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Objective. To develop and validate a novel RNA-seq-based nomogram for preoperative prediction of lymph node metastasis (LNM)
for patients with oral squamous cell carcinoma (OSCC). Methods. RNA-seq data for 276 OSCC patients (including 157 samples
with LNM and 119 without LNM) were downloaded from TCGA database. Differential expression analysis was performed
between LNM and non-LNM of OSCC. These samples were divided into a training set and a test set by a ratio of 9 : 1 while the
relative proportion of the non-LNM and LNM groups was kept balanced within each dataset. Based on clinical features and
seven candidate RNAs, we established a prediction model of LNM for OSCC using logistic regression analysis. Tenfold
crossvalidation was utilized to examine the accuracy of the nomogram. Decision curve analysis was performed to evaluate the
clinical utility of the nomogram. Results. A total of 139 differentially expressed RNAs were identified between LNM and non-
LNM of OSCC. Seven candidate RNAs were screened based on FPKM values, including NEURL1, AL162581.1 (miscRNA),
AP002336.2 (lncRNA), CCBE1, CORO6, RDH12, and AC129492.6 (pseudogene). Logistic regression analysis revealed that the
clinical N stage (p < 0:001) was an important factor to predict LNM. Moreover, three RNAs including RDH12 (p value < 0.05),
CCBE1 (p value < 0.01), and AL162581.1 (p value < 0.05) could be predictive biomarkers for LNM in OSCC patients. The
average accuracy rate of the model was 0.7661, indicating a good performance of the model. Conclusion. Our findings
constructed an RNA-seq-based nomogram combined with clinicopathology, which could potentially provide clinicians with a
useful tool for preoperative prediction of LNM and be tailored for individualized therapy in patients with OSCC.

1. Introduction

Oral squamous cell carcinoma (OSCC) accounts for 95% of
all oral malignancies, and its five-year survival rate is up to
50%-60% [1]. Lymph node metastasis (LNM) is considered
to be an independent prognostic factor of OSCC, which is
associated with tumor recurrence and prognosis [2–4]. Only
25-40% of OSCC patients with LNM at diagnosis will survive
5 years, compared to approximately 90% of those without
LNM (non-LNM) [5]. Therefore, accurate assessment of
the nodal status and decision about concurrent cervical
lymph node dissection is of utmost importance for prognosis
and therapy of OSCC.

Unfortunately, there is still no widely accepted method
for noninvasive detection for preoperative prediction of
LNM in OSCC currently. For OSCC patients with clinically
negative neck (cN0), whether to perform cervical lymph
node dissection remains a hot topic. Using current methods
to predict LNM, approximately 70% of patients with cN0
OSCC who undergo elective neck dissection (END) are
found to be pathologically node negative [6]. It is imminent
to best select patients with LNM who will benefit from
END and to decrease the cost and morbidity of neck dissec-
tion in those without LNM [7].

Emerging sequencing technologies in genomics and tran-
scriptomics have characterized many types of human cancers
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in specific molecules, which provide a critical relationship
between cell phenotypes and their molecular characteristics,
and new biomarkers or therapeutic strategies for patients
[8, 9]. To our knowledge, no nomograms based on RNA-
seq have been used to predict LNM in OSCC. We hypothe-
sized that RNA-seq-based nomograms could improve the
prediction of LNM in OSCC, so that patients who will benefit
from END can be more accurately identified, while retaining
END is unlikely to be beneficial. In this study, logistic regres-
sion analysis was used to screen for high risk factors for
OSCC patients with LNM. We aimed to establish and verify
a novel RNA-seq-based nomogram combined with clinico-
pathological factors to predict LNM in OSCC patients, which
may provide an auxiliary tool for personalized precise treat-
ment and assist the clinical therapy decision for OSCC
patients.

2. Materials and Methods

2.1. Data Acquirement. OSCC RNA-seq were obtained from
The Cancer Genome Atlas database (TCGA) (https://portal
.gdc.cancer.gov/). Screening conditions were as follows: (a)
primary sites: hard palate, lip, oral cavity, or oral tongue;
(b) disease type: squamous cell neoplasms; (c) experimental
strategy: RNA-seq; (d) sample type: primary tumor; and (e)
clinical information was composed of AJCC pathological N
status. Finally, a total of 276 OSCC samples with gene expres-
sion data and corresponding clinical information were uti-
lized for this study, including 157 samples with lymph node
metastasis (LNM) and 119 samples without LNM (non-
LNM).

The GSE9844 microarray dataset was downloaded from
the Gene Expression Omnibus (GEO) database (https://
www.ncbi.nlm.nih.gov/gds), including 26 oral tongue squa-
mous cell carcinoma (OTSCC) samples [10]. Among them,
11 samples had lymph node metastasis.

2.2. Differential Expression Analyses. Differential expression
analyses were performed between LNM and non-LNM
OSCC samples using the DESeq2 package in R (version
1.18.1) [11]. Differentially expressed RNAs (DERNAs) were
identified in line with adjusted p value < 0.05 and ∣log2 fold
change ðFCÞ ∣ >1. The overall distribution of DERNAs was
visualized into the volcano plot. A functionally grouped net-
work of pathways was constructed using the ClueGO (ver-
sion 2.5.1) [12, 13] of Cytoscape (version 3.6.1) [14]. The
“load marker list” was set to differential gene sets for enrich-
ment analysis, the “show only pathways with p value” was set
to 0.05, and other settings were set to default.

2.3. Variable Selection Method. The chi-square (χ2) test was
used to analyze the difference of patient demography, risk
exposure, clinical characteristics, and histopathological fea-
tures between LNM and non-LNM OSCC samples by SPSS
software (version 24.0). p < 0:001 was considered statistically
significant. Characteristic genes related to LNM were
screened utilizing the Boruta package in R [15] (version
6.0.0) based on FPKM values from the expression profile of

the GSE9844 dataset, which were plotted into a box plot by
the ggplot2 package (version 3.2.1).

2.4. Classification Model Fitting and Validation.After remov-
ing the samples with incomplete clinical N stage (cN) infor-
mation, a total of 265 samples were retained and randomly
divided into the training set and the test set by a ratio of
9 : 1 while the relative proportion of non-LNM and LNM
groups was kept balanced within each dataset. A classifica-
tion model of the 10-fold crossvalidation was constructed
utilizing the R language (version 3.4.4). In a training set, a
RF model was built using the “random forest” package in R
(version 4.6-14) [16], followed by support vector machine
(SVM) model by the “e1071” package in R (version 1.7-2)
[17]. Basic function “glm” in R (version 3.4.4) was used to
fit the generalized logistic regression model, and the
“XGBoost” package in R (version 0.90.0.2) [18] was utilized
to implement the XGBoost model. The accuracy, sensitivity,
and specificity of the four models were evaluated on the test
set according to the calibration curve and ROC curve by
the “rms” package (version 5.1-3.1) [19] and “pROC” pack-
age (version 1.15.3) in R. Area under the curve (AUC) was
used to compare the diagnostic performance of the models.
Furthermore, the nomogram of the logistic regression model
was performed by the “regplot” package in R (version 0.2)
[20]. Then, decision curve analysis (DCA) was conducted
to estimate the clinical value of our nomogram between two
groups using the “rmda” package (version 1.6) [21], which
could analyze the net benefit of the cN and RNA scores for
prediction of LNM for OSCC patients.

3. Results

3.1. Clinical Characteristics.Our study developed a model for
the preoperative prediction of LNM. Figure 1 illustrates the
work flowchart of the study. A total of 276 patients with
OSCC were included in our study. Table 1 shows the demo-
graphic data and pathological characteristics of these
patients. Among them, 157 (56.88%) patients had LNM.
265 patients possessed complete clinical N status; among
them, 44 had no lymph node metastasis in clinical examina-
tion (cN-) but metastasis occurred in the pathological diag-
nosis (pN+). 22 patients’ clinical examination indicated
lymph node metastasis (cN+), but pathological examination
results showed no lymph node metastasis (pN-). Further-
more, our data showed that clinical N was significantly differ-
ent between the two cohorts (p < 0:001). However, there were
no significant differences between the two groups in terms of
neoplasm histologic grade, tobacco smoking history, and
anatomic neoplasm subdivision.

3.2. Identification of Differentially Expressed RNAs between
Non-LNM and LNM of OSCC. Volcano plots visualized
that there were 139 DERNAs between non-LNM and
LNM OSCC (Figure 2), including 104 upregulated and
35 downregulated genes. The specific DERNAs are listed
in Supplementary Table 1. To analyze the underlying
biological function of DERNAs, functional enrichment
analysis was carried out by ClueGO and the database
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called by the GO biological process in ClueGO. Significant
biological processes enriched by DERNAs are shown in
Figure 3. These DEmRNAs were mainly involved in
“regulation of striated muscle contraction,” “regulation of
muscle system process,” and “muscle filament sliding.”
These results indicated that a variety of biological
processes of muscle could be involved in lymph node
metastasis of OSCC.

3.3. Selection of Candidate DERNAs to Predict LNM of OSCC.
The Boruta algorithm was used to screen out the signature
genes to distinguish non-LNM and LNM of OSCC.
Figure 4 shows the change in Z-score of 139 DERNAs during
Boruta’s operation. The blue boxplots indicated the mini-
mum, average, and maximum Z-scores of the shadow gene.
The red and green boxplots indicated the Z-score of the
rejection attribute and confirmation genes, and yellow colors
represented suggestive genes. These findings showed that the
most important shadow attribute Z-score clearly separated
important and nonimportant genes. Finally, a total of seven
candidate DERNAs were identified for distinguishing non-
LNM and LNM of OSCC, including NEURL1, AL162581.1
(miscRNA), AP002336.2 (lncRNA), CCBE1, CORO6,
RDH12, and AC129492.6 (pseudogene). Among them,
expression profiles of four DERNAs were obtained from the
expression profile of the GSE9844 dataset. In Figure 5, we
found that the expression levels of CCBE1, CORO6,

NEURL1, and RDH12 were significantly higher in N+ com-
pared to N- OSCC patients.

3.4. Development and Validation of a Machine Learning
Model to Predict LNM of OSCC. Based on clinical N and
seven candidate RNAs, we established a prediction model
for LNM of OSCC. The machine learning was carried out,
including LR, SVM, RF, and XGBoost. The sensitivity, spec-
ificity, positive predictive value (PPV), negative predictive
value (NPV), accuracy area under the curve (AUC) mean
value, and 95% confidence interval (CI) are shown in
Table 2. From the result, the average of the accuracy rate of
the machine learning model was 0.79 and the AUC value
was 0.84, indicating that the model had optimal performance.
Based on the machine learning model, the receiver operating
curves (ROCs) were depicted in the training set, test set, and
entire data (Figure 6). The AUCs were 0.9773, 0.8441, and
0.8558, respectively, suggesting the good prediction efficiency
of the model. As shown in Figure 7, a nomogram was estab-
lished to predict the risk for LNM in OSCC. Logistic regres-
sion analysis revealed that the clinical N stage (p < 0:001)
was an important factor to predict LNM of OSCC. Further-
more, three DERNAs including RDH12 (p value < 0.05),
CCBE1 (p value < 0.01), and AL162581.1 (p value < 0.05)
possessed potential value as predictive biomarkers for LNM
in OSCC patients.

The following two logistic regression models were estab-
lished, with cN as the predictor and pN as the outcome; the

OSCC patients from TCGA
(non-LNM = 119, LNM = 157)

Chi-square
test

LR, RF, SVM,
XGBoost

DESeq2

Boruta

Clinical characteristics RNA expression profile 

Clinical N stage 7 RNAs as signature
genes

Training set (n = 239), test set (n = 26)

Enrichment analysis

Validation of four mRNAs
in the GSE9844

Perform prediction

Differential expression of 
139 RNAs

Figure 1: A work flowchart for this study. TCGA: The Cancer Genome Atlas; non-LNM: non lymph node metastasis; LNM: lymph node
metastasis; LR: logistic regression; RF: random forest; SVM: support vector machine.
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other was a multiple logistic regression model (complex),
with cN and characteristic RNA expression levels as predic-
tors and pN as the outcome. In Figure 8(a), a decision curve
showed that using the RNA nomogram in the current study
to predict the LNM added was more beneficial than only
using the clinical N stage. As shown in Figures 8(b) and
8(c), our clinical impact curves draw the clinical influence
curves of the cN model and the complex model, respectively.
The simple model to predict the risk stratification of 100
patients displayed the “cost : benefit ratio” y-axis, assigned 8
scales, and showed the confidence interval. The red curve
(number of high risk) represented the number of people
who were classified as positive (high risk) by the cN model

or the complex model at each threshold probability, and the
blue curve (number of high risk with outcome) was the num-
ber of true positives at each threshold probability.

4. Discussion

LNM is the main reason for the failure of OSCC treat-
ment, which will significantly reduce patients’ survival rate
[22, 23]. Once cervical LNM is detected during follow-up,
cervical lymph node dissection does not always save the
patient, and sometimes, the rescue rate is less than 40%
[24]. At the same time, 60%-80% of END patients are
evaluated as cN0 and no metastasis, but unnecessary

Table 1: The demographic characteristics of OSCC patients with or without lymph node metastasis.

Characteristics OSCC without LNM (n = 119) OSCC with LNM (n = 157) p value

Gender 0.017∗

Male 74 119

Female 45 38

Age (years) 62:92 ± 12:91 59:89 ± 12:31 0.049∗

Clinical T 0.017∗

I-II 53 44

III-IV 63 108

Clinical N <0.001∗∗∗

LN-negative 94 43

LN-positive 21 107

Neoplasm histologic grade 0.195

G1 23 17

G2 77 104

G3 18 31

G4 0 1

Tobacco smoking history 0.267

No 36 34

Yes 81 120

Margin status 0.148

Close 15 19

Negative 90 108

Positive 9 26

Alcohol history 0.024∗

No 43 46

Yes 70 110

Anatomic neoplasm subdivision 0.5

Oral tongue 49 63

Base of tongue 4 9

Floor of mouth 23 33

Buccal mucosa 8 12

Alveolar ridge 11 5

Oral cavity 21 32

Hard palate 1 2

Lip 2 1

Note: ∗p value < 0.05, ∗∗∗p value < 0.001. OSCC: oral squamous cell carcinoma; LNM: lymph node metastasis.
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cervical lymphadenectomy is required, which causes shoul-
der and neck pain and dysfunction, thereby affecting long-
term quality of life (QOL) [25, 26]. Therefore, there is an
urgent need to identify patients who can obtain greater
benefits from END and to avoid unnecessary LN-related
surgery in patients without LNM, especially in relatively
early-stage T patients. The limitation of diagnostic imaging
technology (including ultrasound, computed tomography
(CT), and magnetic resonance imaging (MRI) is that LN
status cannot be fully predicted. To date, many efforts
have been made to develop diagnostic biomarkers for
LNM in OCSS patients. However, most of these markers
are limited by their detection potential.

Recent developments in technology of whole-
transcriptome sequencing provide a possibility to develop
new biomarkers and therapeutic strategies in most types
of human cancers [8, 9]. In this study, we identified 139
DERNAs between non-LNM and LNM OSCC. These

DEmRNAs were distinctly involved in several key path-
ways such as “regulation of striated muscle contraction,”
“regulation of muscle system process,” and “muscle fila-
ment sliding,” indicating that these genes could be
involved in LNM of OSCC. Based on DEGs, Sonohara
et al. proposed a novel gene-expression signature for pre-
diction of lymph node metastasis in esophageal squamous
cell carcinoma (ESCC) patients by analyzing RNA-
sequencing profiles [27]. Daisuke et al. constructed a 15-
gene signature for detection of lymph node metastasis in
early-stage gastric cancer (GC) patients by using the
genome-wide transcriptomic approach [28]. With regard
to OSCC, Pasini et al. developed a four-gene expression
model to predict LNM in OSCC, but their results showed
a 22% false positive rate in pN0 cases, which may lead to
over treatment [29]. In the present study, we constructed
an RNA-seq-based nomogram combined with clinicopath-
ological factors. This model was composed of NEURL1,
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Figure 2: 139 differentially expressed RNAs between non-LNM and LNM of OSCC. Red dot represents up-regulation and green dot
represents down-regulation.
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AL162581.1 (miscRNA), AP002336.2 (lncRNA), CCBE1,
CORO6, RDH12, and AC129492.6 (pseudogene). These
candidate DERNAs could significantly distinguish non-
LNM and LNM of OSCC. Among them, CCBE1, CORO6,
NEURL1, and RDH12 were significantly higher in N+
compared to N- OSCC patients in the GSE9844 dataset.
More importantly, RDH12, CCBE1, and AL162581.1 were
significantly associated with OSCC LNM. As per previous
studies, CCBE1 is indispensable for the development of
lymphatic vessels which have important roles in lymphan-
giogenesis and cancer metastasis [30]. Tumor lymphangio-
genesis plays an important role in LNM of OSCC [31–33].
Hogan et al. suggested that CCBE1 may be an extracellular
guidance molecule and an independent factor for normal
lymphoblasts to germinate or even migrate [34]. Peng
et al. concluded that CCBE1 had potential to be a bio-
marker for prediction of LNM in lung cancer patients
because its expression was decreased in lung tumor tissue
and further downregulated in patients with LNM [35].
Leong et al. found that CCBE1 as a direct target could
promote invasion and metastasis of breast cancer [36].
Our research showed that analysis of CCBE1 expression
in the OSCC tissues may help surgeons to evaluate the
LNM risk, and CCBE1 might become a potentially thera-
peutic biomarker in OSCC. Further research is required
to understand more about the function of CCBE1 in the
LNM of OSCC.

Previous studies have shown that various clinicopatho-
logical predictors and genes are considered as risk factors
for LNM in the patients with OSCC [37, 38]. However,

no study has combined a visual presentation nomogram
with these risk factors. The nomogram is a visualization
of a statistical model specifically developed to optimize
the accuracy of individual prediction. The preoperative
nomogram of estimated LNM can help surgeons identify
patients who can obtain greater benefit from a more
extensive operation [39–41]. Compared with traditional
multiple regression models, the advantage of the nomo-
gram is that all key predictors are displayed graphically.
Therefore, we established and validated a novel clinically
useful nomogram based on RNA-seq combined with clin-
icopathological factors to predict the LNM of patients with
OSCC. The AUC of the model was up to 0.9773 in the
training set, suggesting that the model exhibited a good
performance to predict LNM of OSCC. After validation
by the test and entire sets, the model still possessed high
sensitivity and accuracy on prediction of LNM of OSCC.
Thus, the model established by comprehensive use of clin-
ical features had good performance, and candidate RNAs
were superior to the use of certain indicators alone, indi-
cating the clinical practicality and innovation of our
research. To further validate the prediction efficiency of
the model on OSCC LNM, we conducted logistic regres-
sion models. As expected, the RNA nomogram combining
the clinical N stage showed higher accuracy to predict
LNM compared to only the clinical N stage.

At present, some studies have identified some individ-
ual markers for LNM in OCSS patients based on microar-
rays, which require separate clinical tests and individual
clinical tests, resulting in increased costs [39–41]. The
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microarray technology used in those studies does not
reflect current genomic views because it can only detect
protein-coding genes. Combining protein-coding genes
and noncoding genes may improve the robustness of
molecular biomarkers. RNA-seq clinical tools have key

advantages over other platforms. The bias and limitations
of microarray data are improved by RNA-seq, especially
in the detection of low-abundance transcripts. This advan-
tage of RNA-seq can be translated into a better correlation
with qPCR data in laboratory and patient samples, which
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is especially important for genes that tend to be differen-
tially expressed but have low absolute abundance. More-
over, RNA-seq provides comprehensive expression data,
which will become increasingly important in understand-
ing and predicting the therapeutic response of most
tumors that lack classic targetable changes. Our prediction
model is based on the RNA-seq dataset. This method is
more economical and more clinically applicable than
whole-genome sequencing. Our findings constructed an
RNA-seq-based nomogram combined with clinical pathol-
ogy, which may provide clinicians with useful tools for
preoperative prediction of LNM and tailor-made personal-
ized treatment for OSCC patients. It is easy to understand
its graphical scoring system, which helps to customize
treatment and medical decisions. To the best of our
knowledge, the RNA-seq-based nomogram described in
this article has not been reported previously, providing a
powerful prognostic tool for precision oncology. Therefore,

this model may have important implications for clinical
practice. Our RNA-seq data is based on the TCGA data-
base and the study population is from different races, so
the model can be extended to other races/ethnic popula-
tions. The RNA-seq-based nomogram combined with clin-
icopathology provides an opportunity for individualized
adjuvant therapy based on biological factors and compre-
hensive change testing through the RNA-seq platform.
Therefore, this model may be a clinically useful tool that
can be easily incorporated into the RNA-seq clinical
sequencing program to personalize OSCC treatment.

However, our study had certain limitations. We
acknowledged that it was based on TCGA data and the
sample size was relatively small. In addition, the nomo-
gram had only been validated internally and still needed
to be further validated by independent cohorts in a multi-
center trial to investigate whether the results are applicable
to other populations.

Table 2: Comparison of the predictive performances of the machine learning model in the test set.

Model performances (HR, 95% CI) RF SVM LR XGBoost

Sensitivity 0.82 (0.75, 0.89) 0.80 (0.75, 0.85) 0.81 (0.74, 0.89) 0.72 (0.63, 0.81)

Specificity 0.67 (0.57, 0.78) 0.76 (0.68, 0.84) 0.76 (0.68, 0.84) 0.67 (0.57, 0.77)

PPV 0.77 (0.72, 0.83) 0.82 (0.77, 0.87) 0.82 (0.77, 0.88) 0.74 (0.67, 0.81)

NPV 0.76 (0.67, 0.84) 0.75 (0.71, 0.79) 0.78 (0.70, 0.83) 0.65 (0.56, 0.75)

Accuracy 0.75 (0.71, 0.80) 0.78 (0.75, 0.81) 0.79 (0.74, 0.83) 0.70 (0.62, 0.77)

AUC 0.82 (0.77, 0.88) 0.84 (0.80, 0.87) 0.84 (0.80, 0.89) 0.77 (0.71, 0.83)

RF: random forest; SVM: support vector machine; LR: logistic regression; HR: hazard ratio; CI: confidence interval; PPV: positive predictive value; NPV:
negative predictive value; AUC: area under the curve.
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Figure 6: ROC analysis for comparison of the overall performance of the model using the different sets.
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5. Conclusion

The RNA-seq-based nomogram combined with clinico-
pathology could potentially provide clinicians with a useful
tool to best select patients with LNM who will benefit from
neck dissection, while avoiding the cost and overtreatment
of those without LNM. Ultimately, optimized individually
tailored therapy will contribute to the management of OSCC
patients based on the model.
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