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Abstract
Background  Clear cell renal cell carcinoma (ccRCC) is one of the most common malignant tumors of the urinary 
system. Protein acetylation plays a key role in regulating cellular processes and cancer signaling pathways. This study 
explores the potential biological mechanisms of ccRCC from the perspective of acetylation.

Methods  This study obtained RNA-seq data and clinical information of ccRCC from TCGA and ICGC, and single-cell 
RNA sequencing datasets from the GEO database. Ten machine learning algorithms and their 101 combinations 
were used to analyze the prognostic significance of acetylation-related differentially expressed genes (DEGs) and to 
construct a prognostic risk model. GSEA was used to analyze the enrichment of different signaling pathways in high-
risk and low-risk groups, and the correlation between immune infiltration and risk scores was assessed. Finally, the 
function of the key gene GCNT4 was verified through cell experiments.

Results  This study identified 84 acetylation-regulated key genes with significant expression differences between 
tumor and normal tissues, closely linked to patient prognosis. The LASSO + RSF combination model performed 
best, and the model could accurately predict patient prognosis. The survival of patients in the high-risk group was 
significantly worse than that in the low-risk group. High expression of GCNT4 was associated with better survival 
prognosis and was expressed at higher levels in normal tissues than tumor tissues. Overexpression of GCNT4 
significantly inhibited the proliferation, invasion, and migration of renal cancer cells and may affect acetylation by 
regulating the levels of O-GlcNAc modification in cells.
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Introduction
Clear cell renal cell carcinoma (ccRCC) is one of the 
three most common malignant tumors of the urinary sys-
tem [1], and it is the most prevalent histological subtype 
of renal cancer, accounting for 85% of renal cancer cases 
[2]. Additionally, the global incidence rate is still on the 
rise [3]. Although ccRCC is a disease that can be detected 
early and successfully treated through surgery, up to one-
third of cases will develop metastases, leading to fatal 
outcomes [4]. The first-line treatment for ccRCC includes 
immunotherapy using programmed cell death 1 (PD-1) 
checkpoint inhibitors, such as nivolumab and pembroli-
zumab, combined with molecular targeted therapy. The 
most commonly used molecular targeted drugs for RCC 
patients are tyrosine kinase inhibitors that block vascu-
lar endothelial growth factor receptors (VEGFR), such 
as axitinib, cabozantinib, and lenvatinib [5–8]. However, 
the options for targeted therapy in ccRCC are still very 
limited, and there is an urgent need for in-depth research 
into the biological mechanisms of ccRCC.

Protein acetylation is an important post-translational 
modification that involves the transfer of an acetyl group 
from acetyl coenzyme A (Ac-CoA) to specific lysine resi-
dues on proteins [9]. This modification plays a critical role 
in regulating various cellular processes, including gene 
transcription, DNA repair, and metabolic pathways [10]. 
In the context of cancer, protein acetylation has become 
a key factor because it is involved in the regulation of 
oncogenic and tumor-suppressive signaling pathways. 
Abnormal acetylation levels can lead to the dysregulation 
of these pathways, thereby promoting the occurrence, 
progression, and metastasis of tumors [11]. For example, 
acetylation can modulate the activity of transcription 
factors and metabolic enzymes, thereby affecting tumor 
metabolism and the tumor microenvironment. Addition-
ally, the dynamic balance between histone acetyltransfer-
ases (HATs) and histone deacetylases (HDACs) is crucial 
for maintaining cellular homeostasis, and its disruption 
can promote oncogenesis. Therefore, targeting protein 
acetylation pathways has become a promising strategy 
for cancer treatment, with HDAC inhibitors showing 
potential in clinical applications [12]. Acetyl-CoA within 
the cell is closely related to the acetylation process [13], 
and changes in Acetyl-CoA levels directly affect histone 
acetylation, thereby regulating transcription, genomic 
integrity, and replication. At the same time, histone acet-
ylation also directly replenishes the metabolite pool for 

redistribution in chromatin acetylation or other meta-
bolic reactions [14]. Both non-enzymatic and enzymatic 
acetylation of Acetyl-CoA play important roles in protein 
acetylation [15].

Protein acetylation plays a significant role in the occur-
rence and development of ccRCC, and histone acetyla-
tion modifications are closely related to the development 
of ccRCC [16]. In ccRCC, abnormal levels of histone 
acetylation can lead to the dysregulation of gene expres-
sion, thereby promoting the proliferation and metasta-
sis of tumor cells [17]. Furthermore, deacetylases such 
as SIRT3 are downregulated in ccRCC, and their low 
expression is associated with tumor progression. SIRT3 
regulates mitochondrial function and metabolic path-
ways through deacetylation modifications, and its over-
expression can enhance mitochondrial biogenesis and 
inhibit the growth of ccRCC [18]. Emerging studies reveal 
critical roles of protein acetylation in ccRCC suppression: 
SFMBT2 stabilizes via self-acetylation, inhibiting tumor 
growth [19]. ACLY acetylation enhances enzymatic activ-
ity, fueling acetyl-CoA overproduction and lipid accumu-
lation in ccRCC [20]. Hypoxia-induced ERRα acetylation 
synergizes with HIF signaling to drive malignant ccRCC 
transformation [21]. These findings illuminate the inter-
play between epigenetic modifications and microenvi-
ronmental cues in tumor progression, highlighting novel 
therapeutic targets for ccRCC.

Acetylation plays a significant role in the life activities 
of tumors, but there is still a lack of systematic research 
on it in ccRCC. Existing studies have focused on the 
acetylation of individual proteins or specific energy sub-
stances such as lipid metabolism. This study investigated 
acetylation-related gene features at multiple omics lev-
els. We used single-cell and bulk transcriptomes to iden-
tify relevant genes and then employed a new machine 
learning framework that combines 10 machine learn-
ing algorithms and their 101 combinations to construct 
relevant features. We selected GCNT4 as the key gene 
in the model and demonstrated the tight association 
of the model with the prognosis and immune status of 
ccRCC. Subsequently, we conducted gene intervention of 
GCNT4 at the cellular level to verify its effects on acety-
lation and ccRCC proliferation.

Conclusion  This study constructed a ccRCC acetylation homeostasis model via transcriptome analysis and machine 
learning, validating GCNT4 as a key gene. High expression of GCNT4 is associated with better survival prognosis and 
affects acetylation by regulating O-GlcNAc modification levels, inhibiting the proliferation and migration of renal 
cancer cells, providing a new potential target for the treatment of ccRCC.

Keywords  Clear cell renal cell carcinoma, Acetylation, Prognosis, Machine learning, GCNT4
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Materials and methods
Data collection and processing
RNA-seq data for ccRCC and corresponding clinical 
information were obtained from The Cancer Genome 
Atlas (TCGA) with the International Cancer Genome 
Consortium (ICGC). Transcripts were extracted for tran-
scripts per kilobase million (TPM) values for subsequent 
analysis, and genes with average expression below 0.1 
were excluded. In addition, we retrieved ccRCC single-
cell RNA sequencing datasets GSE210038, GSE222703, 
and GSE224630 from the Gene Expression Omnibus 
(GEO) database. Specifically, GSE210038 contains sin-
gle-cell RNA sequencing data from the tumors of seven 
patients with ccRCC and two samples of normal adjacent 
tissue. GSE222703 contains single-cell RNA sequencing 
data for three ccRCC patient tumors and fresh samples 
of adjacent healthy tissues. GSE224630 contains scRNA-
seq data for tumor samples from five untreated ccRCC 
patients.

Single-cell RNA sequencing data were processed using 
the Seurat package (v4.0.2) in R. Gene expression matri-
ces were generated via Read10X and converted to a 
Seurat object using CreateSeuratObject. Quality control 
thresholds included: (1) retention of genes detected in 
≥ 3 cells; (2) inclusion of cells expressing 300-7,000 genes; 
(3) exclusion of cells with ≥ 5% mitochondrial gene con-
tent. Data were normalized and subjected to PCA. Cell 
clusters were identified using FindNeighbors and Find-
Clusters (resolution = 1.2, empirically determined) based 

on the top 30 principal components. UMAP projections 
(RunUMAP) visualized cluster relationships. Cell types 
were annotated via canonical markers: tumor cells (CA9, 
NNMT, PAX8); epithelial cells (GATM, ALDOB); mast 
cells (MS4A2); B cells (MZB1, CD79A, MS4A1); macro-
phages (CD14, CD68); monocytes (C1QA, CD68); NK/
NKT cells (PTPRC, NKG7, KLRD1); mesangial cells 
(PDGFRB); and endothelial cells (CD34).To analyze dif-
ferentially expressed genes (DEGs), the “FindMarkers” 
function in the Seurat software package was used. Sta-
tistical significance of DEGs was determined using the 
Wilcoxon test (p < 0.05), and other parameters were set to 
default values. Acetylation scores for each cell type were 
assessed using the UCell tool in the irGSEA software 
package. Univariate Cox regression analysis was used to 
identify acetylation-associated genes in the TCGA and 
ICGC cohorts. Kidney tissue immunohistochemistry 
(IHC) images obtained from Human Protein Atlas (HPA).

Construction and validation of prognostic signature based 
on integrated machine learning approaches
The TCGA and ICGC dataset was used as a training 
cohort for screening prognosis-related genes and devel-
oping prognostic features (Table 1). Ten machine learn-
ing algorithms and their 101 different combinations for 
variable selection and model construction based on a ten-
fold cross-validation framework were analyzed to deter-
mine the prognostic significance of acetylation-related 
degs in the TCGA and ICGC cohort. Ten machine learn-
ing algorithms including Lasso, random survival forest 
(RSF) stepwise Cox, partial least squares regression for 
Cox (plsRcox), Ridge, elastic net (Enet), CoxBoost, gen-
eralized boosted regression modeling (GBM), survival 
support vector machine (survival-SVM), and supervised 
principal components (SuperPC).

The prognostic model used overall survival (OS), dis-
ease-specific survival (DSS) and progression-free survival 
(PFS) as survival endpoints. Using lasso and RSF regres-
sion models, the most informative prognostic markers 
among the candidate DEGs were identified to construct 
the prognostic risk model. And they were categorized 
into high-risk and low-risk groups based on risk scores. 
Univariate Cox regression analysis was performed using 
the R packages survminer and survivor. Survival analy-
sis was performed using the Kaplan-Meier (KM) method 
and statistical significance was assessed using the log-
rank test. The time-related area under the receiver 
operating characteristic curve was calculated using the 
“timeROC” software package. Risk scores, survival status 
and the area under the curve (AUC) of receiver operating 
characteristic (ROC) over time were analyzed, to assess 
the predictive performance of the model in predicting 
survival outcomes in kidney cancer patients.

Table 1  Baseline clinical features the TCGA dataset
Level Overall

n 539
Stage_S (%) Stage_I 271 (50.56)

Stage_II 59 (11.01)
Stage_III 123 (22.95)
Stage_IV 83 (15.49)

Stage_T (%) T1 277 (51.39)
T2 71 (13.17)
T3 180 (33.40)
T4 11 (2.04)

Stage_N (%) N0 242 (44.90)
N1 16 (2.97)
NX 281 (52.13)

Stage_M (%) M0 430 (80.07)
M1 79 (14.71)
MX 28 (5.21)

Race (%) asian 8 (1.48)
Black or african american 54 (10.02)
Not reported 7 (1.30)
white 470 (87.20)

Gender (%) Female 186 (34.51)
Male 353 (65.49)

Age (mean (SD)) 60.666 (12.114)
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Gene set enrichment analysis (GSEA)
Quantify the enrichment scores of specific gene sets in 
the samples using GSEA. The enrichment of different 
signaling pathways in the high and low risk groups was 
obtained. Signaling pathways with significant differences 
were then analyzed using the “limma” package. GO and 
Hallmark pathway enrichment analysis based on GSEA 
and Hallmark gene set data.

Immune infiltration analysis
Immune infiltration results were analyzed and correla-
tions with risk scores were assessed using the R software 
package immunedeconv. The CIBESORT with ESTI-
MATE algorithm was used to quantify the relationship 
between 22 immune cell infiltrations and risk scores and 
to predict the level of immune cell infiltration in tumor 
tissue.

Cell culture
Human renal cancer cell lines: OS-RC-2 cell line, A-498 
cell line and 786-O cell line (human clear cell renal carci-
noma cell line) were obtained from Wuhan Pricella Bio-
technology Co., Ltd. All cell lines were identified using 
short tandem repeat assay. Cells were cultured in DMEM 
complete medium at 37 °C with 5% CO2. GCNT4 over-
expression cell lines groups were treated with OSMI-1 
(HY-119738, MedChemExpress) (50 µ M) for 24 h.

CCK8 experiment
Cell viability was detected by CCK8 assay. OSRC2 cells, 
786-O cells and A498 cells were inoculated in 96-well 
plates at a concentration of 4 × 103 cells/well and incu-
bated for 0–96  h, then 10µL CCK8 reagent was added. 
After incubation for 3  h, the absorbance (OD value) at 
450 nm was measured by MicroplateReader.

Construction and transfection of lentivirus
GCNT4 overexpressing (OE) and negative control (Ctrl) 
lentiviruses were obtained from Shanghai Genechem 
Co.,Ltd. At 48  h after infection, the lentiviruses were 
treated with 2  µg/ml puromycin (Beyotime, China) for 
3–7 d. Stable transfectants were obtained, and then the 
expression of GCNT4 was analyzed by western blotting.

Western blot
Total cellular proteins were obtained using a total protein 
extraction kit (ProteinTech). Proteins were separated by 
sodium dodecyl sulfate-polyacrylamide gel electrophore-
sis and transferred to NC membranes. After being closed 
with 5% skim milk powder for 1 h at room temperature, 
the membranes were incubated overnight at 4  °C with 
the appropriate antibodies, including: GCNT4 (1:1000, 
Signalway Antibody #45802), O-GlcNAc (1:1000, Abcam 
ab2739), GAPDH (ProteinTech). After incubation of NC 

membranes with appropriate secondary antibodies, the 
membranes were visualized using a Tanon 5200 system 
and ECL detection reagents and quantified using ImageJ 
software.

Tanswell migration and invasion assays
100 µL of Matrigel (diluted 1:8 in serum-free medium) 
was spread evenly into the upper chamber of the Tran-
swell and allowed to solidify (not required for migration 
experiments). Cells (4 × 104 cells/well) from the serum-
free medium mix were inoculated evenly into the upper 
Transwell. 600 µL of DMEM medium was added to the 
lower Transwell. After 48 h of incubation, the cells were 
fixed in 4% paraformaldehyde and stained with 0.2% crys-
tal violet. The unstained cells were wiped away. Acquiring 
images with a microscope and count the infiltrated cells 
in the lower chamber.

Wound healing experiments
Firstly, three horizontal lines were drawn evenly on the 
back of the 6-well culture plate with a marker along the 
straightedge as a marking line. About 5 × 105 logarith-
mic growth phase cells were added to each well. After 
24  h of incubation, a vertical scratch (perpendicular to 
the scratch line on the back side) was made on the cells 
with the pipette tip, and the cells were rinsed with PBS to 
remove the scratched cells. Then the medium was added 
and incubated. Photographs of the cells at the same loca-
tion were taken at 0 h and 24 h, respectively. The wound 
healing ability of the cells was analyzed using Image J 
software.

Determination of Acetyl-CoA content
Cells were assayed for acetyl coenzyme A (Acetyl-CoA) 
content using the Acetyl-CoA Content Assay Kit(Beijing 
Solarbio Science & Technology Co., Ltd.).

Statistical analysis
Statistical analysis and visualization were performed 
using the R program (version 4.0.1). GraphPad Prism 9.0 
software (GraphPad software, Inc.) and SPSS software 
were used for statistical analysis. Each experiment was 
repeated three times and the results were expressed as 
mean ± standard deviation (SD). p-value < 0.05 was con-
sidered statistically significant. Statistical significance 
was as follows: *P < 0.05, ** P < 0.01, *** P < 0.001.

Results
Identification of acetylated DEGs
We initially extracted the differentially expressed genes 
(DEGs) of tumor tissues and corresponding paracan-
cerous normal tissues from the TCGA database and 
subsequently performed an intersection analysis with 
the set of acetylated genes. This procedure aimed to 
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identify the key genes that may be regulated by acetyla-
tion during tumorigenesis and development. The results 
indicated that 84 genes were present in both DEGs and 
acetylated gene sets, suggesting that these genes may 
play significant roles in the acetylation regulatory net-
work of tumors (Fig. 1A). Utilizing volcano plots and heat 
maps, we demonstrated the expression changes and pat-
terns of intersecting genes. The volcano plot illust.rates 
the relationship between the log2 fold change (logFC) of 
differentially expressed genes and the adjusted p-value 
(-log10(p.adj)) of the negative logarithmic transforma-
tion, emphasizing the genes with significant expression 
changes. Heat maps, conversely, visualized the expres-
sion levels of these intersecting genes across different 
samples, thereby elucidating their expression heterogene-
ity (Fig. 1B and C). Using single sample Gene Set Enrich-
ment Analysis (ssGSEA), we quantified the intersecting 
genes to evaluate the overall activity of the acetylated 
gene set in the samples. Violin plots illustrating the distri-
bution of acetylation scores in tumor tissues compared to 
paracancerous tissues demonstrate disparities in acetyla-
tion activity between tumor and normal tissues (Fig. 1D). 
We further analyzed the relationship between acetylation 
scores and patients’ overall survival (OS), disease-specific 
survival (DSS), and progression-free survival (PFS) in the 
TCGA dataset. The Kaplan-Meier survival curves dem-
onstrated a statistically significant difference in the prob-
ability of survival between patients with high scores and 
those with low scores, indicating that acetylation activity 
may be strongly associated with the prognosis of tumor 
patients (Fig.  1E-H). Similarly, we conducted an analy-
sis of the relationship between the acetylation score and 
overall patient survival in the ICGC dataset. The results 
demonstrated a significant association between the ace-
tyl score and the survival probability of patients, further 
substantiating the role of acetylation in tumor prognosis. 
Finally, we performed one-way Cox regression analysis 
to screen for acetylation genes associated with progno-
sis. The results showed that multiple acetylation-related 
genes were significantly associated with patients’ prog-
nosis (p < 0.05), and these genes may serve as potential 
prognostic markers or therapeutic targets (Fig. 1I).

Development and validation of prognostic features based 
on integrated machine learning approaches
We applied 101 distinct combined machine learning 
methodologies to analyze the data in TCGA and ICGC 
datasets to determine which method exhibited the 
highest consistency index (C-index). The results of the 
analysis indicated that the LASSO + RSF combination 
demonstrated superior performance among all models 
evaluated, displaying the highest C-index value. Conse-
quently, we selected the LASSO + RSF combination as 
the foundation for subsequent modeling (Fig.  2A). By 

applying LASSO regression analysis to the TCGA data-
set, we identified genes associated with tumor prognosis. 
Figure  2B and C show the results of the LASSO analy-
sis, where the coefficient plots show the relative impor-
tance of each gene in the prognostic model. These results 
help us understand which genes may have an important 
impact on the prognosis of patients with tumors. Ran-
dom Survival Forest (RSF) analysis was also applied to 
TCGA dataset to assess the impact of different genes on 
patient prognosis. Figure  2D and E show the results of 
RSF analysis, revealing the complex relationship between 
genes and survival time, and identifying genes that have 
a significant impact on prognosis. Based on the results of 
the LASSO + RSF analysis, we constructed a prognostic 
risk model and categorized patients into high-risk and 
low-risk groups based on risk scores. Figure  2F and G 
demonstrate that the survival of patients in the high-risk 
group was significantly worse than that of patients in the 
low-risk group, indicating that our risk model could accu-
rately predict the prognosis of patients. We conducted 
further analysis of OS, DSS and PFS for patients catego-
rized into high- and low-risk groups within the TCGA 
dataset. The Kaplan-Meier survival curves presented 
in Fig.  2H-J demonstrated that patients in the high-risk 
group exhibited significantly lower survival probabilities 
compared to those in the low-risk group across all three 
survival metrics, thereby providing additional validation 
for the efficacy of our risk modeling approach. Finally, 
we performed an OS analysis in the ICGC dataset for 
patients in the high- and low-risk groups. The survival 
curves in Fig.  2K similarly showed that patients in the 
high-risk group had a poorer survival prognosis, which is 
consistent with the results in the TCGA dataset, suggest-
ing that our risk model has a better ability to generalize 
across different datasets.

Evaluation of the homeostatic model of acetylation
The area under the receiver operating characteristic 
curve (ROC) was utilized to assess the predictive power 
of the risk model. Figure  3A illustrates the AUC values 
of the risk model in the TCGA dataset of 0.96, 0.97, and 
0.98 at 1, 3, and 5 years, respectively, demonstrating 
exceptionally high predictive accuracy. Figure  3B, con-
versely, exhibits the corresponding AUC values in the 
ICGC dataset as 0.84, 0.79, and 0.81, respectively, which 
are marginally lower than those in the TCGA dataset, yet 
still indicate robust predictive performance. These find-
ings suggest that the risk model can effectively differenti-
ate the survival prognosis of diverse patients. We further 
analyzed the correlation between patients’ clinical infor-
mation, including gender, age, and tumor stage, and risk 
scores. The relationship between these clinical character-
istics and risk scores is shown in the forest plot (Fig. 3C) 
and bar charts (Figs. 3D-G), which show the distribution 
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Fig. 1  Identification of acetylated DEGs. (A) Venn diagram described the acetylated gene set intersecting with the DEGs (tumor tissues and correspond-
ing paracancer normal tissues in the TCGA database). (B) Volcano diagram of gene expression levels of the intersecting genes, including up-regulated 
(red), down-regulated (blue) and genes with no significant changes (black). (C) Heatmap of the expression levels of the intersecting genes in normal 
tissues and renal cancer tissues. (D) Violin plots of acetylation scores in normal versus renal cancer tissues based on ssGSEA. (E) Relationship between 
acetylation scores and patients’ overall survival (OS) in the TCGA dataset. (F) Relationship between acetylation score and patient disease-specific survival 
(DSS) in the TCGA dataset. (G) Relationship between acetylation score and patient progression-free survival (PFS) in the TCGA dataset. (H) Relationship 
between acetylation score and patient OS in the ICGC dataset. (I) Forest plot of one-way Cox regression analysis for screening acetylation genes associ-
ated with prognosis
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Fig. 2  Development and validation of prognostic features based on integrated machine learning methods. (A) Obtaining 101 kinds of prediction models 
by 10 machine learning methods and calculating the C-index. (B, C) Visualization of LASSO regression analysis in the TCGA cohort. (D, E) Visualization of 
RSF regression analysis in the TCGA cohort. (F) Risk score distribution of patients in the TCGA cohort. (G) Overall survival status of patients in the TCGA 
cohort. (H, I, J) Kaplan-Meier curves of OS, DSS and PFS for low-risk and high-risk groups in the TCGA dataset, based on the log-rank test. (K) Kaplan-Meier 
curves of OS for low-risk and high-risk groups in the ICGC dataset. The blue line represents low-risk patients and the red line represents high-risk patients
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of risk scores for patients of different sexes, age groups, 
and tumor stages. Notably, we observed that older 
patients (Fig.  3E) and patients with advanced tumors 
(Fig. 3G) exhibited higher risk scores, which may be asso-
ciated with a less favorable survival prognosis, whereas 
the effect of gender on survival risk was not significant. 
Finally, we divided the patients into different subgroups, 
including patients aged greater than 60 and less than 60 
years, as well as tumor stages S1-2 and S3-4, and per-
formed overall survival (OS) analyses. The Kaplan-Meier 
survival curves in Figs. 3H-K showed that patients with 
older (Fig. 3H and I) and advanced tumors (Fig. 3J and K) 
had a significantly worse survival prognosis, consistent 
with their higher risk scores. These results further con-
firm the clinical relevance of our risk model and suggest 

that age and tumor stage are important factors that influ-
ence patient prognosis.

Underlying molecular mechanisms of the acetylation-
related signature in bulk transcriptome
Next, the molecular mechanisms underlying the correla-
tion between the acetylation-related signature and ccRCC 
prognosis were further investigated. We first divided the 
tumor samples into high-risk and low-risk groups based 
on their risk scores. We then extracted the differential 
genes between the two groups and used GSEA analysis 
based on the GO gene set to explore the biological pro-
cesses and signaling pathways involved in these differ-
ential genes. Figure 4A and B demonstrate the results of 
GSEA analysis, where the enrichment score (NES) and 

Fig. 3  Evaluation of the risk model. (A, B) ROC curves showing the specificity and sensitivity of the risk model for predicting OS at 1, 3, and 5 years in the 
TCGA training set and the ICGC dataset. (C) Forest plot of the distribution of clinical characteristics according to the risk scores. (D-G) Differences in risk 
scores between patients grouped by gender, age, stage S and stage T. (H-K) Kaplan-Meier curves of OS for ccRCC patients aged ≧ 60 years, aged < 60 
years, and with tumor stages S1-2 and S3-4
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P-value indicate the degree of enrichment of different 
signaling pathways in the high-risk and low-risk groups. 
The results showed that multiple HALLMARK signaling 
pathways were significantly different between the high- 
and low-risk groups, suggesting that these pathways may 
play important roles in tumor development and progno-
sis. Such as defense responses to bacterium and other 
organisms, humoral immune responses, immunoglobulin 
Complex, adaptive immune response, etc.

Furthermore, we scored the differential genes in each 
sample using the Gene Set Variation Analysis (GSVA) 
method to quantify the activity of each sample on spe-
cific signaling pathways. Figure 4C illustrates the results 
of GSVA scoring, and statistical difference analysis was 
performed to determine which signaling pathways were 

significantly different between the high- and low-risk 
groups. These results provide important information for 
understanding the molecular heterogeneity of tumors 
and may reveal new therapeutic targets. Figure  4D 
illustrates the top 20 HALLMARK signaling pathways 
exhibiting the highest GSVA scores and analyzes the 
correlation between the activity of these pathways and 
the overall survival (OS) of patients. The Kaplan-Meier 
survival curves demonstrated that elevated activity of 
specific signaling pathways (e.g., APICAL surface, P53 
pathway, and MTORC1 signaling) is associated with a 
less favorable survival prognosis for patients, whereas 
increased activity of other pathways may be associated 
with an improved prognosis. These findings underscore 
the potential significance of specific signaling pathways 

Fig. 4  Characterization of the acetylation-related transcriptome in ccRCC patients. (A, B) GO terms enriched in the differential genes between the high-
risk group and low-risk group by GSEA analysis. (C) Differences in hallmark pathway activities between the high-risk and low-risk groups scored by GSVA. 
(D) Correlation between the OS of patients and the activity of the pathway by GSVA. Significant correlations between the OS and GSVA scores of APICAL 
surface, P53 pathway, and MTORC1 signaling wereshown by Kaplan-Meier survival curves 
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in tumor prognosis and may inform future therapeutic 
strategies.

Association of the prognostic risk model with immune cell 
infiltration
Immune cell infiltration plays a crucial role in the devel-
opment of ccRCC. Subsequently, we further utilized a 
variety of algorithms and software tools to assess the 
relationship between immune cell infiltration and the 
prognostic risk model, and explored the distribution 
characteristics of immune cell infiltration in different 

risk groups. Figure  5A demonstrates the correlation 
coefficients and p-values between different immune cell 
subpopulations and risk scores. The results showed a sig-
nificant correlation between multiple immune cell types 
(e.g., T cells CD4+, NK cells, B cells, T cells regulatory 
(Tregs), etc.) and risk scores. Thus revealing a potential 
link between immune cell infiltration and tumor prog-
nosis. We assessed the level of immune cell infiltration in 
the tumor samples using the ESTIMATE algorithm and 
classified the patients into high-risk and low-risk groups 
based on the risk score. Figure 5B shows the differences 

Fig. 5  Immune Infiltration Analysis. (A) Correlations between 7 immune cell infiltration outcomes and risk scores were analyzed using the immuned-
econv software package. (B) Violin plots of the differences in ESTIMATE score, immune score, and tumor purity in the high-risk and low-risk groups. (C) 
Correlation analysis between model genes and immune cell infiltration levels. (D) Differences in expression of key immune checkpoint genes in the high-
risk and low-risk groups. (E, F) Box plots and histograms showing the distribution and expression differences of the immune cell subpopulations in the 
high-risk group versus the low-risk group by the CIBESORT algorithm
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Fig. 6 (See legend on next page.)
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in immune cell infiltration levels between the two groups. 
The results showed that the high-risk group displayed 
higher infiltration levels in certain immune cell subpop-
ulations, which may be associated with immune escape 
from the tumor and prognosis.

Further, we explored the correlation between model 
genes and the level of immune cell infiltration. Fig-
ure  5C demonstrates the correlation coefficients and 
statistical significance between these genes (ACHE, 
ALDH6A1, BIRC5, GCNT4, GM2A, HMGCS2, KAT2A, 
PPARGC1A, RUNX1 and ST6GALNAC3) and immune 
cell subpopulations. These results help to understand 
how specific genes affect immune cell infiltration and 
function. Furthermore, we analyzed the expression levels 
of immune checkpoint genes in the high- and low-risk 
groups. Figure 5D showed the differences in the expres-
sion of key immune checkpoint genes (e.g., CD274, 
CD40, CD47, HLA-A, HLA-B, and HLA-C) between 
the two groups. The expression levels of these genes may 
influence the immune response in the tumor microenvi-
ronment and thus correlate with patient prognosis.

Finally, we analyzed the level of immune cell distribu-
tion between the high-risk and low-risk groups using the 
CIBERSORT algorithm. Figure 5E and F demonstrate the 
distribution of different immune cell subpopulations and 
expression differences in the two groups. These results 
further confirmed the heterogeneity of immune cell infil-
tration in the tumor microenvironment and may reveal 
immune cell subpopulations associated with tumor pro-
gression and prognosis.

In Supplementary Fig.  2, our analysis uncovered sig-
nificant correlations between GCNT4 expression and 
pivotal immune microenvironmental characteristics in 
TCGA. Specifically, GCNT4 demonstrated negative cor-
relation with Tumor Immune Dysfunction (TIDE) and 
Exclusion scores (P = 0.02). Additionally, GCNT4 was 
inversely associated with myeloid-derived suppressor 
cell (MDSC) infiltration (P = 4.16 × 10 − 7) and immune 
exclusion signatures (P = 1.59 × 10− 4). Conversely, positive 
correlations were noted with CD274 (P = 3.59 × 10− 9) and 
Interferon Gamma (IFNG) (P = 5.9 × 10− 3).

Molecular mechanism of GCNT4 involved in renal 
carcinogenesis
Among the homeostatic model genes for acetylation, we 
selected GCNT4 as the key differential gene and targeted 
it for genetic intervention to validate its effectiveness. 
The Kaplan-Meier survival curves (Fig. 6A) showed that 
the survival probability of the GCNT4 high-expression 
group (red) was significantly higher than that of the low-
expression group (black), suggesting that high GCNT4 
expression may be associated with a better survival 
prognosis. We then examined the differences in GCNT4 
expression in normal and tumor tissues. The Box plot 
(Fig. 6B) and scatter plot (Fig. 6C) of GCNT4 expression 
levels showed that GCNT4 expression levels were gen-
erally higher in normal tissues than in tumor tissues. As 
shown in the IHC images, the expression of GCNT4 was 
significantly lower in tumor tissues compared to normal 
tissues (Fig. 6D). These results suggested that the reduced 
expression of GCNT4 may be associated with tumor 
development.

After that, we explored the role of GCNT4 gene in 
renal carcinogenesis by overexpressing GCNT4 in three 
renal cancer cell lines (OSRC2, 786-O and A498 cell 
lines). We successfully constructed GCNT4 overexpres-
sion cell lines and detected the overexpression efficiency 
using western blotting (Fig.  6E). The results of CCK8 
proliferation assay showed that the absorbance of all 
overexpression groups was significantly reduced and the 
cell viability was significantly reduced compared with 
the control group, revealing that GCNT4 could inhibit 
the proliferation of tumor cells (Fig.  6F). The results of 
transwell assay showed that the GCNT4 overexpression 
groups all had significant inhibition of tumor cell migra-
tion and invasion (Fig.  6H and J). The results of wound 
healing assay showed that the GCNT4 overexpression 
group had poor healing ability on OSRC2, 786-O and 
A498 cells. GCNT4 overexpression significantly inhib-
ited wound healing (Fig. 6I). These results indicated that 
GCNT4 could inhibit the growth, invasion and migration 
of renal cancer cells.

Previous studies have shown that the main function 
of the GCNT family is to regulate protein glycosylation, 
which is closely related to intracellular O-linked β-N-
acetylglucosamine (O-GlcNAc) modification. Therefore, 
we explored the molecular mechanism of GCNT4 in 

(See figure on previous page.)
Fig. 6  Molecular mechanisms of GCNT4 involvement in renal carcinogenesis. (A) Kaplan-Meier survival curves showing the correlation between GCNT4 
and overall survival of patients. (B, C) Box plot and scatter plot showing the differences in GCNT4 expression in normal and tumor tissues. (D) IHC images 
showing GCNT4 expression in normal and tumor tissues. (E) GCNT4 overexpression in OSRC2, 786-O and A498 cells was detected using western blot 
(n = 3, compared with Ctrl group, Unpaired t-test). (F) OD values of OSRC2, 786-O and A498 cells cultured for 0–96 h in control and overexpression groups, 
for assessment of cell proliferation. (n = 3, compared with Ctrl group, Unpaired t-test) (G) Western blot detection of O-GlcNAc expression in control versus 
overexpression group. (H) Transwell assay to detect the number of migrating cells (magnification, ×100). (n = 3, compared with Ctrl group, Unpaired t-test) 
(I) Wound healing assay to detect wound healing ability (magnification, ×100). (n = 3, compared with Ctrl group, Unpaired t-test) (J) Transwell assay to 
detect the number of cell invasion (magnification, ×100). (n = 3, compared with Ctrl group, Unpaired t-test) (K) Acetyl-CoA content assay. (n = 3, compared 
with Ctrl group, Unpaired t-test)
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the development of renal cancer by detecting the level 
of intracellular O-GlcNAc modification. Western blot 
results showed that the overall expression level of intra-
cellular O-GlcNAc modification in the overexpression 
group increased (Fig.  6G). Acetyl-CoA, an important 
metabolic intermediate, is involved in a variety of biosyn-
thetic pathways. We measured the Acetyl-CoA content in 
the control groups, GCNT4 overexpression groups and 
GCNT4 overexpression treated with OSMI‑1 groups. 
The overexpression group of each cell line was found to 
show significantly higher Acetyl-CoA content than the 
control group, and also higher Acetyl-CoA content than 
GCNT4 overexpression groups treated with OSMI‑1 
(Fig. 6K). This suggests that GCNT4 may regulate Acetyl-
CoA levels by altering the level of O-GlcNAc modifica-
tion of intracellular proteins.

The correlation of the prognostic risk model with 
single‑cell characteristics
In this study, we performed a combined analysis of single-
cell RNA sequencing data from GSE210038, GSE222703, 
and GSE224630, to gain insights into the roles of different 
cell types in specific biological processes and their tran-
scriptional regulatory mechanisms. We first performed a 
cluster analysis of the combined single-cell transcriptome 
data to identify different cell types. The findings dem-
onstrated a clear distinction among various cell types, 
including NK/NKT cells, tumor cells, endothelial cells, 
mesangial, epithelial cells, monocytes, macrophages, T 
cells, mast cells, and B cells. The identification of these 
cell types establishes a foundation for further biologi-
cal analyses (Fig.  7A). Also, We have supplemented the 
gene-celltype information in Supplementary Fig.  1. Fur-
thermore, heatmaps were generated to visualize the 
expression patterns of the top five marker genes exhibit-
ing the highest expression levels in each cell cluster. These 
heatmaps elucidated the specific gene expression charac-
teristics of different cell types. For instance, marker genes 
for B cells may include immunoglobulin genes, whereas 
marker genes for endothelial cells may encompass angio-
genesis and inflammatory response-related genes. These 
data provide molecular-level insights that contribute to 
the understanding of the functions of various cell types 
and their roles in disease processes (Fig. 7B).

We performed KEGG pathway enrichment analysis 
and cell signaling analysis. Figure  7C showed the gene 
expression data based on KEGG pathway analysis. The 
results showed a significant enrichment of genes related 
to metabolic pathways such as fatty acid degradation, 
citrate cycle (TCA cycle), Valine, leucine and isoleu-
cine degradation, and oxidative phosphorylation. The 
heatmap demonstrated the differences in the number 
of interactions and the strength of interactions between 
different cell types (Fig. 7D). The scatter plots in Fig. 7E 

showed the incoming interaction strength and outgo-
ing interaction strength between different cell types in 
the risk-low and risk-high conditions, respectively. The 
results showed that the cell-to-cell interaction strength 
increased significantly in the risk-high state.

Figure 7F demonstrated the changes in signaling under 
high-risk condition, which is divided into two parts: 
increased signaling and decreased signaling. We found 
that the signaling of VEGFA-VEGFR1, VEGFA-VEGFR2, 
MIF-(CD74 + CXCR4) and MIF-(CD74 + CD44) was 
significantly increased in the high-risk state; whereas 
the signaling of LGALS9-CD45, LGALS9-CD44, and 
IL1B-IL1R2 was decreased, which may affect the tumor 
cell adhesion and migration. Figure  7G and H demon-
strated the VEGF signaling pathway network at low and 
high risk. We observed an altered pattern of cell-cell 
interactions and significant differences in the regulatory 
mechanisms of the VEGF signaling pathway at different 
risk levels. This may be related to disease progression 
or different pathological states, where cells may need 
to respond to more severe inflammatory and immune 
challenges by enhancing the activity of the VEGF sig-
naling pathway under high-risk conditions. In addition, 
the VEGFA-VEGF1R2 combination plays an important 
role in signaling, with a higher contribution in the high-
risk group, and a reduced contribution of PGF-VEGFR1 
(Fig.  7H).The Violin plot in Fig.  7J showed the distribu-
tion of the expression of five molecules (VEGFA, PGF, 
FLT1, KDR and VEGFB) in different cell types and com-
pared the difference in expression between low and high 
risk states. In the high-risk state, the expression levels 
of VEGFA were significantly increased in Macrophages, 
Mast cells, Monocytes and tumor cells; FLT1 and KDR 
were significantly increased in Endothelial; and PGF was 
significantly increased in Mesangial. Differences in the 
expression of these molecules may be associated with 
functional changes in cells, activation of signaling path-
ways, or biological markers of disease states.

Collectively, these data suggested that metabolic dis-
orders and alterations in intercellular signaling may play 
a key role in disease progression. These findings provide 
new perspectives for understanding the metabolic and 
immunoregulatory mechanisms involved in disease pro-
gression and may provide potential targets for the devel-
opment of new therapeutic strategies.

Discussion
Clear cell renal cell carcinoma (ccRCC) is an increasingly 
serious global disease burden, and prognostic factors 
are crucial for estimating disease progression, selecting 
appropriate treatment methods, and determining overall 
survival rates. This study utilized a novel computational 
framework and collected expression files across multiple 
cohorts worldwide to explore the correlation between 
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Fig. 7  The correlation of the prognostic risk model with single‑cell characteristics. (A) t-SNE plot showing the cell type identification. (B) Heatmap show-
ing specific gene expression profiles in different cell types. (C) KEGG pathway enrichment analysis. (D) Heatmap showing differences in the number and 
strength of interactions between different cell types. (E) Scatter plot showing incoming interaction strength and outgoing interaction strength between 
different cell types under low and high risk conditions. (F) Changes in signaling under high-risk conditions. (G, H) Vascular endothelial growth factor 
(VEGF) signaling pathway network. (I) Violin plot showing the distribution of expression of five molecules (VEGFA, PGF, FLT1, KDR, and VEGFB) in different 
cell types, versus the difference in expression between low and high risk conditions
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acetylation-related genes and ccRCC prognosis. Our 
model identified GCNT4 gene, termed acetylation differ-
entially expressed genes, which play a significant role in 
prognosis.

Acetylation is highly dependent on acetyl-CoA [22], 
and this biological process is regulated by various 
enzymes [23]. Abnormal levels or activities of these rate-
limiting enzymes can drive malignant transformation 
[24], including significant impacts on the tumor micro-
environment [25]. In previous studies, the focus was 
often limited to the effects of one or a few key proteins on 
acetylation and acetyl-CoA, such as ACLY [26, 27] and 
the ACSS family [27–29]. In ccRCC, research focusing on 
acetylation is still limited, mainly to smaller aspects such 
as lipid metabolism [30].

This study is the first to integrate all acetylation-related 
genes and systematically analyze the significant role of 
intracellular acetylation-related genes in ccRCC progno-
sis at multiple omics levels using a fused machine model. 
This approach allowed for the identification of key genes 
that may have been overlooked. Among the acetylation 
differentially expressed genes, we selected GCNT4 as a 
key differential gene and conducted gene intervention to 
verify its effectiveness.

GCNT4 is a member of the β-1,6-N-
acetylglucosaminyltransferase (GCNT) family, which 
primarily regulates protein glycosylation. Research in 
the oncology field is abundant, such as the correlation 
between GCNT1 expression and disease aggressiveness 
in prostate cancer [31]; GCNT2 as a biomarker and novel 
therapeutic target for melanoma [32], and its induction 
of epithelial-mesenchymal transition in colorectal and 
esophageal cancer [33, 34]; GCNT3 is mainly associ-
ated with the prognosis of colon cancer but also relates 
to pancreatic cancer and hepatocellular carcinoma [35]; 
GCNT4 is closely related to gastric cancer [36]. Glyco-
sylation is the most common, complex, and dynamic 
post-translational modification of lipids and proteins, 
essential for every biological process [37]. We noted that 
the GCNT family possesses important acetylglucosami-
nyltransferase activity [38], closely related to intracel-
lular glucosamine (O-GlcNAc) modification. O-GlcNAc 
modification has been shown to contribute to various 
cellular functions, including signal transduction, pro-
tein localization and stability, transcription, chromatin 
remodeling, mitochondrial function, and cell survival 
[39]. Dysregulation of O-GlcNAc is the basis of multiple 
metabolic disorders leading to human diseases, includ-
ing cancer, neurodegenerative diseases, and diabetes 
[40], with its underlying mechanisms being highly com-
plex. For example, almost all enzymes in glycolysis have 
been shown to undergo O-GlcNAc modification, with 
the O-GlcNAc modification of glucose-6-phosphate 
dehydrogenase regulating pentose phosphate pathway 

activity, and the O-GlcNAc modification of GSK3β regu-
lating glycogen synthesis [41]. In adipocytes, activation 
of the HBP and increased O-GlcNAc levels also stimu-
late fatty acid oxidation [42]. Its regulatory function in 
various metabolisms suggests potential roles in clear cell 
renal cell carcinoma. This study demonstrated that after 
overexpression of GCNT4, the proliferation, invasion, 
and migration of three renal cancer cell lines (OSRC2, 
786-O, and A498) were significantly inhibited. We 
hypothesized that this alteration was caused by changes 
in intracellular acetyl-CoA levels and tested that intra-
cellular acetyl-CoA levels were significantly elevated in 
overexpressing GCNT4. Mechanistically, we measured 
intracellular O-GlcNAc modification levels and found 
that GCNT4 regulates acetyl-CoA levels by altering the 
O-GlcNAc modification levels of intracellular proteins, 
thereby affecting acetylation.

Our findings suggest a potential combinatorial strategy 
involving GCNT4 modulation to improve anti-PD-L1 
therapeutic outcomes, proposing a distinct perspective 
for future investigation. GCNT4-high tumors exhibit 
a “hotter” immunological profile, evidenced by nega-
tive associations with TIDE and immunosuppressive 
myeloid-derived suppressor cells (MDSCs). Mechanisti-
cally, reduced immune exclusion suggests GCNT4 facil-
itates T-cell infiltration through extracellular matrix 
remodeling (e.g., hyaluronan degradation). Paradoxi-
cally, while GCNT4 drives PD-L1 upregulation via IFN-γ 
signaling—a pathway typically linked to adaptive resis-
tance—this occurs alongside robust baseline T-cell activ-
ity, creating a unique vulnerability. PD-L1 blockade in 
this context may amplify pre-existing antitumor immu-
nity, akin to the enhanced efficacy observed in IFN-γ-rich 
tumors like MSI-H colorectal cancer [43].

The crosstalk among reactive oxygen species (ROS), 
metabolic pathways, and acetylation has been docu-
mented across diverse species, including cyanobacteria, 
plants, and mammals. In our single-cell dataset, KEGG 
pathway enrichment analysis revealed significant altera-
tions in metabolic pathways such as oxidative phosphor-
ylation, the TCA cycle, and lipid metabolism, alongside 
ROS-related signaling pathways—a finding consistent 
with prior research. VEGF, a pivotal mediator of tumor 
angiogenesis, exhibits functional interplay with acety-
lation signaling. For instance, H3 histone acetylation 
regulates VEGF transcription, while VEGF itself stimu-
lates angiogenesis via ETS1 acetylation. A clinical study 
in colorectal cancer demonstrated that combining his-
tone deacetylase inhibitors with anti-VEGF monoclonal 
antibodies enhances therapeutic efficacy. Our findings 
further highlight adaptive activation of VEGF signal-
ing in high-risk clear cell renal cell carcinoma (ccRCC), 
potentially driving angiogenic or vascular remodeling 
responses to inflammatory and immune stressors. These 
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observations suggest that dual targeting of acetylation 
pathways and VEGF signaling may represent a promis-
ing therapeutic strategy for ccRCC, warranting further 
mechanistic exploration and clinical validation.

However, several limitations of this study need to be 
considered. First, the detailed mechanism by which 
GCNT4 regulates intracellular O-GlcNAc modification 
levels remains to be elucidated. Our study only dem-
onstrated that overexpression of GCNT4 leads to an 
increase in intracellular O-GlcNAc modification levels. 
Importantly, while our findings suggest that GCNT4 
may regulate Acetyl-CoA levels through modulating 
protein O-GlcNAcylation, the causal relationship and 
molecular intermediates connecting these two metabolic 
nodes remain obscure. Whether GCNT4 directly acts 
as a functional enzyme for protein O-GlcNAc modifica-
tion or influences it through other signaling pathways 
is still unclear. Crucially, it is unknown whether the 
observed Acetyl-CoA alteration is a direct consequence 
of O-GlcNAc-mediated metabolic reprogramming, or 
occurs through parallel regulatory mechanisms. Future 
studies may incorporate multi-omics techniques, such 
as proteomics and metabolomics, combined with iso-
tope tracing approaches to systematically investigate 
both the molecular mechanisms underlying GCNT4-
mediated O-GlcNAc modification. Second, this study 
only conducted mechanistic research on GCNT4, which 
is less reported and less functionally clear among acety-
lation homeostasis differentially expressed genes. This is 
still not comprehensive for overall acetylation research 
in ccRCC and requires further exploration. Third, our 
results are only based on a limited number of cell lines. 
Additionally, the lack of in vivo experiments limits the 
translatability of functional findings. Moreover, the lim-
ited sample size of single-cell data may compromise the 
accuracy of cell subpopulation classification and DEG 
identification, potentially affecting the robustness and 
generalizability of prognostic models. Future studies 
should expand sample diversity, perform in vivo valida-
tion and increase single-cell data volume to enhance reli-
ability and precision. Last, the study lacks clinical sample 
validation, particularly multi-center cohort studies or 
clinical tissue trials, limiting the prognostic model’s appli-
cability in real clinical settings. Future studies should val-
idate the model using clinical samples and multi-center 
trials to enhance its clinical utility and promote its trans-
lation into practice.

Despite these limitations, this study provides new 
insights into the molecular mechanisms of ccRCC occur-
rence and development from the perspectives of single-
cell transcriptomics and bulk transcriptomics, especially 
by combining the prominent metabolic heterogeneity 
of ccRCC with acetylation, offering a novel integrated 
perspective. Through combined machine learning, we 

identified GCNT4 as a key gene regulating acetylation 
in ccRCC. Mechanistically, GCNT4 affects intracellular 
O-GlcNAc modification levels, thereby altering acetyla-
tion and influencing the outcome of ccRCC.
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