.63 60.25 51.49 53.26 51.29 51.77 49.26 55.43 50.45 50.35 51.29

Inner Mongolia 26.68 27.57 27.87 27.56 27.60 25.08 24.53 30.06 26.62 32.67 29.68
Liaoning 48.08 49.34 52.65 54.36 51.15 48.95 42.80 51.18 49.37 63.48 50.55

Jilin 38.97 40.83 42.83 46.27 43.71 39.90 36.43 44.84 43.83 67.19 47.13
Heilongjiang 34.24 33.18 34.22 38.81 37.29 33.05 30.92 38.75 38.95 56.52 43.22

Shanghai 60.10 65.80 64.40 65.20 56.60 57.50 52.70 62.70 57.90 73.90 59.50
Jiangsu 67.92 68.58 65.76 65.92 66.45 64.05 55.94 67.04 63.93 72.25 64.88

Zhejiang 51.66 56.85 57.27 53.29 51.46 49.53 50.04 54.35 52.73 52.25 47.15
Anhui 59.15 68.31 64.88 62.39 63.00 58.51 54.29 63.08 65.01 66.88 55.85
Fujian 47.62 48.24 46.49 44.93 43.87 43.22 42.37 43.88 45.06 43.87 43.70
Jiangxi 50.33 54.01 52.22 50.61 49.77 45.95 47.21 47.91 51.87 48.44 44.33

Shandong 80.28 84.74 75.99 72.74 79.43 72.10 71.08 80.45 73.63 77.12 79.54
Henan 78.56 83.93 67.74 68.16 72.04 69.85 65.70 80.07 70.34 70.09 67.53
Hubei 57.63 61.85 58.80 57.47 62.58 57.44 51.22 59.29 61.58 60.62 49.24
Hunan 53.39 58.99 58.15 55.76 53.34 50.07 51.76 50.86 55.29 49.62 43.48
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Table A2. Cont.

Region 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Guangdong 41.08 44.34 44.86 44.23 40.25 38.04 37.79 37.96 43.83 35.56 34.21
Guangxi 44.74 48.71 47.54 47.47 42.94 43.33 45.32 44.45 45.89 38.84 37.56

Chongqing 72.50 72.20 60.50 58.40 63.60 57.40 57.70 59.10 55.60 51.70 44.70
Sichuan 57.32 47.46 47.19 45.56 53.48 47.53 46.91 49.98 46.19 39.77 39.54
Guizhou 40.97 40.32 41.16 41.81 40.14 40.36 40.77 37.42 40.62 34.52 31.49
Yunnan 29.53 29.73 29.51 29.99 30.51 31.43 29.32 32.10 31.05 28.14 27.66
Shaanxi 50.02 50.38 41.12 42.99 43.96 44.20 41.20 49.68 42.09 42.64 40.87
Gansu 30.59 32.34 28.46 26.22 26.31 25.83 23.49 30.06 26.76 22.36 23.14

Qinghai 17.73 18.75 18.75 16.73 19.24 15.79 15.28 19.31 17.66 13.54 15.66
Ningxia 29.60 26.06 25.86 24.82 26.06 22.06 21.98 27.32 24.58 22.68 23.08
Xinjiang 25.44 22.86 23.91 23.31 23.66 21.28 21.36 25.56 23.67 26.52 29.57
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