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Background: Calcific aortic valve disease (CAVD) is one of the most frequently

occurring valvular heart diseases among the aging population. Currently, there is no

known pharmacological treatment available to delay or reverse CAVD progression.

The regulation of gene expression could contribute to the initiation, progression, and

treatment of CAVD. Non-coding RNAs (ncRNAs) and transcription factors play essential

regulatory roles in gene expression in CAVD; thus, further research is urgently needed.

Materials and Methods: The gene-expression profiles of GSE51472 and GSE12644

were obtained from the Gene Expression Omnibus database, and differentially expressed

genes (DEGs) were identified in each dataset. A protein-protein-interaction (PPI)

network of DEGs was then constructed using the Search Tool for the Retrieval

of Interacting Genes/Proteins database, and functional modules were analyzed with

ClusterOne plugin in Cytoscape. Furthermore, Gene Ontology-functional annotation and

Kyoto Encyclopedia of Genes and Genomes-pathway analysis were conducted for

each functional module. Most crucially, ncRNAs and transcription factors acting on

each functional module were separately identified using the RNAInter and TRRUST

databases. The expression of predicted transcription factors and key genes was

validated using GSE51472 and GSE12644. Furthermore, quantitative real-time PCR

(qRT-PCR) experiments were performed to validate the differential expression of most

promising candidates in human CAVD and control samples.

Results: Among 552 DEGs, 383 were upregulated and 169 were downregulated.

In the PPI network, 15 functional modules involving 182 genes and proteins

were identified. After hypergeometric testing, 45 ncRNAs and 33 transcription

factors were obtained. Among the predicted transcription factors, CIITA, HIF1A,

JUN, POU2F2, and STAT6 were differentially expressed in both the training and

validation sets. In addition, we found that key genes, namely, CD2, CD86,

CXCL8, FCGR3B, GZMB, ITGB2, LY86, MMP9, PPBP, and TYROBP were also

differentially expressed in both the training and validation sets. Among the most

promising candidates, differential expressions of ETS1, JUN, NFKB1, RELA, SP1,

STAT1, ANCR, and LOC101927497 were identified via qRT-PCR experiments.
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Conclusion: In this study, we identified functional modules with ncRNAs and

transcription factors involved in CAVD pathogenesis. The current results suggest

candidate molecules for further research on CAVD.

Keywords: calcific aortic valve disease, non-coding RNA, transcription factor, epigenetics, bioinformatics

INTRODUCTION

Calcific aortic valve disease (CAVD) is the leading cause of aortic
stenosis affecting 2.8% of the population aged 75 years or older
(1). Aortic valve sclerosis, which is the early phase of CAVD,
affects >40% of people older than 75 years of age. Moreover, 1.8–
1.9% of patients with aortic valve sclerosis progress to clinical
aortic stenosis annually (2). The available demographic and
epidemiological data suggest that the number of patients with
CAVD who are >70 or 75 years of age will double or even
triple in the next 50 years, especially in developed countries
(3). Once CAVD is initiated, the progression is ineluctable, and
the prognosis is poor when symptomatic severe aortic stenosis
has occurred.

Initially, CAVD was thought to results from the wear and
tear of valvular leaflets, as well as the passive accumulation of
calcium deposition. However, more recent evidence indicates
that CAVD arises through an active process that involves
lipoprotein deposition, chronic inflammation, and active leaflet
mineralization (4). In recent decades, no therapies have
been demonstrated to significantly suspend or reverse CAVD
progression except for surgical aortic valve replacement or
transcatheter aortic valve replacement, although not all patients
can tolerate these procedures (5). The limitations of aortic
valve replacement include a high operative risk for senile
patients, perioperative complications, anti-coagulation therapy,
and reoperation due to deterioration of the bioprosthetic valve.

microRNAs (miRNAs/miRs) and long non-coding RNAs
(lncRNAs) are distinct forms of non-coding RNAs (ncRNAs)
that have potential diagnostic and therapeutic value for various
diseases. microRNAs consist of ∼22 nucleotides and can silence
specific mRNA expression by binding to 3

′

untranslated regions
of target mRNAs and forming a ribonucleic acid-induced
silencing complex (6). Previous research revealed that in Homo
sapiens, over 1,000 miRNAs are transcribed that target more
than 5,300 genes, equivalent to 30% of the entire set of
expressed genes (7). The widespread target distribution in the
gene set guarantees the potential diagnostic, treatment, and
prognostic value of miRNAs for CAVD. LncRNAs are over 200
nucleotides long and do not encode proteins RNAs (8). Analysis
of data in the NONCODE database (a comprehensive lncRNA
database) revealed 56,018 lncRNA genes that are in humans,

Abbreviations: CAVD, calcific aortic valve disease; DEGs, differentially expressed

genes; GEO, Gene Expression Omnibus; GO, Gene Ontology; GSEA, Gene Set

Enrichment Analysis; KEGG, Kyoto Encyclopedia of Genes and Genomes; LASSO,

least absolute shrinkage and selection operator; lncRNA, long non-coding RNA;

miRNA, microRNA; ncRNA, non-coding RNA; PPI, Protein-Protein-Interaction;

qRT-PCR, quantitative real-time polymerase chain reaction; STRING, Search Tool

for the Retrieval of Interacting Genes/Proteins; TF, transcription factor; VIC,

valvular interstitial cell.

which equates to over twice the number of protein-coding
genes (9). In addition, lncRNAs are capable of interacting with
chromatin-modifying complexes, affecting the conformation
of nuclear domains, or activating transcriptional enhancers.
Moreover, some lncRNAs can interfere with the transcriptional
machinery, help maintain the structure of nuclear speckles, or
participate in post-transcriptional regulation (10). With such
intricate attributes and insufficient knowledge of these functions,
additional research concerning the potential roles of lncRNAs in
CAVD is urgently needed.

Transcription factors (TFs) are proteins that bind to DNA
in a sequence-specific manner and regulate transcription. TFs
function as the first step in DNA decoding and direct the
interpretation of the genome. Additionally, many TFs serve as
major regulatory factors that control cell types, developmental
patterns, and specific biological processes. Genes encoding TFs
comprise approximately 8% of the human genome and are closely
related to a large number of diseases and phenotypes. In recent
literature, TFs like SRY-box transcription factor 9 (SOX9), Sp1
transcription factor (SP1), GATA binding protein 6 (GATA6),
forkhead box O1 (FOXO1), and BTB domain and CNC homolog
1 (BACH1) have been studied to explore their roles in the
occurrence and development of various cardiovascular diseases
(11–17). However, the roles of TFs in CAVD have not yet been
fully investigated.

Bioinformatics is an efficient and robust tool for investigating
potential pathogenic and therapeutic targets for cardiovascular
diseases. Thus, in this study, we aimed to identify functional
modules in CAVD and key ncRNAs and TFs that regulate such
modules via bioinformatics analysis. The results of this research
provide candidate molecules for further research on CAVD
pathogenesis and treatment.

MATERIALS AND METHODS

Data Resources
Microarray datasets, including CAVD samples, were searched
in the Gene Expression Omnibus (GEO) database (https://www.
ncbi.nlm.nih.gov/geo/). The inclusion criteria were as follows: (1)
samples were collected fromhuman aortic valves; and (2) samples
included CAVD and control aortic valves. Datasets with a small
sample size or not based on human gene-expression profiles were
excluded. After acquisition of the datasets, Affymetrix Human
Genome U133 Plus 2.0 Array [HG-U133_Plus_2 (GPL570)],
including GSE12644 and GSE51472 containing most of the
samples, were included in the final analysis (18–21).

Identifying Differentially Expressed Genes
The robust multiarray average algorithm in the affy package of R
software (version 4.0.5; https://www.r-project.org/) was utilized
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for background correction, quantile normalization, perfect
match correction, and summarization (22). After annotation
for probes, DEGs between CAVD and normal aortic valves
were subsequently identified using lmFit and eBayes functions
in the limma package (23, 24). For genes corresponding to
multiple probes, gene expression levels were defined as the
average value obtained using multiple probes. P-values were
adjusted using the Benjamini–Hochberg method. Genes with
|log2(fold change)| value of >1 and an adjusted P-value of
<0.05 were considered significantly differentially expressed in
GSE51472. For GSE12644, genes with a |log2(fold change)| value
of >0.5 and an adjusted P-value of <0.05 were considered
significantly differentially expressed. The identified DEGs were
further examined using GEO2R, an interactive web tool that
enables users to compare samples in GEO series to identify
DEGs under different conditions. DEGs in both datasets
were visualized by generating volcano plots and heatmaps
using the ggplot2 and pheatmap packages of R software,
respectively (25, 26).

Gene Ontology and Kyoto Encyclopedia of
Genes and Genomes Pathway-Enrichment
Analyses
To investigate GO biological processes, cellular components,
molecular functions, and KEGG pathways associated with
CAVD, GO and KEGG pathway-enrichment analyses were
performed using the clusterProfiler package in R (27). P-values
were adjusted using the Benjamini-Hochberg method. GO terms
and KEGGpathways were considered significantly enriched if the
adjusted P-value was <0.05.

Gene Set Enrichment Analysis
In addition, to conventional enrichment analysis based on
hypergeometric tests focused on DEGs, all genes detected in
our analysis were used for GSEA, which is relatively more
comprehensive and sensitive. In this study, GSEA was conducted
using the clusterProfiler package in R. Terms with a |normalized
enrichment score| value of ≥1 and an adjusted P-value of <0.05
were considered significant enriched.

Protein-Protein-Interaction Network
Construction and Functional Module
Identification
A PPI network of DEGs was constructed using the Search
Tool for the Retrieval of Interacting Genes/Proteins (STRING)
database (version 11.0), which integrates all known PPIs and
predicts PPIs using various robust methods (28). Proteins
disconnected with other nodes and interactions with scores
lower than medium confidence level were excluded from
the PPI network. The ClusterOne plug-in for Cytoscape,
which employs a greedy growth process, was utilized to
identify different functional modules in the PPI network
based on cohesiveness scores (29). Functional modules
with sizes of less than five proteins or P-values of >0.05
were excluded.

Identifying Key ncRNAs and TFs
Interactions between ncRNAs and their target genes were
obtained from the RNAInter database (30). For TFs, interactions
were obtained from the TRRUST v2 database (31). Interaction
pairs with scores of >0.5 were retained for further analysis.
Furthermore, ncRNAs and TFs with <2 interactions between
functional modules were excluded. Finally, hypergeometric test
was performed with R to validate the significance (P-value
< 0.05) of interactions between regulators (ncRNAs and TFs)
and functional modules. NcRNAs and TFs interactions were
obtained from the RNAInter database. For interaction pairs
between ncRNAs and TFs with scores of >0.3 were retained for
further analysis.

Validating Key Genes and TFs
The weight (W) value of each gene was calculated as follows:

W = log 2|(fold change)|∗ − log10(P value) ∗degree.

Genes with high W values were considered as key genes in
the PPI network. Genes with the top 15W values in GSE51472
were externally validated with the independent validation sets,
GSE12644. Receiver operator characteristic (ROC) curves were
visualized using the pROC package in R to evaluate their abilities
to distinguish CAVD from normal samples (32). The expression
levels of TFs obtained in our analysis were verified with the
training and validation sets.

Human Aortic Valve Samples and qRT-PCR
Experiments
NcRNAs and TFs interacted with equal to or more than 3
functional modules were regarded as most promising candidates.
Since the differential expression and molecular functions of
the most promising candidate in miRNA (miR-126-3p) has
been validated in previous studies concerning CAVD, qRT-PCR
experiments in this study focus on lncRNAs and TFs.

Human aortic valve samples of 7 CAVD and 6 control
patients were collected from Fuwai hospital. As for the CAVD
samples, all aortic valves were obtained from patients with severe
symptomatic aortic valve stenosis. The severity of calcific aortic
valve stenosis was confirmed by Doppler echocardiography.
Calcification of stenotic aortic valves was confirmed by post-
explant examination. Control aortic valves were obtained from
patients undergoing surgical replacement because of pure aortic
valve regurgitation. All control aortic valves were smooth and
pliable, without calcification, thickening, and morphological
abnormalities at post-explant examination. The protocol was
approved by the Institutional Ethical Review Board of Fuwai
Hospital. Written informed consent was obtained before the
collection of aortic valve samples. After excision, samples were
placed in liquid nitrogen immediately and subsequently stored at
−80◦C for later use.

Total RNA was extracted from aortic valve tissues using
TrizolTM reagent (Invitrogen, Catalog#15596018). Subsequently,
500ng of total RNA was reverse transcribed into cDNA by using
PrimeScriptTMRT Master Mix (TaKaRa, Catalog#RR036A).
Expression of ncRNAs and TFs interact with equal to or
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FIGURE 1 | Volcano plots and cluster heatmaps of DEGs from the two datasets. (A,B) Volcano plots and cluster heatmaps of DEGs from the GSE51472 dataset.

(C,D) Volcano plots and cluster heatmaps of DEGs from the GSE12644 dataset. In the volcano plots, the orange dots represent upregulated genes, and the blue dots

represent downregulated genes. In the cluster heatmaps, the red bars indicate upregulated genes, and the blue bars indicate downregulated genes. The color

gradation indicates the |log2(fold change)| value.

more than 3 functional modules were detected by qRT-
PCR using PowerUpTM SYBRTM Green Master Mix (Applied
Biosystems, Catalog#A25742). Relative expression levels were
performed using 2−11Ct method, with GAPDH as reference
gene. Sequences of primers were obtained from previous
high-quality studies and provided in Supplementary Table S1.
Statistically significant was determined by unpaired Student’s t-
test at P-value < 0.05 and statistical tendency at P-value between
0.05 and 0.15.

Constructing a Prediction Model
Considering the vast number of DEGs and limited samples, the
glmnet package of R was used to fit a least absolute shrinkage
and selection operator (LASSO) regression model to narrow
the number of candidate genes (33). The response type was
set to binomial, and alpha was set to one. Cross-validation

was used to confirm the optimal penalty parameter, lambda.
Genes and their coefficients were selected according to minimum
binominal deviance. Validation of the LASSO regression model
was performed with the GSE12644 dataset, and ROC analysis was
performed to assess the efficacy.

RESULTS

Identification of DEGs
The flow-chart of this study was provided in
Supplementary Figure S1. GSE51472 included 5 CAVD
and normal samples each, whereas GSE12644 included 10 CAVD
and normal samples each. Basic characteristics of both datasets
were provided in the Supplementary Text S1. GSE51472 and
GSE12644 were used to screen for DEGs after background
correction, quantile normalization, perfect match correction,
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FIGURE 2 | GO and KEGG pathway-enrichment analysis of DEGs. The colors, ranging from blue to red, represent adjusted P-value of each term, whereas the

numbers in the X-axis indicate the number of DEGs for each specific term.

and summarization. No missing data were found for GSE51472
and GSE12644. In GSE51472, 552 DEGs were identified, of
which 383 were upregulated and 169 were downregulated. In
GSE12644, 429 DEGs were identified, including 245 upregulated
and 184 downregulated genes. The DEGs of GSE51472 and
GSE12644 were visualized by generating volcano plots, and
the top 200 most significantly DEGs were shown in the cluster
heatmap (Figure 1). Detailed expression profiles of the DEGs
were shown in the Supplementary Table S2.

GO and KEGG Pathway-Enrichment
Analysis
The ClusterProfiler package of R was utilized to conduct GO
and KEGG pathway-enrichment analyses for the DEGs of
GSE51472. GO terms included three major parts: biological
processes (BPs), cellular components (CCs), and molecular
functions (MFs). We found that 677 BP terms, 29 CC terms, and
69 MF terms, as well as 239 KEGG pathways were significantly
enriched. Regarding BPs, the enriched terms mainly included
immune response (GO:0030595, GO:0097529, GO:0097530,
GO:0070661, GO:0060326), phagocytosis (GO:0006909), calcium
ion homeostasis (GO:0055074, GO:0007204), calcium-mediated
signaling (GO:0019722), and organization of extracellular
matrix and structure (GO:0030198, GO:0043062). In terms of
CCs, the top five enriched terms were external side of plasma
membrane (GO:0009897), collagen-containing extracellular
matrix (GO:0062023), tertiary granule (GO:0070820), granule
membrane (GO:0030667), and specific granule (GO:0042581).
With respect to MFs, the top five terms were immune receptor
activity (GO:0140375), chemokine activity (GO:0008009),

chemokine receptor binding (GO:0042379), G protein-
coupled receptor binding (GO:0001664), and cytokine
activity (GO:0005125). KEGG pathway-enrichment analysis
indicated that CAVD shared pathways with rheumatoid
arthritis (hsa05323), Staphylococcus aureus infection (hsa05150),
leishmaniasis (hsa05140), and asthma (hsa05310). Furthermore,
common vital signaling pathways such as the chemokine
signaling pathway (hsa04062), NF-kappa B signaling pathway
(hsa04064), IL-17 signaling pathway (hsa04657), Fc epsilon
RI signaling pathway (hsa04664), Toll-like receptor signaling
pathway (hsa04620), and T cell receptor signaling pathway
(hsa04660) were also significantly enriched. Terms with the
20 smallest adjusted P-values in the BP, CC, MF, and KEGG
pathways are shown in Figure 2, and the remaining terms are
presented in the Supplementary Table S3.

GSEA Findings
Using the filtering threshold mentioned above, 992 BP terms, 98
CC terms, 80 MF terms, and 53 KEGG pathways were identified.
The top five BP, CC, and MF GO terms identified by GSEA are
shown in Figures 3A–C, and the rest of the results are shown
in the Supplementary Table S4. Regarding KEGG pathways,
five common pathways are illustrated in Figure 3D, and other
identified pathways are shown in the Supplementary Table S4.

PPI Network Construction and Functional
Module Identification
A PPI network of DEGs in GSE51472 was established using
the online STRING database with medium confidence. As
mentioned above, proteins disconnected with other nodes and
interactions with scores lower than the medium confidence
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FIGURE 3 | Enrichment plots obtained by GSEA. The enriched gene sets for BPs (A), CCs (B), MFs (C), and KEGG pathways (D) are shown.

level were excluded from the PPI network. Finally, 456
nodes and 4,472 edges were included in the PPI network.
Then, we used the Cytoscape plug-in ClusterOne to identify
the functional modules. Fifteen modules with sizes larger
than or equal to five members and P-values of <0.05 were
retained for further analysis (Supplementary Table S5). GO
and KEGG pathway-enrichment analysis was performed for
each module (Figures 4, 5). Furthermore, the 15 genes with
the top W-values were considered as key genes in CAVD.
These key genes included granzyme B (GZMB), CD69, matrix
metallopeptidase 9 (MMP9), transmembrane immune signaling
adaptor TYROBP (TYROBP), CD86, CD8A, Fc fragment
of IgG receptor IIIb (FCGR3B), C-X-C motif chemokine
ligand 13 (CXCL13), C-C motif chemokine ligand 4 (CCL4),
lymphocyte antigen 86 (LY86), pro-platelet basic protein (PPBP),
integrin subunit beta 2 (ITGB2), CD2, C-C motif chemokine
receptor 7 (CCR7), and C-X-C motif chemokine ligand 8
(CXCL8) (Supplementary Table S6).

Identification of Key ncRNAs and TFs
We obtained 45 ncRNAs involving 67 ncRNA-module pairs
after hypergeometric testing (Figure 6A). Notably, miR-126-3p

interacted with three modules and miR-200a-5p, miR-509-
3p, and miR-365a-5p interacted with two modules. Regarding
lncRNAs, we found that lnrCXCR4 interacted with five modules,
whereas ANCR, LINC00958, and LOC101927497 interacted
with three modules. In addition, 33 TFs and 72 TF-module
interactions were associated with the pathogenesis of CAVD
(Figure 6B). Remarkably, RELA was found to interact with seven
modules, and NFKB1, SP1, and JUN were found to interact with
six, five, and four modules, respectively. Furthermore, a total of
93 ncRNA-TF interactions were identified (Figure 7). Among
them, NEAT1 interacted with 12 TFs; both LOC101927497
and HOTAIR interacted with 8 TFs. For TFs, SPI1 interacted
with 10 ncRNAs; RELA, ERG, and STAT3 interacted with 9
ncRNAs. To strengthen these interactions functionally, a network
including ncRNAs, transcription factors, and functional modules
was constructed (Supplementary Figure S2).

Validation of Key Genes and TFs
The expression of 15 key genes in GSE51472 was externally
validated using GSE12644. Among them, 10 genes were
differentially expressed, which is consistent with the analysis of
GSE51472 (Figure 8A). ROC curve analysis was performed to
examine the potential of the gene to diagnose CAVD (Figure 8B).
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FIGURE 4 | GO enrichment analysis of genes in functional modules. The color gradation represents the significance of the enrichment for each indicated GO term.

The enrichment increased significantly, when going from a dark to a light shade. The sizes of the circles indicate the proportions of genes in each functional module

present among the entered GO genes.

Among the TFs obtained by our analysis, CIITA, HIF1A, JUN,
POU2F2, and STAT6 were significantly differentially expressed
in both GSE51472 and GSE12644 (Figure 9).

Validation the Expression of Most
Promising ncRNAs and TFs Using qRT-PCR
To further validate the expressions of most promising candidate
ncRNAs and TFs in CAVD and control valves, qRT-PCR
experiments were performed. Relative expression levels of these
candidates with statistically significance or statistical tendency
were shown in Figure 10. The expression levels of ETS1, JUN,
NFKB1, RELA, and SP1 in CAVD valves were significantly higher
than those in control valves (p < 0.05). For STAT1, ANCR,
and LOC101927497, statistical tendency was observed across two
groups (0.05 < p < 0.15).

Construction of a Prediction Model
A LASSO regression model was constructed for the DEGs
identified between CAVD and normal samples in GSE51472, and

the penalty coefficients were defined by the minimum binominal
deviance. After penalty, doublecortin like kinase 1 (DCLK1),
formyl peptide receptor 1 (FPR1), GZMB, marginal zone B
and B1 cell specific protein (MZB1), pro-platelet basic protein
(PPBP), and Ras association domain family member 6 (RASSF6)
were retained to establish a diagnostic model with coefficients
−0.1638865, 0.4981181, 1.4503176, 0.4198781, 0.0048172, and
1.4950435, respectively (Figures 11A,B). The area under the
curve (AUC) of the diagnostic model was 1.00 in the training set,
and that of the validation set was 0.84, and after combining the
training and validation sets, the AUC was 0.94 (Figure 11C).

DISCUSSION

CAVD is characterized by ectopic mineralization and
fibrogenesis of the aortic valve. Once CAVD deteriorates into
severe aortic stenosis, the 5-year mortality rate reaches 67% (34).
In addition to lipid-lowering using statins, potential therapeutic
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FIGURE 5 | KEGG pathway-enrichment analysis of genes in functional modules. The color gradation represents the significance of the enrichment for each indicated

KEGG pathway. The enrichment increased significantly, when going from a dark shade to a light shade. The sizes of the circles indicate the proportions of genes in

each functional module present among the entered KEGG pathways.

targets, including those targeting PCSK9/Lp(a), matrix gla-
protein, soluble guanylyl cyclase, dipeptidyl peptidase-4,
angiotensin II receptor, hydroxyapatite crystal formation, and
RNAKL/osteoclastic activity, have been evaluated in randomized
controlled trials for the treatment of CAVD. Although some
studies observed attenuation of calcification burden, the effects
on hemodynamic improvement require further studies (35).
Certainly, the effectiveness of CAVD pharmacotherapy is still
in its infancy, and surgical and transcatheter treatments also
have limitations. Therefore, it is imperative to identify effective
therapeutic targets for CAVD. With the capability to regulate
gene expression, ncRNAs and TFs have a profound influence
on the onset, development, and progression of CAVD. Thus,
ncRNAs and TFs can potentially serve as therapeutic targets
for CAVD.

Advances in transcriptomics are driving changes in preclinical
and clinical medicine. The application of transcriptomics and

the subsequent bioinformatic analysis of available data have
identified precise molecular targets and annotated pathways,
which revolutionized our understanding of initiation and
progression of CAVD. In addition, transcriptomic studies
provide mechanistic insights into valvular homeostasis as well
as hypothetical basis for the diagnosis and treatment of CAVD,
thereby guiding further research for this poorly understood
disease (36, 37). As a widely used approach for transcriptomic
analysis, microarrays have been used to discover pathogenic
and therapeutic targets for cardiovascular diseases, including
CAVD (38). In several previous studies, microarray-based gene-
expression profiles were utilized to investigate hub genes, GO,
and KEGG pathways in CAVD. However, further bioinformatic
studies concerning ncRNAs and TFs in CAVD are needed. In
this study, we not only identified key ncRNAs and TFs in CAVD,
but also established a regulatory ncRNA/TF-target gene-pathway
connection in CAVD for the first time.
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FIGURE 6 | Regulatory chord diagram of key ncRNAs/TFs and functional modules. (A) Regulatory relationship between ncRNAs and functional modules. (B)

Regulatory relationship between TFs and functional modules.

In this study, the gene-expression profiles of CAVD and
normal aortic valve samples were obtained from the GSE51472
and GSE12644 datasets in the GEO database. After data filtering,
DEGs were identified using the lmFit and eBayes algorithms.
In total, 552 DEGs in GSE51472 were identified, of which 383
were upregulated and 169 were downregulated. In GSE12644,
429 DEGs were identified, including 245 upregulated and 184
downregulated genes.

Subsequently, a PPI network of the DEGs in GSE51472 was
established using the online STRING database. We identified
15 functional modules containing 182 members that were used
for further analysis. Enrichment analysis demonstrated that
the functional modules involved various GO terms and KEGG
pathways, indicating the complex pathogenesis of CAVD.

We found that seven functional modules were involved
in T cell regulation. It is well recognized that CAVD
development occurs through a chronic immune-regulation
process characterized by T lymphocyte infiltration and
neovascularization. Compared with that in normal aortic
valve tissues, greater activated-T cell infiltration was observed
in calcified aortic valve tissues, and these T cells were densely
distributed around calcified nodules (39). Similarly, recent data
have shown that cytotoxic T cells can infiltrate into calcified
regions and newly formed vasculature in calcified aortic valves,
accompanied by expression of endothelial growth receptors and
ossification (40).

Furthermore, six functional modules were related to the
immune response of neutrophils. Neutrophils are the most
abundant effector cells in the innate immune system and can

secrete various pro-inflammatory factors that are harmful to
tissues. Activated neutrophils can secrete free radical species
and granules, which further leads to valve endothelial cell
dysfunction and promotes immune cell infiltration into the
valve (40). In addition, previous findings have indicated that
the neutrophil: lymphocyte ratio in the peripheral blood is
related to the degree of stenosis in the calcified aortic valve (41).
Neutrophil extracellular traps (synthesized by neutrophils) were
also observed in stenosed aortic valve tissues, accounting for
25% of all endothelial and subcutaneous cells in the tissues, and
are also related to the degree of stenosis of the calcified aortic
valve (42).

In addition, six modules involved collagen-containing
extracellular matrix. Collagen disorganization in the extracellular
matrix is a major hallmark of CAVD (43). Aortic valves are
mainly composed of extracellular matrix and valvular interstitial
cells. Three layers of connective tissue with different densities
and molecular compositions form the basic structure of the
aortic valve. The fibrosa is the outflow surface of the aortic valve
and is mainly composed of type-I and type-III collagen fibers,
which are the primary components responsible for valvular
strength. The ventricularis is the inflow surface of the aortic
valve and is mainly composed of elastin, which expands during
diastole and rebounds during systole. The spongiosa is the
core of the valve, and mainly contains loose connective tissue
composed of glycosaminoglycans, which can absorb and buffer
the relative shear movement of the ventricularis and fibrosa
during periodic movement of the aortic valve (44). In CAVD,
excessive deposition of collagen fibers mainly occurs in the
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FIGURE 7 | Sankey diagrams of the interactions between ncRNAs and TFs. (A) Interactions between miRNAs and TFs. (B) Interactions between lncRNAs and TFs.

spongiosa, and the number of collagen fibers can increase by over
two-times, and the width and density of the fibers can also show
corresponding increases. In contrast, previous data showed that
in the fibrosa, the length of collagen fibers was obviously shorter,
but that the number, width, density, or alignment did not change
significantly (45).

Potential ncRNAs regulating each functional module were
analyzed using a hypergeometric test, which identified 22
miRNAs and 23 lncRNAs. The downregulation of miR-126-
3p, miR-335-5p, and miR-939 in calcified aortic valve tissue
has been confirmed in previous studies (20, 46). However,
the roles of these miRNAs in CAVD have not been fully
explored. The present analysis not only identified that miRNA-
126-3p plays an important regulatory role in CAVD but also
that this role is mainly related to neutrophil degranulation,
neutrophil activation involved in immune response, and
the collagen-containing extracellular matrix. Consistent with
these findings, Dimitry et al. reported that regulation of
neutrophil function by miRNA-126-3p plays an important

role in vascular homeostasis (47). Additionally, miRNA-126-
3p can up regulate syndecan-4 in extracellular matrix, thereby
exerting anti-atherosclerotic effects in vascular tissue (48).
Furthermore, the present study showed that miR-335-5p is
mainly involved in CAVD by affecting the collagen-containing
extracellularmatrix. This agrees with a previous study confirming
that miR-335-5p inhibits NOTCH signal transduction by
targeting JAG1 in atherosclerotic plaques, thereby reducing the
degradation of collagen in extracellular matrix and stabilizing
plaques (49).

Regarding lncRNAs, the lncRNA MALAT1 was originally
studied in non-small cell lung cancer and was shown to be
associated with tumor metastasis (50). Additionally, MALAT1
was found to be widely expressed in various organs and tissues.
It has been confirmed that MALAT1 expression is upregulated
in calcified aortic valves and human aortic valve interstitial
cells after osteogenic induction. Mechanistically, MALAT1
upregulates SMAD family member 4 (SMAD4) expression by
sponging miR-204, thus promoting the osteogenic differentiation
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FIGURE 8 | Validation of differential expression and ROC analysis of key genes. (A) Validation of differential expression of key genes in the GSE12644 dataset. (B)

ROC analysis of common differentially expressed key genes in GSE12644 datasets.

of valve interstitial cells (51). However, in the present study, we
found that the role of MALAT-1 in CAVD was associated with
the collagen-containing extracellular matrix, which agrees with
previous studies reporting the ability of MALAT-1 to regulate
the extracellular matrix (52, 53). HOTAIR was the first lncRNA
shown to act in trans to regulate gene expression (54). In recent
years, many studies have suggested that HOTAIR is involved
in the occurrence and development of cardiovascular diseases.
HOTAIR is downregulated in human aortic valve interstitial
cells exposed to cyclic stretch, and thus increases the expression
of biomineralization associated alkaline phosphatase (ALPL)
and bone morphogenetic protein 2 (BMP2), which leads to
calcification of the aortic valve (55). Previous studies reported
that HOTAIR regulates the collagen-containing extracellular
matrix through URI1 activation of the Wnt pathway in
myocardial fibrosis (56). Moreover, in thoracic aortic aneurysms,
HOTAIR is closely associated with the expression of collagen
types I and III in the extracellular matrix (57). Similarly, the
present results indicated that HOTAIR mediates CAVD by

acting on the collagen-containing extracellular matrix. AFAP1-
AS1 was shown to be upregulated in calcified aortic valves
and after osteogenic induction in human valvular interstitial
cells (VICs). Overexpression or knockdown of AFAP1-AS1
can promote or inhibit the osteogenic differentiation of VICs,
respectively. Mechanistically, AFAP1-AS1 upregulates SMAD
family member 5 (SMAD5) expression by sponging miR-155,
which eventually leads to the osteogenic differentiation of
VICs (58). In addition, some data have also indicated that
AFAP1-AS1 promotes the osteogenic differentiation of VICs
by regulating macrophage polarization (59). Furthermore, the
interaction between osteogenic and osteoclast differentiation is
closely related to the calcification of vessels and valves (60). The
present study indicated that in addition to common immune-
related pathways and the collagen-containing extracellular
matrix, AFAP1-AS1 is closely related to osteoclast differentiation
in CAVD.

In this study, we identified 33 TFs that regulate functional
modules associated with CAVD. Previous in vitro experiments
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FIGURE 9 | Commonly differentially expressed TFs in the (A) GSE51472 and (B) GSE12644 datasets.

FIGURE 10 | qRT-PCR analyses for expression level of the most promising candidate lncRNAs and TFs in control aortic valves (n = 6) and CAVD valves (n = 7).

indicated that valve endothelial cells on both sides of the aortic
valve leaflet showed differential side-specific gene expression,
including that of Kruppel-like factor 2 (KLF2), which is
an “atheroprotective” and “vasoprotective” TF. Additionally,
previous studies noted that KLF2 can inhibit the expression of
inflammation-related genes and regulate calcification caused by
proinflammatory stimuli (61). Consistent with this, the present

findings suggested that KLF2 mainly regulates inflammatory
cell migration, cytokine receptor interaction, and chemokine
signaling pathways in CAVD. Hypoxia inducible factor 1 subunit
alpha (HIF1A), predicted in our study, is highly expressed in
calcified areas of stenotic valves and can lead to pathological
remodeling of valve tissues by upregulating the expression
and activity of MMP9-NGAL (62, 63). HIF1A is also related
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FIGURE 11 | Construction and validation of a LASSO regression model. (A,B) Selected genes and their coefficients according to minimum binominal deviance. (C)

ROC analysis of the LASSO regression model with the training set, validation set, and both sets combined.

to the inflammation and endodontic-mesogenic transition of
human aortic valve endodontic cells (64). The present findings
also highlight the association of HIF1A with inflammatory
responses in CAVD. Importantly, the upregulation of HIF1A was
validated in both our training and validation sets (Figures 9A,B).
Strikingly, upstream of HIF1A, signal transducer and activator of
transcription 1 (STAT1) also plays a key role in CAVD, consistent
with our analysis. Under normoxic conditions, the combination
of lipopolysaccharides and interferon-γ can increase STAT1
expression, thereby upregulating HIF1A, followed by up-
regulation of cell adhesion molecules (CAMs) and induction
of calcification, which is also consistent with the present
results (65). RELA, also known as the NF-κB p65 subunit, is
an important part of the NF-κB signaling pathway. Previous
research confirmed that RELA expression was upregulated in
calcified aortic valves (66). In vitro experiments have also
suggested that RELA positively regulates the mineralization
and inflammatory responses of VICs (67, 68). Mechanistically,
RELA phosphorylated at Ser536 is recruited to the promoter
of BMP2, a key osteogenic marker, and initiates an osteogenic
program (67). Moreover, RELA can also induce the expression
of pro-inflammatory cytokines, such as TNF-α, IL-6, IL-1β
and IL-8, which partially agrees with the findings reported
in the present study (66). Early growth response 1 (EGR-
1) has also been shown to be upregulated in human calcific
stenosis aortic valves, as well as in VICs treated with osteogenic
media (69, 70). STAT3 is a JAK3-related TF. Knocking down
STAT3 in valvular interstitial cells inhibited expression of the
osteoblastic markers, alkaline phosphatase (ALP) and RUNX

family transcription factor 2 (RUNX2), and decreased matrix
calcium deposition after pro-calcific stimulation (71). Moreover,
p-STAT3 was also upregulated in calcified aortic valves and has
clinical potential to inhibit the progression of valve calcification
in an inflammatory milieu (66). Nuclear factor kappa B subunit
1 (NFKB1), an inflammation-related TF, was shown to be
upregulated in aortic valve endothelial cells exposed to shear
stress (72).

Fifteen genes with the highest W values in the GSE51472
dataset were verified using the GSE12644 dataset. Among
them, 10 genes were differentially expressed in both datasets.
Previous findings showed that abnormal expression of these
genes was closely related to the occurrence and development of
CAVD. CD86 is required for T cell activation by monocytes,
and increased CD86 expression was accompanied by reduced
osteoclast resorptive function and may contribute to calcification
in CAVD (73). CXCL8, also known as IL-8, is a chemokine
that facilitates the directed migration of cells to inflammatory
sites (74). In addition to our observations that CXCL8
was upregulated in GSE51472 and GSE12644, data from a
study also demonstrated higher CXCL8 protein expression
in calcified aortic valve tissues than in normal tissues (75).
Granzyme is a potent toxin expressed by cytotoxic lymphocytes,
which can induce specific cell death-signaling pathways (i.e.,
activation of caspase-driven cell-death pathways). Among all
granzymes, granzyme B (GZMB) is the fastest-acting and
most effective pro-apoptotic granzyme (76). Previous qRT-
PCR and immunohistochemistry data confirmed that GZMB
expression was higher in calcified aortic valve tissues than
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in control valves (77). MMP-9 expression was increased in
calcified stenotic aortic valves, which are mainly synthesized
by tissue macrophages, suggesting an inflammatory state
(78). MMP-9 is also present at significantly higher levels
in the serum of patients with CAVD (79). Data from an
ex vivo study confirmed that elevated cyclic stretching and
fluid shear stress also stimulated MMP-9 expression in valve
leaflets (80, 81).

The LASSO regression model was constructed and ROC
curves were drawn for the training, validation, and combined
sets, and the AUC values were all larger than 0.8, indicating
the superior capability of using six DEGs (namely, DCLK1,
FPR1, GZMB, MZB1, PPBP, and RASSF6) as biomarkers for
distinguishing CAVD patients.

This study has some limitations. First, to strengthen the
reliability of the results, we used one dataset as the training
set and the other dataset as the validation set. However, the
sample size was still small. Second, previous studies have
identified stage-specific proteomic and transcriptomic signatures
in CAVD, of which the calcific stage different from the non-
diseased stage, and the fibrotic stage represents an intermediate
state. Pathways enriched in calcific stage in CAVD were
mainly associated with matrix metalloproteinase activation
and MAPK signaling pathways. However, in fibrosis stage,
pathways enriched were mainly associated with myofibrogenesis
and oxidative stress of VIC. Given the existence of different
pathogenic stages in a single CAVD leaflet, gene-expression
data obtained using bulk transcriptomic profile may mask some
real differences (36). Third, in addition to the pathological
stage-specificity, the anatomic aortic valve microlayers (fibrosa,
spongiosa, and ventricularis) also have unique proteomic
features. These proteomic features were conserved between
the CAVD and control valves but distinct between each
individual layers. From the microscopic view of aortic valve,
VICs in the fibrosa layer have stronger calcification potential
compared to other anatomic layers, which can be explained
by unique proteomic features (36). Furthermore, studies have
also confirmed the layer-dependent sensitivity of VICs to
dynamic strain, which may also suggest difference in gene
expression between anatomical layers (82). Due to the inherent
limitations of bulk transcriptomic profiling, this study was
unable to provide more insight into the above-mentioned
heterogeneity. Further bioinformatics analysis based on single-
cell transcriptome data of CAVD may promote the progression
of relevant research. Thus, gene-expression data from bulk
transcriptomic profile may cover some of the true differences.
Finally, the original data lack detailed clinical information, which
may shed new light on future research when combined with the
present study.

In conclusion, many results of the present study are
consistent with those reported previously, confirming the
reliability of our analysis. Furthermore, our study provides
novel insight into molecules confirmed as playing important
functions in CAVD. More importantly, we included ncRNAs
and TFs in the present analysis that had not previously been
evaluated in CAVD, thereby providing candidate molecules for
further study.
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