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Abstract

Human-mediated translocation of species to areas beyond their natural distribution (here termed 

aliens1) is a key signature of the Anthropocene2 and a primary driver of global biodiversity loss 

and environmental change3. Stemming the tide of invasions requires understanding why some 

species fail to establish alien populations, while others succeed. To achieve this, we need to 

integrate the impact of features of the introduction site, the species introduced, and the specific 

introduction event. However, determining which, if any, location-level factors affect establishment 

success has proved difficult due to the multiple spatial, temporal and phylogenetic axes along 

which environmental variation may influence population survival. Here, we apply Bayesian 

hierarchical regression analysis to a global spatially and temporally explicit database of alien bird 

introduction events4 to show that environmental conditions at the introduction location, notably 

climatic suitability and the presence of other alien species groups are the primary determinants of 

establishment success. Species-level traits and founding population size (propagule pressure) exert 
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secondary, but still important, effects on success. Thus, current trajectories of anthropogenic 

environmental change will most likely facilitate future incursions by alien species, but predicting 

future invasions will require integrating multiple location, species, and event-level characteristics.

Globally, alien species are accumulating at ever-increasing rates5, mainly driven by growing 

trade and transport connectivity6. Once an alien species is established (i.e. self-sustaining) in 

a new location, the economic and environmental costs of eradicating it or controlling its 

spread are often prohibitive3. Understanding the processes that facilitate or inhibit the initial 

establishment of alien species is therefore a critical step in limiting the future threat of 

biological invasions. Most early attempts to predict alien species establishment focussed on 

the characteristics of the introduced species or the introduction location7, but with limited 

success8, and did not consider the key role of idiosyncratic “event-level” factors, notably 

propagule pressure9. Some species-level traits (life history10, behavioural11 and 

ecological12) have subsequently been shown to explain variation in alien establishment 

success. However, determining which, if any, location-level factors affect success generally 

at a global level and across large taxonomic groups has proved challenging, for several 

reasons.

First, many different biotic (e.g. recipient assemblage composition13) and abiotic (e.g. 

climate14, disturbance15) factors may be important. Second, these factors vary across both 

space and time, and drive differences in susceptibility at a range of levels of biological 

organisation – population (e.g. stochastic weather events), species (e.g. climatic affinity), 

community (e.g. native species richness), and landscape (e.g. habitat composition). Third, 

how a new environment interacts with a species is dependent on the evolutionary and 

adaptive history of the species introduced16: a harsh environment for a house sparrow 

(Passer domesticus) may or may not be harsh for the closely related Eurasian tree sparrow 

(P. montanus), and vice versa. Fourth, alien introductions happen in synergy with other 

major anthropogenic environmental changes such as increasing human population density, 

agricultural land conversion, and the presence of other alien species17. Yet, despite this 

apparent complexity, many previous analyses have treated location-level variables in a 

relatively simplistic way, considering either only coarse features of locations (e.g. latitude18, 

island versus continent19) or gross differences between native and alien environments20, 

and typically ignore spatial autocorrelation21. Therefore, we still await an integrated 

analysis of variation in alien establishment.

Here, we undertake a global analysis to identify both the absolute and relative contributions 

of location, species, and event-level processes in predicting alien establishment. Using birds 

as a model system, we interrogate data on the success or failure of 4,346 individual 

introduction events spanning 708 species and, crucially, include information on propagule 

pressure, the key event-level driver of establishment9. To assess the specific influence of 

location, we consider a wide array of abiotic, biotic and anthropogenic factors. These 

account for both the mean and temporal variability in the abiotic environment, the suitability 

of the environment in terms of its similarity to conditions experienced by a species in its 

native range (‘environmental match’), metrics of human disturbance, and the characteristics 

of recipient biological communities, including both their diversity and their phylogenetic 
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similarity to each introduced species. Finally, we incorporate aspects of species’ life history, 

behaviour and ecology that have previously been hypothesised to explain establishment 

success in alien birds. Features of introduction events are not random with regard to the 

identity, relatedness and characteristics of the species introduced16, their spatial location of 

origin and introduction4, nor to propagule pressure22, and so we undertake this analysis 

using Bayesian hierarchical regressions, inferred using Integrated Nested Laplace 

Approximation (INLA)23. This method provides efficient and accurate parameter estimation 

for complex inferences incorporating both random and fixed effects, allowing us to control 

for spatial and temporal non-independence in the abiotic and biotic features of locations, and 

for taxonomic non-independence in species traits.

At a global scale, combinations of location-, species- and event-level variables are selected 

as important terms across all fitted models, including the best fitting model of avian 

establishment success (Fig. 1, Extended Data Table 1, n = 1530, wAIC = 892.96, AUC = 

0.75 – for definitions see methods). This result was robust to the precise way in which 

introduction events were defined (Extended Data Fig. 1) and highlights that alien 

establishment cannot be adequately explained by characteristics of the environment, the 

species, or the specific introduction event in isolation. The most strongly supported 

individual determinant of establishment is the environment of the recipient location (Fig. 

2a). Within this category, anthropogenic features, followed by climatic suitability, have the 

greatest influence on establishment success (Fig. 2b).

A strong anthropogenic determinant of establishment success is the number of alien 

taxonomic groups already established at a location at the time of introduction. The positive 

effect of the number of alien groups introduced is broadly consistent with the invasion 

meltdown hypothesis17, whereby ecological disruptions caused by, or enabling, earlier 

invasions facilitate further successful introductions. This result is not simply indexing 

anthropogenic environmental disturbance; crop coverage and human population density, 

while included in the best fitting model, did not have a strong and consistent global signal 

for alien establishment success (Fig. 1, Extended Data Fig. 2). This may be due to historical 

patterns of introductions being mainly restricted to already disturbed areas12. In fact, our 

analysis shows that less disturbed areas have higher establishment success rates, with rapid 

agricultural land-conversion not only causing native species declines2, but also negatively 

impacting alien species, at least in the early stages of the invasion process.

Previous evidence has suggested that species are more likely to establish when they are pre-

adapted to local climatic conditions16 and our analysis confirms this hypothesis. We found 

that alien establishment success is highest in locations where environmental conditions are 

more similar to those in the species’ native range (‘environmental match’, Fig. 1-2), albeit 

with the proviso that average conditions across the range are relatively crude measures of 

climatic preferences. Our analysis also suggests a hump-shaped effect of mean annual 

temperature on establishment (Fig. 1). This relationship implies a “Goldilocks effect”, such 

that locations with intermediate conditions are more amenable to establishment than those 

that are too hot or too cold, regardless of the conditions naturally experienced by each 

species. Environmental extremes are also important24, with establishment success reduced 

by the occurrence of historical storm events in the period immediately following 
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introduction. Anecdotal evidence had previously suggested extreme weather as a cause of 

specific establishment failures (e.g., the house crow (Corvus splendens) on Mauritius25), 

and our spatiotemporal analysis identifies this as a general effect in the global record of 

avian introductions.

The extent to which communities differ in their biotic resistance to introduced species has 

remained controversial, with studies variously reporting positive, negative or no effects of 

local species richness on patterns of establishment26. Overall, we found that the biotic 

environment had a relatively weak effect on establishment compared to the other location-, 

species- and event-level factors. Nevertheless, accounting for these other factors revealed a 

potential negative effect of native bird species richness on alien establishment success, with 

this switching to a hump-shaped relationship (Fig. 1) when considering only the most 

closely related and presumably ecologically similar species. These results help clarify 

previous contradictory findings, by showing that while overall native biodiversity may 

inhibit invasions, (i) this effect is relatively weak compared to other extrinsic and intrinsic 

factors, and (ii) it may be partially masked by the tendency for locations with many closely 

related species to be more environmentally suitable, and thus be more susceptible to 

establishment (i.e. biotic acceptance hypothesis17).

In addition to environmental factors, features of the species’ life history and ecology are 

strongly supported as determinants of establishment success. In particular, larger brood sizes 

promote establishment, while lifespan showed a hump-shaped relationship with invasion 

success (Fig. 1, Extended Data Fig. 2), confirming previous evidence of a trade-off between 

the benefits of fast and slow life histories10. While species with fast life histories can gain a 

quick ‘foothold’ at a new location through rapid population growth, slower life histories give 

resilience against demographic and environmental variation, allowing alien populations to be 

better able to ride out extreme conditions27,28. In our model, there is also evidence that 

foraging specialism and habitat-use generalism may, taken together, increase establishment 

success. Life history variables are generally strongly phylogenetically conserved (e.g. brood 

size, λ = 0.96, Fig. 3), implying that related species could have similar rates of 

establishment success. However, globally, establishment success has a much weaker 

phylogenetic signal (λ = 0.4; Fig. 3), due to phylogenetically conserved traits being 

overwhelmed by the combined spatial effects of the local environment and propagule 

pressure, all of which tend to exhibit little phylogenetic signal. The inherently idiosyncratic 

nature of these effects with regard to the identity of the species introduced (Spearman ρ 
between predictions based on life history and the final model is 0.64) explains why it has 

proven difficult to identify consistent life history predictors of establishment in isolation29.

Lastly, we confirm the strong general role of propagule pressure which, in line with previous 

work on alien birds30, is best represented by an asymptotic log-term (Fig. 1, Extended Data 

Fig. 2): small founding populations are likely to fail due to stochastic and Allee effects, 

while the success of larger populations30 depends instead on the species- and location-level 

effects we identify here. Our analysis highlights the key role of the presence of other alien 

species groups, suggesting that locations that are already hotspots for introductions are 

especially susceptible to accumulating alien species, but also show that alien species are 

more likely to establish when they are pre-adapted to local climatic conditions. Growth in 
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global trade means that an ever-growing number of species are being introduced to novel 

locations4,31, and the environmental matches of ever more species are being tested against 

new environments. These trajectories will facilitate future incursions by alien species, 

exhibiting features of an invasion meltdown32, which, as we show, could be further 

exacerbated depending on precise combinations of species and sites where the introductions 

are occurring. Our analyses confirm the urgent need for enhanced management programs to 

prevent or mitigate the negative impact of these invasions.

Methods

Alien introduction events

We collated all the records from the GAVIA database of global bird introductions4,31 that 

contained geo-referenced introduction events at known specific (e.g. sub-national and 

below) point locations (i.e. the locations where the species was recorded as having escaped 

or been released) and at specific dates, excluding those records from GAVIA that related to 

spread after an introduction event (Supplement Information Data 1). This process initially 

resulted in 5834 records, with accompanying spatial polygon data created by drawing 

around the smallest geographical unit to which the introduction event could be reasonably 

attributed4. While some records were at a specific location a (e.g. a single building address, 

park or harbour), a small minority of event records could only be assigned at a coarser 

spatial scale (e.g. city or county). We note there is some geographical bias in the records 

with most of the introductions occurring in the Australasian region (19% of records), 

followed by the Paleartic (18%), Oceanic (17%) and the Nearartic (16%), with fewest 

records in the Afrotropics (12%), Neotropics (10%), IndoMalay (8%), and Antarctica 

(<1%). However, introduction events occur predominately within regions and high-profile 

historical routes between continents (e.g. Europe to Australia) are relatively rare given the 

huge increase in introductions in recent decades5 through, for example, accidental transport 

and wildlife trade31 (Extended Data Figure 3).

Using data from both the original, and external sources, we thoroughly checked all 

introduction records for potential errors and removed any records that were possibly dubious 

– usually due to misreported dates or locations across multiple references. This resulted in n 

= 4346 unique introduction event records (Supplementary Information Data 1). We then 

used text information, again from the original source, to categorise the introduction events as 

either known specific introduction events (“introductions”, n = 1784) first sightings 

(“sightings”, n = 584), or as having no clear designation (“unknown”, n = 1978). Finally, we 

noted if any records were part of a chronological sequence of introduction events involving a 

single species at a single location e.g. Eurasian skylark (Alauda arvensis) imported and 

released on six separate occasions in the Barrabool Hills, VIC, Australia from 1852-1880. 

From these we created four data subsets of decreasing size but increasing specificity: “All 

Records” contained all the records in the database (n = 4346), “Intro. & Unk.” contained 

records that are known introductions and records that have no detailed description (n = 

3762), and “Introductions” contained all records that are specified as detailed introduction 

events (n = 1784) and “Last Introduction” (n= 1530). This final data subset contained known 

introduction events, but with events that were part of a chronological sequence of 
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introduction events collapsed into a single record, summarised using the date of the last 

introduction events and the cumulative propagule pressure across events (n = 1530).

Based on prior hypotheses of avian establishment success reported in the literature 

(Supplementary Information Data 2), we collated information on a wide-range of covariates 

that could reasonably impact upon establishment success. We categorised these covariates 

into the three categories of establishment determinants, as defined by Duncan et al.16 – 

location-, species- and event-level factors –further distinguishing between different types of 

species- and location-level factors as below:

Event-level Factors - Propagule pressure

We extracted from the original reference source, where available, a numerical estimate of 

propagule pressure (founding population size), measuring both the number of introduction 

events per record (propagule number9) and the number of individual birds that were 

introduced at each event (propagule size9).9). For a minority (n = 67 or ~0.01%) of records 

that only had descriptive text regarding the number of individuals introduced, we translated 

any common terms according to the following rules. When describing individuals released: 

“few”=3, “several”=5, “some”=10, “small numbers”=10, “many”=25, “flock”=25, “large 

numbers”=100, “shipment”=200, “mass”=250, “great numbers”=250. When describing 

propagule number: “repeated”=5, “several”=5, “releases”=2, “numerous”=10, “many”=10, 

“frequent”=10. We decided on these numbers by summarising, where available, records that 

contained both these descriptive qualifiers and a numerical figure for number introduced. To 

calculate propagule pressure, that is the relative size of the introduction effort9, we used the 

recorded number of individuals introduced. When this data type was missing we added in 

the median propagule size (5 individuals introduced), or, if the number of discrete 

introduction events were available, we used the median propagule size multiplied by 

propagule number.

Species-level Factors - Life History Traits

For each species, we assembled data from published sources on a number of life-history 

traits previously linked to establishment success in birds, including mean clutch size, 

number of clutches per year, age at first breeding (months) and maximum lifespan 

(years)10,33,34. We additionally included data on mean adult body mass (g)35. Species for 

which data could not be collected (clutch size [11%], number of clutches per year [48%], 

age a first breeding [66%], lifespan [52%]) were assigned the mean value of the lowest 

inclusive taxonomic rank (i.e. genus, family, order) for which data were available. This 

approach is justified because most of variance in avian traits, as calculated from our data, 

occurs at taxonomic levels above the genus (clutch size [91%], number of clutches per year 

[70%], age at first breeding [83%], lifespan [62%]). We also include a previously used 

measure called brood value, which is expressed as log10(1/[(broods per year) × (reproductive 

lifespan)])10 and represents investment in future over current reproduction.

Species-level Factors - Behavioural Traits

For each species, we assembled data on relative brain size, quantified as the residuals from a 

least squares regression of brain size on body size (both log-transformed)36. Relative brain 
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size provides a metric of behavioural flexibility that has been shown to relate to 

establishment success in birds37. Species with missing data (72%) were assigned the mean 

value of the lowest inclusive taxonomic rank (i.e. genus, family, order) for which data were 

available. As for life history traits, most of the variance in brain size (93%) occurs at 

taxonomic levels above the genus.

Species-level Factors - Ecological Traits

Data on species-specific diets and foraging strategies came from Kissling et al.38: for both 

of these variables a total value of 100 was divided between categories to represent the 

percentage of time a species spends feeding on a particular food type or foraging in any 

particular location. Habitat use data for each species were extracted from the IUCN Red List 

database40. For each ecological variable (diet, foraging and habitat), we calculated two 

measures of generalism, using the total number of different categories used and Simpson’s 

diversity measure D39.

Location-level Factors - Abiotic environment

Global geophysical data (altitude above sea level and slope %) were downloaded in pre-

processed geoTiff format at 1km grid scale41. A third variable, ‘altitude variance’, was 

computed with the R function aggregate (raster package42) using the variance of the altitude 

values of 3x3 grid cells, such that all 9 cells had the same final value. Bio-climatic data in 

the form of global averages from 1960-2000 were restricted to large terrestrial land masses, 

and were downloaded as four ‘ESRI’ format ascii data grids, at 30 arc-seconds (~1 km) 

resolution. They consisted of mean annual temperature, annual variation in temperature 

(‘temperature seasonality’43), mean annual rainfall and annual variation in temperature 

(‘precipitation seasonality’43). Abiotic data for islands came from an island-specific 

dataset44 and had the same variables as for large terrestrial land masses, but represented as a 

spatially-referenced spreadsheet containing data on climate and physical characteristics of 

the majority of the world’s islands. For islands that were not represented in the gridded 

bioclimatic data, we identified missing values for the above bioclimatic and altitude data, 

and by matching the island name in the GAVIA data with the island name in the bioclimatic 

dataset, we were able to extract the mean annual temperature, annual variation in 

temperature, mean annual rainfall, annual variation in temperature and altitude. For islands, 

we also included distance to continent (giving non-island records a value of zero) 

represented by the “dist” column from that data set. We also employed a measure of 

remoteness, again giving continents a value of zero, using the “SLMP” column of the data 

set.

Historical climate data (1850-2007) were downloaded as 6x4km netCDF grids for six main 

variables: sea surface temperature (SST), air temperature (A), U-wind (Uwind), V-wind 

(Vwind), sea-level pressure (SLP) and cloudiness (CLDC) from the HADCRUT3 data set45. 

Historical spatio-temporal land-cover data (1700-2007) were downloaded as global ‘ESRI’ 

format ascii data grids at ~5 km resolution, consisting of proportion cover of primary and 

secondary habitats, from the Harmonised Land Use Dataset46. To reduce collinearity in a 

regression (i.e. the dummy variable trap) the ‘other’ category data was not included in the 
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analysis, such that the addition of all the land-use categories in each grid cell did not sum to 

one.

These environmental data were extracted at each record location by calculating the mean 

grid cell values intersecting the introduction event polygon (R function extract42). For very 

specific introduction events, this would be the single cell the event polygon was located in, 

but for less specific introduction event data there was sometimes more than one grid cell that 

overlapped the polygon. For the spatio-temporal data, extractions for each record were only 

undertaken on the temporally nearest data layers. For example, for the historical climate 

data, a maximum anomaly value at that location over the ten years (120 months) post-

introduction was used, with records outside the dataset time period (<5% of the total 

records) being designated missing using “NA”. For the land-cover data, which was a yearly 

rather than monthly dataset, records were matched by introduction year to the specific global 

land-cover layer so that the contemporary (at the time of introduction) percentage cover for 

five land-use types (Primary, Secondary, Cropland, Pasture, Urban) could be calculated. 

Records earlier than the starting year of the land-cover dataset (<1% of total records) were 

designated missing in each land-use covariate using “NA”. We note that there is uneven 

sampling here, with most historical introductions occurring in human modified landscapes: 

for instance, in forested areas only 8% of the introduction polygon is designated as 

‘Primary’ at the time of introduction. This means for some specific land-types we may not 

be able to resolve their specific impacts on invasion success. For each land-cover type noted 

above, an additional variable was constructed which was the gradient of change in land-

cover in each grid cell over the 10 years prior to each introduction event. This was calculated 

by using a linear regression (R function lm) of land-cover proportion explained by year, and 

taking the slope (β) as the value of change per cell.

Location-level Factors - Environmental Match

Range maps for species’ native distributions were downloaded from Birdlife International 

and NatureServe (www.birdlife.org) and extracted onto an equal area grid (~110 x 110 km) 

in a Behrmann projection. These maps show species’ extent of occurrence, and so are 

relatively crude depictions of the area occupied by the species, but are nevertheless 

commonly used for analyses of this type. We quantified species’ environmental preferences 

using the mean and standard deviation of climate conditions across grid cells in their native 

distributions on the basis of four climatic indices from the WorldClim dataset (BIO1, mean 

annual temperature; BIO4, temperature seasonality; BIO12, annual precipitation; BIO15, 

precipitation seasonality)43. Using each of these input variables, to capture as a single 

variable the environmental match between the introduction site and those being experienced 

in the species’ native range, for each introduction event we calculated the distance, in 

measurement space, between the Euclidean distance from mean values taken from the grid 

cells at the introduction site (sources defined in ‘abiotic’ above) to the mean values from the 

native range of the introduced species. For each climatic axis, we divided the distance by the 

standard deviation of native climatic values, as some species have very large ranges with a 

corresponding wide range of acceptable native climatic values. We note that this measure is 

a relatively coarse way to measure native preferences, as fine scale habitat variation within 
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the range may act to bias the mean value, but that finer scale data are not available for all 

introduced species.

Location-level Factors - Biotic Environment

To test whether interactions with native resident species may influence establishment 

success, for each combination of introduced alien species and grid cell, we calculated four 

metrics of community diversity and structure: i) the richness of all native resident species, ii) 

the number of native species in the same genus or, iii) family, and iv) the nearest taxon 

index, representing the phylogenetic branch length (millions of years) separating an 

introduced alien species from its closest relative in the recipient community. Recipient 

communities were designated as those species whose ranges overlapped with any of the 

introduction polygon, though we note that not all species in this sample would be interacting 

if they utilised very different habitats. Phylogenetic distances were calculated as the mean 

across 100 phylogenies sampled at random from the posterior distribution of trees from the 

Jetz et al. phylogeny with the Hackett backbone47. These variables thus quantify the overall 

species richness of the location of introduction (i), and the location’s richness relative to the 

phylogenetic position of the introduced species (ii – iv).

Location-level Factors - Anthropogenic Environment

To determine the role of human disturbance and urbanisation12 in facilitating the 

establishment of invasive species we captured the spatial variation and prior ten-year change 

in human population density, urban land, crop and pastoral land coverage, from the 

Harmonised Land Use Dataset46 using the same methods as for abiotic environment 

variables.

We also tested whether establishment probability is related to the prior presence of other 

alien species. We determined if any alien species were present at a given site prior to each 

introduction event using published data5 on first records for a number of groups (algae, 

amphibians, arachnids, arthropods, bacteria and protozoans, birds, bryophytes, crustaceans, 

fishes, fungi, insects, invertebrates, mammals, molluscs, reptiles, plants, viruses), recorded at 

the level of country or major island group. For larger countries this value would be less 

accurate, but most of our data are for islands (66% of introduction records). Furthermore, 

these data represent the best spatio-temporal knowledge currently available and further work 

using site-level data would be able to examine these relationships in more detail. For each 

introduction event, we create a binary variable with a value of 1 for each group if any 

species from that group was present at least one year prior to the bird introduction event and 

0 if no species from that group were present.

Statistical Modelling Outline

We modelled the establishment success or failure of bird introductions using a Bayesian 

hierarchical regression inferred using Integrated Nested Laplace Approximation (INLA) as 

implemented in the R package R-INLA48 (Supplementary Information Code 1). We used 

this method as it provides accurate parameter (e.g. β) estimates for complex regressions 

incorporating both spatial and non-spatial random and fixed effects with very low 

computational overheads23. We evaluated the model fit for covariate choice via the 
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Watanabe–Akaike Information Criterion (wAIC)49 and the Conditional Predictive Ordinate 

(CPO). wAIC is a criterion for model comparison and is an extension of the Akaike 

Information Criterion (AIC), but is widely-applicable to Bayesian inference techniques and 

offers clearer interpretation than other options50. Similar to AIC, wAIC provides a method 

to penalise the ability of the model to fit the observed data by the number of parameters used 

to create the underlying model. This value is more suitable for a Bayesian framework as it 

integrates across the whole posterior distribution rather than relying on summary statistics, 

e.g. mean of posterior distribution. Similarly, the CPO approximates the ‘gold-standard’51 

Leave-One-Out Cross Validation, and calculates the posterior probability of a model inferred 

without each data point. The sum of the log CPO scores, therefore, represents an estimator 

for the log marginal likelihood of the model. Given that wAIC tends to ∑ln(CPO) under ideal 

circumstances51 (in our case Spearman correlation ~0.99), we henceforth report only wAIC 

as a proxy for CPO.

We model number of establishment successes across the dataset as a binomial random 

variable (success = 1, failure = 0) and use the normal approximation to the binomial, as 

expected under central limit theorem given our large numbers of trials. This was due to the 

computational efficiency of utilising the Gaussian distribution, allowing us to repeat the 

modelling procedure many times with no loss of predictive accuracy (mean hold-out cross-

validated Area Under receiver operating Curve statistic (AUC) for Gaussian = 0.68±0.05, 

versus AUC = 0.67±0.06 for the binomial mean). To convert the ‘StatusCat’ column from 

the GAVIA dataset to the response variable, we recoded the categories of “established” and 

“breeding” to 1 and the known failure categories (“died out”, “failed”) to 0. For a large 

proportion of records, the success or failure of an avian introduction was unknown (n = 

2234). In these cases, we used the introduction event polygon associated with each record to 

search for the alien species in sightings from eBird52 and other sources from within the 

Global Biodiversity Information Facility (GBIF)53. We downloaded all occurrences from 

GBIF, within 0.5 degrees of both latitude and longitude of the centre point of each 

introduction event. Then, using the associated ‘observation date’ with each GBIF record and 

the ‘mapping date’ associated with each GAVIA record, we counted the total number of 

individuals seen within the 0.5-degree buffer in the last ten years (2007-2017). We changed 

unknown values to 1 (succeeded) if there were more than 15 records of the introduced 

species within 0.5 degree (~ 95km at the equator) of the introduction site in the last ten 

years, and 0 (failed) if fewer. To ensure our results were robust to these thresholds, we 

changed the record density threshold used to identify whether a species is “established” by 

increasing the buffer size used to capture GBIF observations to 1 and then 1.5 degrees of 

both latitude and longitude around the introduction point.

To account for known spatial autocorrelation in the input data31 we implemented a 

stochastic partial differential equations model (SPDE) with the hierarchical regression that 

builds a latent error surface, of user-defined complexity, to account for similarities in more 

closely located data points48. We inferred the regression models using an SPDE term and 

mesh with varying characteristics to find the range, standard deviation of the range, cut-off 

and maximum edge values using the wAIC score to determine the best version of the SPDE 

model. To account for the random effect of phylogenetic non-independence, we included 

“iid” random effects of species’ taxonomic family and order. To account for temporal 
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differences in recording accuracy and in methods of introduction31 at the same location over 

time, we included a random-walk auto-correlated random effect48 for the year of 

introduction. To remove effects of very large or small values, for each covariate we capped 

low values at the 1% quantile and high values as the 99% quantile.

Finally, for each model we assessed all recommended diagnostics to ensure the model was 

robustly fitted, including plotting and visualising the distribution and probability density of 

the out-of-sample CPO per data point score (using 10-fold, 10% hold-out, cross validations) 

(Extended Data Figure 4a,b) and spatially mapping the same values (Extended Data Figure 

4c) to check for parts of data that were poorly predicted by the model. Then, using the mean 

of the posterior distribution of the linear predictor, we employed an AUC approach (Area 

Under receiver operating Curve score) to calculate the predictive accuracy of each model. 

This process works by measuring the numbers of correctly and incorrectly labelled 

predictions across all possible classification threshold values of the binomial response 

variable. An AUC value equal to or less than 0.5 indicates a predictive ability that is equal to 

the random expectation, while an AUC value close to 1 indicates a perfect predictive ability.

Analysis protocol

We first used the most conservative dataset for analysis – that which contained known 

introductions events (n = 1530 records) (Supplementary Information Data 3). Then, to 

ensure our random effect terms were valid in their inclusion, we first fitted a model with just 

an intercept, then just an intercept and spatial term, and then added in other random effects 

one at a time (Extend Data Table 1). For each additional step of complexity we recorded the 

change (Δ) in the wAIC value49 and only included random effects that increased the fit of 

the model by more than 2 wAIC units. We used uninformative priors in all cases except for 

the spatial term where we set the priors to a set of reasonable estimates of the range and 

standard deviation of the range to understand how this specification affected parameter 

estimates.

To increase the biological interpretability of our models (and due to the large number of 

covariates and high collinearity between them), we then added all explanatory variables 

(Supplementary Information Data 2) into a regression model in a step-wise manner and, 

after each step, assessed model fit using the wAIC value. In order that the effect sizes of the 

different covariates could be better compared, each explanatory variable was standardised to 

a mean of zero and standard deviation of one before it was added. At each model choice step 

we used the standard threshold of ΔwAIC>2 to select better models54. When offering steps 

either forward or backwards, we allowed the choice of either a linear representation of the 

covariate, the natural logarithm of the term, or a linear and squared term to allow for the 

situations where a curvilinear relationship fitted better than a linear slope.

To examine whether the model selection process was robust to decisions relating to the 

database, we ran several additional versions of the stepwise regressions to see if the key 

variables identified in the main analysis above were still recovered. We first ran a stepwise 

regression using all the introduction records and then repeated the process with all the other 

data subsets. We also ran different versions of the stepwise selection with the different buffer 

sizes for the GBIF missing data interpolation to test the sensitivity of the imputation process.
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We then used the lowest wAIC model to predict establishment success over a 1-degree grid 

of points covering all land areas (n = 19561 cells) for each introduced alien species (n = 358 

species). We only used already established alien species because new species are being 

added to the current pool of aliens at a relatively low rate and this current pool will likely 

make up the vast majority of future invasions5. When predicting, we set the random effects 

introduction year = 2015 to be as close to the present day as possible and propagule pressure 

= 150, the lowest value after the threshold beyond which the number introduced has limited 

impact (Extend Data Fig. 2). All predicted values where the confidence was low, such that 

the 95% confidence intervals for the grid cell estimate covered 0 and 1, we designated as 

NA. Using the prediction layers for each species we created two datasets: First, by using a 

10% trimmed mean of the probability of success for every species value for each grid cell 

we were able to determine which areas of the world had the highest ‘establishment potential’ 

and, therefore, were at risk of this set of introduced species establishing there. Second, by 

using 10% trimmed means for all values in each of the 384 layers, we were able to create an 

index of establishment potential per species, which we then mapped on to a recent 

phylogeny47. We calculated the phylogenetic signal of these values using Pagel’s λ (R 

function phylosig55) and used a permutation test to test the probability that these values 

deviated from 0, indicating a significant relationship between phylogenetic relatedness and 

species trait values.

Extended Data
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Extended Data Figure 1. Sensitivity analysis of slope (β) estimates for the linear terms of a subset 
of variables across all versions of the input data.
Dot size is the size of the beta value with colour representing direction with red positive and 

blue negative. Each row label represents the name of the fixed effect. The column headings 

represent the data subset used: ‘all-records’ = all data (n = 4346), ‘intro-and-unk.’ = all data 

but one record per species-location event (n = 3762), ‘intro-only’ = detailed introductions 

only (n = 1784), ‘intro-last-only’ = detailed introductions but one record per species-location 

event (n = 1530). The number at end of each column heading indicates relative size of buffer 

used to impute establishment status (see methods).
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Extended Data Figure 2. Approximate shape of fixed effects over the range of observed values.
Each panel represents the prediction using β slope estimates from the lowest wAIC model 

over the known range of values for that given fixed effect (identified by strip title) from the 

raw data. Only fixed effects whose values were unlikely to include zero are included. All 

panels from a single Bayesian regression of global avian establishment success (n = 1530 

introductions).
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Extended Data Figure 3. Chord diagram showing directions of origin and introduction location 
of avian introduction events between regions of the world.
The chords near the edge represent introductions to a region, chords away from the edge 

show origins of introduction. Width of chord is the relative number of introduction events (n 

= 4346).
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Extended Data Figure 4. Model diagnostics from the best fitting model.
Panel (a) shows a plot of out-of-sample Conditional Probability Ordinate (CPO) scores for 

all data points in rank order used in the model; panel (b) the probability density of the CPO 

scores; (c) map of CPO scores. CPO is the probability of generating each data point in the 

data set from a posterior fitted without this data point, with each panel allowing visualisation 

of where in the data the model not be fitting well. All plots from a single Bayesian 

regression of global avian establishment success (n = 1530 introductions).
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Fig. 1. Posterior distributions for fixed effects parameter estimates for the best fitting model of 
alien bird establishment success.
Boxplots summarise the posterior marginal distributions for all fixed-effects parameters (β) 

from a Bayesian regression of the most conservative data subset (n = 1530 introductions). 

Box widths show the interquartile range, the mean is represented as a bold vertical line 

within each box, and whiskers the 2.5th and 97.5th percentiles (i.e. the 95% credibility 

interval) of the distribution. Colours indicate the fixed effect category, and bold y-axis labels 

indicate that there is evidence for a non-zero slope for the described data variable. Further 

details are in Extended Data Table 1.
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Fig. 2. Relative effect size of different categories of predictors in the best fitting model of alien 
bird establishment success.
Each wedge represents the sum of the change in wAIC for the fixed effects in each category 

when added to a Bayesian regression of establishment success versus failure (n = 1530 

introductions). The left-hand panel (a) presents variables classified into location-, species- 

and event-level categories, while the right-hand panel (b) presents the sub-categories within 

those broad levels (n = 1530 introduction events).
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Fig. 3. Phylogenetic patterns of invasion probability across alien birds.
Shows 358 species with the highest quality information on introduction events. Blue-green-

yellow outer bars show the mean establishment potential of a species across all 1-degree grid 

cells beyond its native range, with longer and yellower bars indicating that a species has 

greater potential to establish outside its native range. Phylogenetic branches are coloured 

according to brood size, with lighter colours indicating higher brood sizes, and darker 
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colours lower brood sizes. Silhouettes (from http://phylopic.org/) show the approximate 

location of avian families.
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