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Abstract: Constant tendency toward the improvement of the material properties nowadays creates
opportunities for the scientists all over the world to design and manufacture new alloys almost every
day. Considering the fact that companies all over the world desire alloys with the highest values of
mechanical properties often coexisting with a reasonable electrical conductivity made it necessary to
develop new materials based on Cu, such as CuMg alloys. However, before such new material may
be mass produced it must undergo a series of tests in order to determine the production technology,
its parameters and influence on the chemical composition, microstructural properties, and both
mechanical and physical properties of CuMg alloys. The research tests have shown that with the
increase of the casting feed the Brinell’s hardness of each material slightly increases (by 5 HB2.5/62.5).
There is little to none impact of the casting feed on the electrical conductivity, values of which are
between 20.6 and 21.4 MS/m (around 40% IACS-International Annealed Copper Standard) depending
on the Mg content. The conducted scanning electron microstopy (SEM) analysis has shown that the
magnesium precipitations are evenly distributed among the volume of the alloy, however, a significant
difference in the density and shape of the Cu + Cu2Mg aggregates was noticed regarding various
casting feed. Static compression test proved that these alloys may be subjected to strain hardening as
the hardness of the material after compression increases by approximately 40 HB2.5/62.5.
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1. Introduction

Because of its high electrical and heat conductivity copper has a wide range of applications among
many branches of industry, transportation, and everyday life. It is commonly known, that in some cases
not only electrical conductivity at satisfactory level is necessary but also high mechanical properties
are required which means that the use of electrolytic tough pitch (ETP) or oxygen free (OF) copper
even after work hardening is not possible [1–3]. Various alloying additives are used in such cases
and their metallurgical synthesis generates the possibilities for obtaining completely new, innovative
materials such as magnesium copper. Its spectrum of applications may be very extensive especially that
precipitation hardening of these alloys is possible [4], however, a certain limitation of such might be
their atmospheric corrosion. However, the use of copper magnesium alloys for electrical applications
for instance in the form of wires is possible with the use of specific electrolytic or galvanic coatings
which would hermetically separate CuMg alloy from the atmosphere. There are many research papers
accessible which concern the topic of corrosion progression and explaining the mechanisms of corrosion
formation, occurring and place of origin, as well as the ways of protection from damaging outcomes
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with the use of, for example, the abovementioned coatings both in terms of copper alloys [5–8] and
magnesium alloys [9–12]. There is only one research paper concerning copper magnesium alloys
and their corrosion resistance and unfortunately it presents research results on single-phase CuMg
alloys [13]. The phase diagram of CuMg alloy [14] depicts distinctly visible intermetallic Cu2Mg
and CuMg2 phases (Laves phases) which were examined in [15,16] by Schubert et al. and Lieser et al.
Additionally, Miroshnichenko et al. [17] proved the existence of metastable intermetallic Cu3Mg phase.
Phase diagram also shows that two-phase CuMg alloys exist above 3% of wt.% of Mg and are formed
with α phase (Cu) and intermetallic β phase (Cu2Mg), hardness of which has been tested and is proven
to be H = 519 [18] and according to Mao et al. it is ductile [19].

In accessible literature there is a wide range of research on single-phase alloys with wt.% of
Mg equal to 0.2% and 0.5% which are commercial alloys commonly used in nowadays industry [20].
Ito et al. [21] have focused on research on single-phase CuMg alloys with magnesium wt.% content
above 1%. Authors of both abovementioned research papers have stated that through strain hardening
of CuMg alloys it is possible to obtain ultimate tensile strength (UTS) of 700–800 MPa. The authors
in [4], on the other hand, have conducted research on the influence of the heat treatment of single-phase
CuMg2.26 alloy and have proven that with specific set of time and temperature it is possible to increase
the strength of the alloys twofold. Considering definitely less available research on the two-phase
CuMg alloys it may be stated that with the proper heat treatment and strain hardening it is possible to
obtain the UTS value of above 1000 MPa [22]. Figueroa et al. have conducted research on CuMg alloys
with 1% and 5% of wt.% of Mg with the addition of Sn designed for bearings and have proven that
cold working of these alloys significantly decreases their deformability [23]. Another work treating
on CuMg alloys with 0.4 wt.% of magnesium with micro additions of approximately 0.15 wt.% of Ce
and Y was provided by Wang et al. where they stated that both additions increase the mechanical
properties even more when hot deformed at the temperature range of 500 ◦C to 850 ◦C in comparison
to alloys without these micro additions [24]. However, regardless of its extraordinary mechanical
properties the authors in [13] claim that single-phase copper magnesium alloys have lower corrosion
resistance in comparison to e.g., copper aluminum alloys in elevated temperatures and the authors
attributed this fact to the incorporation of Cu in the MgO surface layer which might disqualify the use
of this alloys in specific applications without the use of galvanic coating. Research works conducted all
over the world by many various research teams have proven that magnesium copper alloys have very
high strength properties with reasonable electrical conductivity and may function as a fine substitute
to copper alloys with i.e., cadmium which is considered to be toxic in many countries [25]. One of
these substitute uses was studied by Yuan et al. [26] where they discussed the wear behavior of CuMg
alloys used in high-speed railway catenary cables or contact lines and their resistance to fretting and
the authors claim that tribochemical reactions occurred on the contact surface, and the resultant of
friction oxidation was mostly formed from CuO and Cu2O oxides. However, there are a few specific
research papers on the usefulness of the alloys with wt.% of Mg over 1%. There are of course scientific
papers on specific properties of higher Mg content like optical and electrical properties of thin metallic
glass films in [27], however, there is a knowledge gap, which concerns the metallurgical synthesis and
continuous casting of two-phase copper magnesium alloys, thus making it necessary to clarify the
specific parameters of these processes which were conducted throughout this research and collectively
presented in this research paper.

2. Experimental Procedures

2.1. Metallurgical Synthesis

As part of the experimental study metallurgical synthesis of selected copper and magnesium
alloys was conducted. It was established that the OF granulated copper (99.99% of Cu) and magnesium
(99.9% of Mg) have been used in the metallurgical synthesis process. The melting and homogenizing
process was conducted in graphite crucible of the melting and casting furnace (Figure 1) (Termetal,
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Piekary Śląskie, Poland) at 1250 ◦C and the crystallization occurred throughout the horizontal
continuous casting process in the graphite crystallizer with a diameter of 14 mm with a constant
primary cooling (Figure 2). The nominal power of the furnace is 20 kW and the frequency of the
induction coil is 3 kHz. Because of the stable cooling conditions and unchanging temperature of the
melted metal it was possible to determine the influence of the casting parameters on the selected
properties of two-phase CuMg alloys. The alloys with 4.5% and 5% of wt.% of Mg casted with fixed
standstill of 2 s and varied feed of 2 mm and 4 mm were evaluated. The continuous casting parameters
along with the selected alloys’ compositions (at the top of the table) and the actual measured chemical
compositions (at the bottom of the table) and measured density are presented in Table 1.Materials 2020, 13, x FOR PEER REVIEW 4 of 12 
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Table 1. Continuous casting parameters and chemical compositions of the obtained alloys.

Selected Properties and Parameters CuMg4.5 CuMg5

Density (g/cm3) 7.93 7.80

Continuous casting parameters

Cooling medium velocity
Primary; Secondary
0.4 L/min; 0.1 L/min

Cooling medium temperature
In; Out

10 ◦C; 35–40 ◦C
Liquid metal temperature

1250 ◦C
Cast rod temperature

190 ◦C–220 ◦C
Standstill

2 s
Feed

2 mm 4 mm 2 mm 4 mm

Element wt.%

Mg 4.4981 4.4831 5.0073 4.9922
Cu 95.4899 95.5018 94.9815 95.0008
Ag 0.0005 00.0008 0.0007 0.0005
Zn 0.00097 0.00149 0.00164 0.00073
Pb 0.00193 0.00185 0.00207 0.00123
Fe 0.00364 0.00379 0.00237 0.00223
Ni 0.00133 0.00116 0.00106 0.00101
Sn 0.00284 0.0047 0.00271 0.00071
Si 0.0003 0.0008 0.0002 0.0001
Bi 0.0005 0.0005 0.0005 0.0005

2.2. Electrical Conductivity and Hardness Measurements

The obtained cast rods were cut into samples with 10-mm thickness in as-cast state with no
additional heat treatment or strain hardening which subsequently were subjected to the electrical
conductivity test with the use of SigmaTest 2.069 (Forester Instruments Inc., Pittsburgh, PA, USA)
which is an eddy current instrument that measures the electrical conductivity of nonferrous metals in
MS/m. The measurements were conducted 24 h after the end of the continuous casting during which
the samples were put in the ambient temperature in order to stabilize their thermal state. Each sample
was tested with the frequency of 60 KHz. The alloys were also subjected to the Brinells hardness
test with the use of Nexus3001 testing machine (Innovatest Europe BV, Maastricht, The Netherlands)
with 62.5 kgf (approximately 613 N) and 10 s of indenting time. For each chemical composition and
continuous casting parameters 3 different samples were selected and 15 measurements both of electrical
conductivity and hardness were conducted on each. Indentations in the Brinell’s hardness test were
performed with 7 at the axis of the samples and 4 on each side of the axis. Afterwards the mean value
and standard deviation of each was calculated.

2.3. SEM and XRD Observations

Additionally, microstructure analysis using scanning electron microscopy (SEM) (Hitachi Ltd.,
Tokyo, Japan) using backscatter electrons was conducted with various magnifications. Along with
the 5000 times magnification the chemical composition analysis and magnesium (Cu + Cu2Mg phase)
distribution in copper matrix using energy-dispersive X-ray spectroscopy (EDX) (Hitachi Ltd., Tokyo,
Japan) was conducted. Research on phase composition analysis has been performed at the ambient
temperature using Rigaku MiniFlex II apparatus (Rigaku Corporation, Tokyo, Japan) which with the
use of X-ray phase analysis method provided X-ray diffractions patters (XRD) (Rigaku Corporation,
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Tokyo, Japan). Research was conducted on alloy powder and the diffraction spectra was obtained at
the 2Θ angle of between 20◦ and 80◦ with copper radiation λCu Kα = 1.5418 Å.

2.4. Compression Tests

Additional samples in the as-cast state with 6 mm height and 4 mm in diameter (1.5:1 relation)
were subjected to 50% deformation in the static compression test and afterwards hardness and electrical
conductivity tests were conducted analogically to pre-deformation samples in order to determine the
strain hardening mechanisms.

3. Results and Discussion

3.1. Electrical Conductivity and Hardness Measurements

Electrical and mechanical properties analysis was conducted based on the electrical conductivity
research and the Brinell’s hardness test conducted afterwards. Pictures of exemplary samples after
hardness tests are presented in Figure 3 with measured diameters of the middle indentations.
Mean values of the obtained research results of the as-cast samples are put together in Figure 4.
There were no significant macroscopic differences recorded between the conducted indentations at the
cross-section of the cast rod.

Materials 2020, 13, x FOR PEER REVIEW 5 of 12 

 

Netherlands) with 62.5 kgf (approximately 613 N) and 10 s of indenting time. For each chemical 
composition and continuous casting parameters 3 different samples were selected and 15 
measurements both of electrical conductivity and hardness were conducted on each. Indentations in 
the Brinell’s hardness test were performed with 7 at the axis of the samples and 4 on each side of the 
axis. Afterwards the mean value and standard deviation of each was calculated. 

2.3. SEM and XRD Observations 

Additionally, microstructure analysis using scanning electron microscopy (SEM) (Hitachi Ltd., 
Tokyo, Japan) using backscatter electrons was conducted with various magnifications. Along with 
the 5000 times magnification the chemical composition analysis and magnesium (Cu + Cu2Mg phase) 
distribution in copper matrix using energy-dispersive X-ray spectroscopy (EDX) (Hitachi Ltd., Tokyo, 
Japan) was conducted. Research on phase composition analysis has been performed at the ambient 
temperature using Rigaku MiniFlex II apparatus (Rigaku Corporation, Tokyo, Japan) which with the 
use of X-ray phase analysis method provided X-ray diffractions patters (XRD) (Rigaku Corporation, 
Tokyo, Japan) . Research was conducted on alloy powder and the diffraction spectra was obtained at 
the 2Θ angle of between 20° and 80° with copper radiation λCu Kα = 1.5418 Å. 

2.4. Compression Tests 

Additional samples in the as-cast state with 6-mm height and 4 mm in diameter (1.5:1 relation) 
were subjected to 50% deformation in the static compression test and afterwards hardness and 
electrical conductivity tests were conducted analogically to pre-deformation samples in order to 
determine the strain hardening mechanisms. 

3. Results and Discussion 

3.1. Electrical Conductivity and Hardness Measurements 

Electrical and mechanical properties analysis was conducted based on the electrical conductivity 
research and the Brinell’s hardness test conducted afterwards. Pictures of exemplary samples after 
hardness tests are presented in Figure 3 with measured diameters of the middle indentations. Mean 
values of the obtained research results of the as-cast samples are put together in Figure 4. There were 
no significant macroscopic differences recorded between the conducted indentations at the cross-
section of the cast rod. 

 
Figure 3. Exemplary pictures of indentations obtained in Brinell’s hardness tests; (A) CuMg4.5 sample 
casted with 2 mm feed; (B) CuMg4.5 sample casted with 4 mm feed, (C) CuMg5 samples casted with 
2 mm feed, (D) CuMg5 samples casted with 4 mm feed. 

Figure 3. Exemplary pictures of indentations obtained in Brinell’s hardness tests; (A) CuMg4.5 sample
casted with 2 mm feed; (B) CuMg4.5 sample casted with 4 mm feed, (C) CuMg5 samples casted with
2 mm feed, (D) CuMg5 samples casted with 4 mm feed.Materials 2020, 13, x FOR PEER REVIEW 6 of 12 

 

 
Figure 4. Mean values of electrical conductivity (grey columns) and Brinell’s hardness (black 
columns) of each of the tested samples. 

The calculated standard deviation values were between 0.49 and 1.16 in the case of the hardness 
tests and 0.24 and 0.47 in the case of the electrical conductivity measurements. Based on this it may 
be stated that macroscopic properties such as hardness and electrical conductivity were repeatable in 
the case of tested samples. It might be easily stated that as the magnesium content increases in the 
alloy its electrical conductivity decreases, which is described by the Nordheim’s rule and the rule of 
mixture. There is no significant influence of the casting feed on the obtained results. The measured 
values are slightly lower (up to 0.15 MS/m) in the case of the alloys casted with 4-mm feed, however, 
these values might be neglected because of an experimental accuracy. The increase of the magnesium 
wt.% from 4.5% to 5% caused the decrease of the electrical conductivity from approximately 21.42 
MS/s to approximately 20.63 MS/m. It is worth noting, that according to the accessible research papers 
the electrical conductivity decrease is significantly higher when considering single-phase CuMg 
alloys i.e., from starting value of 58 MS/m (Cu) to some of the commercial CuMg alloys and others 
which were the focus of the scientists in [21,28,29] as presented collectively along with the research 
results obtained in this research paper in Figure 5. Increasing concentration of magnesium in copper 
solution in terms of two-phase materials caused the decrease in the electrical conductivity due to the 
increasing volume fraction of Cu2Mg intermetallic phase. 

With the increase of the magnesium wt.% from 4.5% to 5% the measured Brinell’s hardness 
increases from approximately 135 HB to approximately 150 HB. Using the relation proposed by Tabor 
[30] the obtained values may be recalculated into UTS which gives values between approximately 
from 450 MPa to 500 MPa in the as-cast state. It may be compared with the research results of Gorsse 
et al. [22] who in their study determined the UTS values of the CuMg alloys to be around 230 MPa 
for 4.1 at.% of Mg (1 wt.%), around 370 MPa for 8.1 at.% (3.5 wt.%) and around 570 MPa for 23.1 at.% 
(10 wt.%). This means that the obtained values are in agreement with the values present in the 
accessible literature. In the case of every analyzed CuMg alloy as the casting feed increased the mean 
value of the hardness increased and in both cases it was approximately 5 HB2.5/62.5 which is 
approximately 16.5–18 MPa. It shows how in terms of CuMg alloys with no significant influence on 
the electrical conductivity the strength properties may increase just with various casting parameters. 

Figure 4. Mean values of electrical conductivity (grey columns) and Brinell’s hardness (black columns)
of each of the tested samples.



Materials 2020, 13, 4805 6 of 11

The calculated standard deviation values were between 0.49 and 1.16 in the case of the hardness
tests and 0.24 and 0.47 in the case of the electrical conductivity measurements. Based on this it may be
stated that macroscopic properties such as hardness and electrical conductivity were repeatable in
the case of tested samples. It might be easily stated that as the magnesium content increases in the
alloy its electrical conductivity decreases, which is described by the Nordheim’s rule and the rule of
mixture. There is no significant influence of the casting feed on the obtained results. The measured
values are slightly lower (up to 0.15 MS/m) in the case of the alloys casted with 4-mm feed, however,
these values might be neglected because of an experimental accuracy. The increase of the magnesium
wt.% from 4.5% to 5% caused the decrease of the electrical conductivity from approximately 21.42 MS/s
to approximately 20.63 MS/m. It is worth noting, that according to the accessible research papers the
electrical conductivity decrease is significantly higher when considering single-phase CuMg alloys
i.e., from starting value of 58 MS/m (Cu) to some of the commercial CuMg alloys and others which
were the focus of the scientists in [21,28,29] as presented collectively along with the research results
obtained in this research paper in Figure 5. Increasing concentration of magnesium in copper solution
in terms of two-phase materials caused the decrease in the electrical conductivity due to the increasing
volume fraction of Cu2Mg intermetallic phase.Materials 2020, 13, x FOR PEER REVIEW 7 of 12 
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With the increase of the magnesium wt.% from 4.5% to 5% the measured Brinell’s hardness
increases from approximately 135 HB to approximately 150 HB. Using the relation proposed by
Tabor [30] the obtained values may be recalculated into UTS which gives values between approximately
from 450 MPa to 500 MPa in the as-cast state. It may be compared with the research results of
Gorsse et al. [22] who in their study determined the UTS values of the CuMg alloys to be around
230 MPa for 4.1 at.% of Mg (1 wt.%), around 370 MPa for 8.1 at.% (3.5 wt.%) and around 570 MPa for
23.1 at.% (10 wt.%). This means that the obtained values are in agreement with the values present in
the accessible literature. In the case of every analyzed CuMg alloy as the casting feed increased the
mean value of the hardness increased and in both cases it was approximately 5 HB2.5/62.5 which is
approximately 16.5–18 MPa. It shows how in terms of CuMg alloys with no significant influence on
the electrical conductivity the strength properties may increase just with various casting parameters.
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3.2. SEM and XRD Observations

The phase constitution of CuMg alloy powders obtained by XRD patterns is shown in Figure 6.
The marked peaks clearly show the presence of Cu α phase in accordance with No. Card ICDD
00-004-0836 and Cu2Mg β phase in accordance with No. Card ICDD 00-058-0360.
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Figure 9. Stress–strain compression curves of CuMg alloys. 

 

 

 

Figure 6. The X-ray diffraction pattern for the CuMg alloys in the as-cast state with the marked peaks.

Figure 7 depicts the pictures of the microstructure of CuMg alloys obtained with backscatter
electrons using SEM analysis. A clear difference is visible between CuMg4.5 and CuMg5 as there is
much more Cu + Cu2Mg phase present in the Cu matrix as the magnesium content increases. Moreover,
there is a significant difference in the packing of the Cu + Cu2Mg phase, as the eutectic particles
form smaller but much more denser aggregates forming more grain boundary, which might explain
the differences in the electrical conductivity (slightly lower with higher casting feed) and materials
hardness (slightly higher with higher casting feed).

Additional analysis conducted with SEM microscope is presented at Figure 8 along with chemical
composition analysis (element mapping and point analysis). Images were obtained using backscattered
electrons which based on the atomic number of the element provides specific image (the darker
area for elements with lower atomic number). Chemical composition was determined using EDX
detector which provides the information on the alloy matrix and precipitations based on the obtained
spectrum of the alloy which allows, based on the intensity, to provide the quantitative and qualitative
analysis and element mapping of the alloys. The dark areas in the pictures marked as grey show
magnesium-rich phases and the bright areas show copper-rich phases.

Regardless of the magnesium content and the continuous casting parameters in all presented
microstructures dendrites rich in copper occur surrounded by alternately existing Cu-rich phases
(bright areas) and Mg-rich phases (dark areas). Additionally, considering the eutectic aggregates two
separate morphologies of Cu + Cu2Mg (as shown via XRD patterns) phase may be distinguished:
plate and spherical morphology which is clearly visible in the case of CuMg4.5 with 2-mm feed.
Gorsse et al. [22] using die casting method have achieved similar microstructure of CuMg alloy with
plate morphology of Cu + Cu2Mg. As the casting feed increased (with the same Mg content) the copper
dendrites are smaller and the observed changes may again be correlated with the analyzed increase of
hardness in the tested samples. Conducted chemical composition analysis confirmed the presence of
Cu2Mg intermetallic phase with the mean wt.% of Mg of 9% regarding all the tested samples.
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3.3. Compression Tests

A final stage of this research was to determine the influence of the strain hardening on the tested
CuMg samples in the static compression test. The exemplary stress–strain curves are presented in
Figure 9 where it is clearly visible that the stress required to obtain 50% deformation is significantly
higher (approximately 300 MPa difference) when considering samples with higher magnesium content
which is in consistence with the hardness results of the as-cast state samples measured in this research.
There is a slight difference in the compression stress–strain curves regarding the casting feed especially
up to the yield strength of the tested samples, however, afterwards the curves have more or less
similar course.

 

Figure 6. The X-ray diffraction pattern for the CuMg alloys in the as-cast state with the marked peaks. 

 

Figure 9. Stress–strain compression curves of CuMg alloys. 

 

 

 

Figure 9. Stress–strain compression curves of CuMg alloys.

Three samples taken from cast rods obtained in each of the casting parameters and chemical
compositions were subjected to strain hardening in static compression test with 50% deformation and
afterwards their hardness and electrical conductivity were tested again for comparison. The results of
both tests are collectively presented at Figure 10.
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It was found that the materials strengthens by approximately 40 HB2.5/62.5 in comparison
to as-cast state which when recalculated to MPa gives UTS values of the strengthen material of
approximately 605 MPa to 640 MPa. However, the electrical conductivity decreases by almost 5 MS/m
which is equal to approximately 8.5% IACS. The decrease is higher regarding samples with higher
casting feed, which for the as-cast samples was not that observable.

4. Conclusions

Taking everything into consideration, the analyzed samples did not show significant influence of
the casting feed on the electrical conductivity of the two-phase CuMg alloys. Brinell’s hardness, on the
other hand, and as follows material’s strength, increased as the casting feed increased by approximately
5 HB2.5/62.5 (16.5–18 MPa) which is around 4% of the base value. The increase of the casting feed
caused a significant change in the density and size of the Cu + Cu2Mg phase aggregates, forming more
grain boundaries as the casting feed increased which might be correlated with the changes in hardness
of the material. XRD patterns proved the presence of Cu2Mg intermetallic phase and EDX analysis
confirmed its presence with the mean wt% of Mg of 9%. The applied force during the compression
test proved that the strain hardening of copper magnesium alloys was possible with quite significant
increase of the hardness by approximately 40 HB2.5/62.5 which is around 130 MPa, however, at the
same time the applied stress lowered electrical conductivity by around 5 MS/m.
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