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Abstract
Vitamin D is associated with biological activities of the innate and adaptive immune systems, as well as inflammation. 
In observational studies, an inverse relationship has been found between serum 25-hydroxyvitamin D (25(OH)D) con-
centrations and the risk or severity of coronavirus disease 2019 (COVID-19). Several mechanisms have been proposed 
for the role of vitamin D in COVID-19, including modulation of immune and inflammatory responses, regulation of the 
renin–angiotensin–aldosterone system, and involvement in glucose metabolism and cardiovascular system. Low 25(OH) 
D concentrations might predispose patients with COVID-19 to severe outcomes not only via the associated hyperinflam-
matory syndrome but also by worsening preexisting impaired glucose metabolism and cardiovascular diseases. Some 
randomized controlled trials have shown that vitamin D supplementation is beneficial for reducing severe acute res-
piratory syndrome coronavirus 2 RNA positivity but not for reducing intensive care unit admission or all-cause mortal-
ity in patients with moderate-to-severe COVID-19. Current evidence suggests that taking a vitamin D supplement to 
maintain a serum concentration of 25(OH)D of at least 30 ng/mL (preferred range 40–60 ng/mL), can help reduce the  
risk of COVID-19 and its severe outcomes, including mortality. Although further well designed studies are warranted, it  
is prudent to recommend vitamin D supplements to people with vitamin D deficiency/insufficiency during the COVID-19  
pandemic according to international guidelines.
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RANKL  Receptor activator of nuclear factor-κB 
ligand

RCT   Randomized controlled trial
RNA  Ribonucleic acid
ROS  Reactive oxygen species
SARS-CoV  Severe acute respiratory syndrome 

coronavirus
SARS-CoV-2  Severe acute respiratory syndrome  

coronavirus 2
SIRS  Systemic inflammatory response 

syndrome
TGF-β  Transforming growth factor-β
Th1  Type 1 helper T
TLR  Toll-like receptor
TNF  Tumor necrosis factor
VDR  Vitamin D receptor
VITAL  VITamin D and OmegA-3 Trial

1 Introduction

The prevalence of vitamin D deficiency, estimated at a 
serum concentration < 20 ng/mL of 25-hydroxyvitamin D 
(25(OH)D), as defined by the Endocrine Society’s Prac-
tice Guidelines on Vitamin D [1], varies according to age, 
region, and ethnicity [2]. However, vitamin D deficiency 
is relatively common [3], especially among the elderly [4, 
5]. A study of 191,779 severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2)-positive patients found a 
strong inverse relationship between SARS-CoV-2 positiv-
ity rates and serum 25(OH)D concentrations determined 
in the preceding 12 months (Supplementary Fig. S1) [6]. 
Compared with patients who had serum 25(OH)D concen-
trations < 20 ng/mL, those with concentrations of 30–34 ng/
mL were at a lower risk of SARS-CoV-2 infection (12.5% 
vs. 8.1%) [6]. This relationship persisted across sexes, 
races/ethnicities, latitudes, and age ranges and continued 
its downward trend in infectivity until the serum concen-
tration reached 55 ng/mL (5.9%; 95% confidence interval 
(CI) 5.5%–6.4%) [6]. Another study of 489 individuals who 
had 25(OH)D concentrations measured in the year before 
COVID-19 testing found that the relative risk of testing posi-
tive for COVID-19 was 1.77 times greater for those who 
were deficient in vitamin D than for those in whom it was 
sufficient (P = 0.02) [7].

There is a considerable overlap between risk factors for 
vitamin D deficiency and COVID-19, including older age, 
obesity, dark skin tone, being Black, Asian, and minority 
ethnic groups, or living in northerly latitudes [8–10]. These 
factors are significantly associated with increased morbidity 
and mortality in patients with COVID-19 [10–14]. A system-
atic review found that low serum concentrations of 25(OH)
D were associated with increased mortality and severity of 

COVID-19 [15]. Thus, vitamin D deficiency appears to be 
associated with severe COVID-19 outcomes (Table 1). From 
a different context, several studies have investigated whether 
vitamin D supplementation could reduce COVID-19 sus-
ceptibility or severity. In a pilot randomized controlled trial 
(RCT), including 76 patients hospitalized for COVID-19, 
oral administration of high-dose calcifediol (25(OH)D3; 
0.532 mg on the day of admission and 0.266 mg on days 
3 and 7 and weekly thereafter) reduced intensive care unit 
(ICU) admission [16]. In another study of SARS-CoV-2 
RNA-positive patients in India, 10 (63%) participants in the 
intervention group and 5 (21%) in the control group became 
SARS-CoV-2 RNA-negative after 60,000 IU of vitamin D3 
(cholecalciferol) supplementation for 14 days (P < 0.018) 
[17]. These data suggest that vitamin D sufficiency might 
have protective effects against COVID-19.

SARS-CoV-2 infection causes cellular and tissue dam-
age and triggers innate and adaptive immune responses 
[18]. Vitamin D is associated with immunological activi-
ties by regulating important components of the innate and 
adaptive immune systems and inflammation [19]. Thus, 
several mechanisms have been proposed for the role of 
vitamin D in COVID-19, including modulation of immune 
and inflammatory responses [20] and regulation of the 
renin–angiotensin–aldosterone system (RAAS) [21, 22]. 
Given these pleiotropic effects, vitamin D could have bene-
ficial effects on the prevention and treatment of COVID-19 
[23, 24]. Here, we review the current evidence suggesting 
a role for vitamin D and its therapeutic potential in the 
management of patients with COVID-19.

2  Pathophysiological relationships 
between vitamin D and COVID‑19

Vitamin D is synthesized in the skin after exposure to 
ultraviolet B radiation or is obtained from food and supple-
ments. It undergoes 25- and 1α-hydroxylation sequentially 
in the liver and kidney, respectively, thereby converting it 
to 1,25-dihydroxyvitamin D (1,25(OH)2D), its biologically 
active form [25]. Vitamin D and its metabolites can affect 
SARS-CoV-2 infection and the severity of COVID-19 in 
several ways (Table 2). These include their effects on the 
immune system, inflammation, fibrosis, RAAS, acute lung 
injury, glucose metabolism, and cardiovascular risk.

2.1  Role of vitamin D in the immune system

Vitamin D metabolic enzymes and the vitamin D receptor 
(VDR) are present in most cells involved in the innate and 
adaptive immune system [26]. Importantly, these immune 
cells produce 1,25(OH)2D locally, which has an immunoreg-
ulatory action against invading pathogens [27]. In addition, 
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25(OH)D is metabolized to 1,25(OH)2D in innate and adap-
tive immune cells [28]. This locally produced 1,25(OH)2D 
acts on the immune cells in autocrine and paracrine man-
ners, exerting immunomodulatory effects [28, 29].

The VDR is a regulator of innate and adaptive immu-
nity [29]. A meta-analysis of case-controlled studies 

showed that VDR gene polymorphisms were associated 
with susceptibility to enveloped virus infection, such as 
Respiratory Syncytial Virus [30]. VDR can also act as 
a checkpoint regulating inflammatory responses after 
tissue injury [31]. VDR agonists silence transform-
ing growth factor β (TGF-β) signaling [32], potentially 

Table 2  Potential effects of vitamin D on the risks and prognosis for patients with COVID-19

ACE angiotensin-converting enzyme, ACE2 angiotensin-converting enzyme 2, AT1R angiotensin II type 1 receptor, ARDS acute respiratory dis-
tress syndrome,  BMP-7 bone morphogenic protein-7,  CD cluster of differentiation,  COVID-19 coronavirus disease 2019, CVD cardiovascu-
lar disease, CXCL1 chemokine ligand 1, IFN interferon, Ig immunoglobulin,  IL interleukin, MAPK mitogen-activated protein kinase, MCP-1 
monocyte chemoattractant protein-1, MHC major histocompatibility complex, MMP-8 matrix metalloproteinase-8, NF-κB nuclear factor kappa-
light-chain-enhancer of activated B cells, PD-L1 programmed death ligand-1, RAAS renin–angiotensin–aldosterone system, RAGE receptor for 
advanced glycation end products, T1DM and T2DM type 1 and type 2 diabetes mellitus, Th T helper cell, TLR toll-like receptor, Treg regulatory 
T cell, TGF-β transforming growth factor-β, TNF-α tumor necrosis factor-α, VEGF vascular endothelial growth factor

Categories Possible effects Mechanisms

Immune system Modulating the risk of infection, attenuating excessive 
immune response

Innate immunity
• Monocytes and macrophages: ↑proliferation [28], 
↑antimicrobial peptides production (cathelicidins, 
defensins) [156], ↑autophagy [29]

• Dendritic cells: ↓maturation [45], ↓MHC class II [45], 
↓co-stimulatory molecules (CD40, CD80, CD86) [45], 
↑inhibitory molecules (PD-L1)[157]

Adaptive immunity
• T cells: ↓proliferation [158], ↓Th1 (IFN-γ) [159] and 

Th17 (IL-17) [160] responses, ↑Th2 (IL-4, IL-5) [161] 
and Treg (IL-10) [157] responses

 • B cells: ↓proliferation [162], ↓differentiation into plasma 
cell [162], ↓Ig production (IgG, IgM) [163]

Inflammation Anti-inflammation ↓TLR signaling [164], ↓NF-κB [165], ↓prostaglandins 
[166], ↑MAPK phosphatases [59], ↓proinflammatory 
cytokines (IL-6, TNF-α) [167], ↑inhibitory cytokines (IL-
10, TGF-β) [157]

Fibrosis Antifibrotic effect ↓Epithelial–mesenchymal transition [168], ↓fibroblast 
differentiation [169], ↑profibrotic factors (TGF-β, 
SERPINE1) [170], ↑antifibrotic factors (BMP-7, 
MMP-8, follistatin) [170], ↓collagen expression [170], 
↓MCP-1 [171]

RAAS Alleviating lung injury, improving outcome of 
preexisting CVD or reducing incident CVD

Classic pathway (ACE2/angiotensin-(1–7)/Mas receptor): 
↑ACE2[21]

 Counter-regulatory pathway (angiotensin II/AT1R): ↓renin 
expression [21], ↓ACE [21], ↓angiotensin II expression 
[21]

ARDS Reducing the risk of ARDS,
promoting the recovery from lung injury

Epithelial barrier integrity: ↓extravascular lung water index 
[172], ↓pulmonary vascular permeability index [172]

 Epithelial injury: ↓RAGE (bronchoalveolar lavage fluid) 
[172], ↓protein permeability index [172]

 Inflammation: ↓TNF-α [172], ↓VEGF [172], ↓CXCL1 
[172]

 Apoptosis: ↓soluble Fas ligand-mediated cell death [172]
 ↑Scratch wound healing [172]

Glucose metabolism Improving outcomes of COVID-19 associated with 
hyperglycemia

T1DM: ↓insulitis [173], ↑β-cell survival [173], ↓disease 
onset [173], ↓disease progression [174]

 T2DM: ↑β-cell function [175], ↓islet inflammation [175], 
↓islet RAAS components [176], ↓hyperglycemia [175], 
↓disease progression [175]

CVD Improving the prognosis of COVID-19 RAAS inhibition [65], ↓cardiac hypertrophy [177], 
↑myocardial contractility [177], ↑endothelial function 
[177], ↓mortality [178]
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inhibiting proinf lammatory and profibrotic changes 
[31]. Certain toll-like receptor (TLR) signals induce the 
expression of VDR [28]. However, a recent study found 
that the expression of VDR was lower in patients with 
COVID-19 than in controls [33], which requires further 
investigation.

2.1.1  Innate immunity

Innate immune cells can prevent infections by producing 
antimicrobial peptides (AMPs) such as cathelicidins and 
defensins [34]. AMPs are an important component of innate 
immunity and are induced upon recognition of pathogen-
associated molecular patterns [35]. A consensus sequence 
for the vitamin D response element was identified in the 
promoter regions of human genes for cathelicidin antimi-
crobial peptide (CAMP) and β-defensin-2 (DEFB4), and its 
expression was strongly upregulated by 1,25(OH)2D [36, 
37]. 1,25(OH)2D induced autophagy in monocytes and mac-
rophages via cathelicidin in vitro, with antimycobacterial 
effects [38]. A preliminary study found that oral adminis-
tration of human cathelicidin, LL-37, ameliorated systemic 
symptoms in 11 patients with mild COVID-19 [39]. These 
findings suggest that improvement in vitamin D status, by 
providing more substrate (i.e., 25(OH)D) to immune cells 
capable of converting it to 1,25(OH)2D, might be a crucial 
constituent of the early host defense against SARS-CoV-2 
infection through the production of AMPs.

2.1.2  Adaptive immunity

The adaptive immune system in which vitamin D is involved 
can act as a ‘double-edged sword’ in patients with COVID-
19 [40]. An appropriate immune response to SARS-CoV-2 
infection is necessary for viral clearance and mitigates 
adverse outcomes in patients with COVID-19. However, 
overproduction of proinflammatory cytokines can contribute 
to an uncontrolled excessive immune response, known as a 
cytokine storm [41]. This dysfunctional immune response 
has detrimental consequences, such as systemic inflamma-
tory response syndrome (SIRS) and multiorgan failure [18].

Vitamin D and its metabolites are associated with both 
T and B cell immunity. In general, T cell responses play a 
pivotal role in combatting viral infections. Dysregulated T 
cell responses can lead to a pathological response to such 
infections [42]. Emerging evidence suggests that patients 
with severe COVID-19 are characterized by the functional 
exhaustion of T cells [43] and that improvements in vitamin 
D status can alleviate this process through immunomodula-
tion [29]. 1,25(OH)2D impairs the maturation of dendritic 
cells in a paracrine manner and renders them tolerogenic 
[44]. Because tolerogenic dendritic cells feature phenotypes 
resembling immature dendritic cells, 1,25(OH)2D reduces 

the differentiation of naïve T cells into cytotoxic effector T 
cells [29, 45]. In addition, 1,25(OH)2D directly suppresses 
T cell activation by reducing the type 1 helper T cell (Th1) 
and type 17 helper T cell responses [46]. This is mediated 
by the binding of 1,25(OH)2D to the VDR and subsequent 
translocation to the nucleus of T cells, which upregulates 
the expression of the gene for cytotoxic T-lymphocyte anti-
gen 4 (CTLA4), cluster of differentiation 38 (CD38), and  
interleukin-10 (IL-10)  [47]. As  CD4+ T cells are Th1-
skewed in the bronchoalveolar lavage fluid of SARS-CoV-
2-infected patients, 1,25(OH)2D might alleviate uncontrolled 
excessive immune responses by promoting a transition from 
proinflammatory interferon-γ (IFN-γ)-positive Th1 cells to 
inhibitory IL-10+ Th1 cells [47]. Although T cell dynamics 
in COVID-19 need further investigation, the evidence sug-
gests that improving vitamin D status can be beneficial in 
reducing dysregulated T cell responses.

Vitamin D is also associated with B cell immunity. VDR 
is expressed in B cells and 1,25(OH)2D directly reduces the 
proliferation of these cells and promotes the secretion of 
IL-10, which in turn suppresses the activation of Th1 and 
subsequently reduces inflammation [29]. These properties of 
locally produced 1,25(OH)2D might alter B cell responses in 
patients with COVID-19. Of note, B cells are also involved 
in immunological memory and viral clearance. More stud-
ies are needed to elucidate the additional role of improved 
vitamin D status on B cell function and immunity. On the 
other hand, alterations in adaptive immunity and vitamin 
D status can affect the prognosis of COVID-19 by affect-
ing bone metabolism. Under inflammatory conditions, the 
release of cytokines, such as tumor necrosis factor (TNF), 
IL-6, and IL-1, can upregulate osteoclastogenesis and inhibit 
osteoblast activities [48]. Among these cytokines, TNF is a 
key factor in bone loss and might synergize with the recep-
tor activator of nuclear factor kappa-B ligand (RANKL) to 
induce osteoclastic bone resorption [49]. Activated T and B 
cells serve as major sources of RANKL and TNF in inflam-
matory states [49]. In murine macrophage cells, 3a/X1, an 
accessory protein of SARS-CoV, promoted osteoclastogen-
esis by upregulating TNF-α [50]. From a different point 
of view, SARS-CoV-2 infection might be harmful to bone 
metabolism. The use of corticosteroids for the treatment of 
patients with COVID-19 is likely to have detrimental effects 
on bone health [51]. Increased numbers of vertebral frac-
tures caused by vitamin D deficiency in such patients exac-
erbate the clinical outcomes [52]. In this regard, the role of 
vitamin D should be also evaluated from osteo-metabolic 
perspectives in patients with COVID-19.

2.2  Association of vitamin D with inflammation

SARS-CoV-2 infection elicits local and systemic inflam-
matory responses in humans [53]. Hyperinflammation, 
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accompanied by an excessive immune response, induces 
pyroptosis, tissue damage, and SIRS in patients with 
COVID-19 [18]. When SARS-CoV-2 infects the lungs, it 
causes alveolar epithelial cell death, endothelial disruption, 
increased lung permeability, and alveolar edema, and can 
lead to acute respiratory distress syndrome (ARDS) and 
multiorgan failure [54]. After SARS-CoV-2 infection, recog-
nition of the virus by pattern-recognition receptors, such as 
TLRs, induces the production of proinflammatory cytokines 
such as IL-6, IL-12, IFN-γ, and TNF-α [53, 55]. Of these, 
elevations of IL-6 and TNF-α levels have been associated 
with hyperinflammatory status, procoagulant profiles, and 
worse disease severity in patients with COVID-19 [42].

An association of vitamin D deficiency with inflamma-
tion in patients with COVID-19 has been reported. In a pro-
spective study of 154 COVID-19 patients, serum 25(OH)D 
concentrations were significantly lower in patients requiring 
ICU admission than in asymptomatic patients [56]. Inflam-
matory responses, along with IL-6, TNF-α, and ferritin 
levels, were increased in COVID-19 patients with serum 
25(OH)D < 20 ng/mL [56]. Large-scale data analysis shows 
a possible link between vitamin D deficiency and high fatal-
ity rates with COVID-19 across countries, thereby suggest-
ing the role of vitamin D in preventing hyperinflammation 
[57].

Vitamin D has been reported to have anti-inflammatory 
effects. In a systematic review of human-derived immune 
cell studies, vitamin D3, including 1,25(OH)2D3 used in 
most of the studies as well as 25(OH)D3, reduced the lev-
els of inflammatory cytokines and reactive oxygen species 
(ROS) [58]. In vitro studies showed that when the mono-
cyte and macrophages were preincubated with ≥ 30 ng/mL 
of 25(OH)D3, a significant inhibition of lipopolysaccha-
ride (LPS)-induced IL-6 mRNA expression was observed 
(P < 0.01), whereas there was no such inhibition when the 
cells were cultured with 15 ng/mL of 25(OH)D3. The active 
form of vitamin D, 1,25(OH)2D3, also significantly inhib-
ited LPS-induced IL-6 mRNA expression [59]. The degree 
of suppression of IL-6 mRNA expression by 30 ng/mL of 
25(OH)D3 was similar to that achieved with 0.04 ng/mL 
of 1,25(OH)2D3 [59]. Similar effects of 1,25(OH)2D3 were 
also observed in LPS-induced TNF-α mRNA expression 
[59]. Therefore, these data support observations that when a 
patient with COVID-19 is vitamin D sufficient, the morbid-
ity and mortality rates are lower, probably from the down-
regulated production of proinflammatory cytokines, while  
increasing the production of inhibitory cytokines in mono-
cytes and macrophages [59]. Genome- and transcriptome-
wide studies showed that 1,25(OH)2D3 exerted anti- 
inflammatory effects by modulation of prostaglandin, nuclear 
factor kappa-light-chain-enhancer of activated B cells (NF-
κB), and mitogen-activated protein kinase (MAPK) phos-
phatase 5 signaling pathways [60]. 1,25(OH)2D3 might 

reduce inflammation by promoting nitric oxide production, 
inhibiting ROS generation, and preventing endothelial cell 
dysfunction [61].

Dexamethasone is an anti-inflammatory agent that has 
demonstrated improved outcomes regarding mortality in 
patients with COVID-19 receiving respiratory support [62]. 
A structure–activity relationship of dexamethasone with 
SARS-CoV-2 spike protein has been unraveled recently; the 
binding of dexamethasone to the fatty acid binding site in 
the SARS-CoV-2 stabilizes the locked spike conformation, 
interfering with the angiotensin-converting enzyme 2 (ACE2) 
receptor binding [63]. As vitamin D and dexamethasone are 
structurally similar and share the same fatty acid binding site 
[63], vitamin D could be a potential adjuvant treatment for 
reducing inflammation, although careful assessment of who 
might benefit from this therapy is warranted.

2.3  Vitamin D and the RAAS

Dysregulation of the RAAS predisposes patients to severe 
COVID-19 after SARS-CoV2 infection [64]. Low circulat-
ing concentrations of 25(OH)D cause inappropriate activa-
tion of this system [65, 66]. This is linked to deterioration 
in the cardiovascular system, which is the main mechanism 
for mortality in patients with COVID-19 [67].

SARS-CoV-2 enters the human body by binding to 
ACE2, which serves as the host cell receptor. Upregulation 
of the angiotensin II/angiotensin type 1 receptor axis and 
downregulation of the angiotensin-(1–7)/Mas receptor or 
the ACE2 receptor axis can induce inflammation, oxidative 
stress, apoptosis, high blood pressure, vascular dysfunction, 
and cardiovascular remodeling in these patients [64, 68]. 
In a prospective cohort study conducted in Germany, low 
serum concentrations of both 25(OH)D and 1,25(OH)2D 
were found to be independently associated with increased 
RAAS activity in individuals who were referred for coronary 
angiography [69]. In mice, chronic vitamin D deficiency 
induced lung fibrosis through activation of the RAAS [70]. 
By contrast, administration of calcitriol (1,25(OH)2D3), the 
active metabolite of vitamin D, alleviated LPS-induced acute 
lung injury by regulating the RAAS in rats [21]. This also 
increased the expression of ACE2 [21]. Initially, there were 
concerns on whether increased expression of ACE2 might 
increase the risk of SARS-CoV-2 infection. However, studies 
now claim that expression of ACE2 upregulates the angio-
tensin-(1–7)/Mas receptor axis, which alleviates acute lung 
injury and ARDS during COVID-19. These findings sug-
gest that improvement in the circulating concentrations of 
25(OH)D and locally produced 1,25(OH)2D might have dif-
ferent effects depending on the stage of COVID-19, although 
the overall effects are considered beneficial [71]. Further 
studies are required to clarify the role of vitamin D in the 
RAAS among patients with COVID-19.
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2.4  Relationship between vitamin D and glucose 
homoeostasis

Increased severity of COVID-19 in patients with diabe-
tes mellitus (DM) has been reported [72]. Interacting with 
other risk factors, hyperglycemia might modulate immune 
and inflammatory responses, thus predisposing patients to 
severe COVID-19 and possible lethal outcomes [68]. Vita-
min D insufficiency, defined as a 25(OH)D concentration of 
20–29 ng/mL, is associated with impaired glucose homoeo-
stasis, an established risk factor for COVID-19 [73]. Several 
studies have reported that optimal vitamin D homoeostasis is 
essential for pancreatic β-cell function and insulin sensitivity 
[74–76]. 1,25(OH)2D3 and calcium regulate the transcrip-
tion of calcium transporter genes [77]. VDR gene suppression 
results in a decrease of intracellular  Ca2+ concentrations [78]. 
Thus, vitamin D deficiency/insufficiency is likely to contribute 
to impaired glycemic control by disturbing calcium balance 
[79]. In some mouse models, vitamin D deficiency inhibits 
insulin secretion, resulting in hyperglycemia [80, 81]. Clearly, 
ancillary analysis from The VITamin D and OmegA-3 TriaL 
(VITAL) [82] and future clinical trials of higher-dose vita-
min D supplementation are warranted to clarify any beneficial 
effects of vitamin D on the primary prevention of type 2 DM.

Vitamin D plays a role in controlling both gene tran-
scription and cell signaling pathways and alleviates the 
onset of insulin resistance, especially in adipose tissue 
[83]. Of note, pulmonary lipofibroblasts, such as adipo-
cytes and adipocyte-like cells, might play an important 
role in the pathogenic response to SARS-CoV-2 infec-
tion [84]. Expression of ACE2 is upregulated in the 
adipocytes of patients with DM, which renders adipose 
tissue a potential viral reservoir [68]. This may explain 
why patients with DM are at a high risk of contracting 
COVID-19 [68]. Furthermore, pulmonary lipofibroblasts 
located in the lung interstitium can transdifferentiate into 
myofibroblasts that play an integral part of pulmonary 
fibrosis [84]. An in vitro study reported that low con-
centrations of vitamin D was linked to adipocyte differ-
entiation by the MAPK signaling pathway [85]. Vitamin 
D acts to inhibit apoptosis of adipocytes by reducing 
expression of the mitochondrial uncoupling protein 2 
[86]. Mitochondrial dysfunction caused by vitamin D 
deficiency is particularly critical in debilitated conditions 
because it decreases adenosine triphosphate formation 
and increases ROS generation [87], which might be cru-
cial for COVID-19. In addition, vitamin D regulates the 
expression of adiponectin, which has insulin-sensitizing  
and anti-inflammatory actions [88]. Taken together, 
alterations in cellular and systemic systems caused by 
vitamin D deficiency might impair mitochondrial func-
tion, contributing to the progression and severity of 
COVID-19 [89].

Uncontrolled glycemic status at admission and during a 
hospital stay are associated with worse clinical outcomes in 
patients with COVID-19 [90–92]. In turn, COVID-19 pre-
disposes infected individuals to hyperglycemia [93]. Improv-
ing glycemic control in patients presenting with hypergly-
cemia with the assistance of vitamin D supplementation 
might help in reducing the risk of life-threatening metabolic 
complications.

2.5  Vitamin D and cardiovascular 
and thromboembolic risks

Vitamin D insufficiency is associated with increased car-
diovascular disease (CVD) and thromboembolic risks [94, 
95]. Animal and human studies suggest that serum 25(OH)
D concentrations are inversely correlated with the preva-
lence of hypertension [96, 97]. High serum concentrations 
of 25(OH)D are considered to suppress renin formation in 
juxtaglomerular cells [98]. We found that participants with 
low 25(OH)D concentrations had a higher risk of significant 
coronary artery stenosis (odds ratio (OR) 2.1 for 25(OH)D 
concentrations of 15–29.9 ng/mL and 3.1 for < 15 ng/mL 
vs. at least 30 ng/mL, respectively; both P < 0.05) [95]. Of 
note, patients with DM and low vitamin D concentrations, as 
defined by a 25(OH)D concentration of ≤ 20 ng/mL, showed 
a worse outcome after myocardial infarction [99]. One study 
found that both total 25(OH)D and its metabolites were asso-
ciated with cardiovascular risk factors in patients with type 
2 DM [94]. However, in the VITAL study, vitamin D sup-
plementation did not result in a lower incidence of adverse 
cardiovascular events than did placebo [100]. However, it 
should be noted that only 12.7% of the participants in the 
VITAL study were vitamin D deficient at baseline [101].

Of note, vitamin D deficiency/insufficiency is associated 
with an increased risk of stroke. The neuroprotective mecha-
nisms by which vitamin D operates to mitigate stroke onset 
and outcomes have yet to be fully elucidated. However, sev-
eral pathways, including the production of certain neuropro-
tective growth factors, reduction of arterial pressure through 
vasodilation, and inhibition of ROS, can be involved [102].

Thrombotic complications are a common and major cause 
of death among patients with COVID-19 [103]. Intriguingly, 
vitamin D is also involved in the regulation of thrombotic 
pathways, and vitamin D insufficiency/deficiency is associ-
ated with an increase in thrombotic episodes [104]. Clearly, 
the protective effect of vitamin D supplementation on throm-
bosis should be investigated.

2.6  Association between vitamin D and respiratory 
infection

In a study using the US National Health and Nutritional 
Examination Survey data, serum 25(OH)D concentrations 
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were inversely associated with recent respiratory tract infec-
tion [105]. This association seemed to be stronger in indi-
viduals with asthma and chronic obstructive pulmonary 
disease [105]. In a prospective cohort study, maintenance 
of serum 25(OH)D concentrations ≥ 38 ng/mL significantly 
reduced the incidence of acute viral respiratory tract infec-
tion in healthy individuals [106]. It has also been proposed 
that vitamin D deficiency might contribute to the devel-
opment of seasonal influenza [107]. Proposed pathogenic 
mechanisms triggered by SARS-CoV-2 infection, leading to 
severe morbidity and mortality, in individuals with vitamin 
D deficiency/insufficiency are shown in Fig. 1.

2.7  Efficacy of vitamin D supplementation 
against respiratory infection

Vitamin D supplementation might play a beneficial role 
in combatting respiratory infections. In school children, 
vitamin D supplementation during the winter showed 
a 42% reduction in the incidence of influenza A, with 
a decrease in acute exacerbations of asthma, compared 

with placebo [108]. A meta-analysis of RCTs with indi-
vidual participant data found that vitamin D supplemen-
tation reduced the risk of acute respiratory tract infec-
tion compared with placebo (adjusted OR 0.88; 95% CI 
0.81–0.96) [109]. These protective effects were greater 
in those with vitamin D concentrations < 25  nmol/L 
(10 ng/mL; adjusted OR 0.30; 95% CI 0.17–0.53) than 
in those with ≥ 25 nmol/L (adjusted OR 0.75; 95% CI 
0.80–1.20). A recent update of this meta-analysis, includ-
ing 46 RCTs (75,541 participants), also showed protec-
tive effects of vitamin D administration with daily doses 
of 400–1000 IU for up to 12 months on acute respira-
tory infections [110]. In patients with active pulmonary 
tuberculosis, vitamin D supplementation increased the 
culture conversion rates and improved radiographic find-
ings [111]. In another meta-analysis using individual 
participant data, vitamin D supplementation protected 
against acute respiratory infections, particularly in vita-
min D deficient individuals and those not receiving bolus 
doses [112]. In a meta-analysis of nine trials involving 
435 children and 658 adults, administration of vitamin 

Fig. 1  Proposed pathogenic mechanisms leading to severe COVID-
19  outcomes in individuals with vitamin D deficiency or insuffi-
ciency. ACE2, angiotensin-converting enzyme 2; COVID-19, corona-
virus disease 2019; SARS-CoV-2, severe acute respiratory syndrome 

coronavirus 2.  References for evidence: cytokine production [41]; 
immune modulation [18, 29]; inflammation [53]; blood glucose con-
centration [149]; renin and angiotensin II levels [64]; and thrombo-
embolic risk [104]
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D reduced both the risk of severe asthma exacerbation 
and healthcare use [113]. However, several RCTs have 
reported conflicting results. In healthy individuals, 
administration of vitamin D (100,000 IU monthly) did 
not reduce the incidence or severity of upper respiratory 
tract infection [114]. High-dose supplementation with 
vitamin D did not prevent acute respiratory infections 
in older adults [115] or pneumonia in infants [116]. In 
2021, the US Preventive Services Task Force reported 
that among community-dwelling populations with low 
vitamin D concentrations, treatment with vitamin D has 
no effect on mortality or the incidence of fractures, falls, 
depression, DM, CVD, cancer, or adverse events [117]. 
Overall, most but not all data support a role for vitamin D 
supplementation to prevent acute respiratory tract infec-
tions, especially in individuals with serum 25(OH)D con-
centrations < 10 ng/mL [110].

3  Effects of vitamin D supplementation 
on SARS‑CoV‑2 infection

The effects of vitamin D supplementation on acute respira-
tory tract infections, chronic lung disease, DM, and CVD are 
listed in Supplementary Table S1. Vitamin D deficiency is 
highly prevalent in patients hospitalized for COVID-19 [118]. 
Therefore, it is rational to anticipate the beneficial role of 
vitamin D supplementation in preventing this disease, reduc-
ing symptoms, or improving prognosis. Currently, more than 
50 interventional studies are registered at ClinicalTrial.gov 
to investigate the effect of vitamin D on COVID-19. Among 
them, a few have found promising results (Table 1). In a 
pilot RCT, including 76 patients hospitalized for COVID-
19, oral administration of high-dose calcifediol reduced 
ICU admissions. Concerns about the benefits of calcifediol 
administration have been raised because of imperfect blind-
ing and uneven distribution of confounders [119]. An RCT 
of the oral administration of vitamin D3 (cholecalciferol; 
60,000 IU daily), with a therapeutic target of serum 25(OH)
D > 50 ng/mL, found that it significantly induced negative 
conversions of SARS-CoV-2-RNA and caused a decrease in 
fibrinogen [17]. Two quasi-experimental studies showed that 
vitamin D supplementation during or in the preceding month 
of SARS-CoV-2 infections was associated with less severe 
outcomes, including mortality, in frail elderly patients with 
COVID-19 [120, 121]. An RCT that gave vitamin D supple-
ments to asymptomatic or mildly symptomatic patients with 
COVID-19 demonstrated amelioration of associated symp-
toms at day 14, although it did not significantly reduce the 
time for the negative conversion of the SARS-CoV-2 RNA 
virus [122]. In another RCT, a single high dose of vitamin D 
(200,000 IU) did not reduce hospital length of stay, mortality, 
ICU admission rates, or the need for mechanical ventilation 

in patients hospitalized for moderate-to-severe COVID-19 
[123]. A recent meta-analysis found that 25(OH)D concentra-
tions were weakly associated with COVID-19 severity when 
the threshold of 25(OH)D was set to 20 ng/mL [124]. In 
that study, thorough sensitivity analysis revealed a connec-
tion between a 25(OH)D concentration of < 30 ng/mL and 
increased mortality from COVID-19 [124].

Of note, we have conducted a meta-analysis with RCT 
data and found a positive impact of vitamin D supplemen-
tation on SARS-CoV-2 RNA positivity in asymptomatic 
or mildly symptomatic patients with COVID-19 [17, 122], 
but not in all-cause mortality or ICU admission in patients 
with moderate-to-severe COVID-19 [16, 125] (Fig. 2). The 
potential effects of optimum levels of vitamin D on critical 
pathways involved in the progress of COVID-19 are shown 
in Fig. 3.

4  Caveats in the interpretation of data 
on vitamin D and COVID‑19

The role of vitamin D in the prevention and treatment of 
COVID-19 remains controversial. Several points should 
be considered to clarify this issue. Associations between 
vitamin D deficiency and the risk of SARS-CoV-2 infec-
tion or severe COVID-19 have been found in epidemio-
logical studies [7, 56, 126–128], but several reports 
showed inconsistent results (Table 1). A retrospective 
study from the UK Biobank showed that both circulat-
ing 25(OH)D concentrations and vitamin D deficiency 
were not associated with the risk of COVID-19 [129]. 
In a retrospective case–control study, although 82.2% of 
hospitalized patients with COVID-19 had vitamin D defi-
ciency, no relationship was found between serum 25(OH)
D concentrations or vitamin D deficiency and severe 
outcomes [130]. A multicenter prospective cohort study 
showed that vitamin D deficient (25(OH)D < 10 mg/mL) 
patients hospitalized for moderate-to-severe COVID-19 
tended to have a  longer hospital stay compared with 
patients with higher 25(OH)D concentrations, with no 
significant association with invasive mechanical venti-
lation or mortality rates [131]. However, most of these 
studies used historic 25(OH)D measurements or did not 
evaluate vitamin D status at the time of SARS-CoV-2 
infection. Moreover, unmeasured or residual confounders 
might influence vitamin D deficiency, as independent 
risk factors for COVID-19.

One RCT showed that oral administration of a single 
high dose of vitamin D after diagnosis of COVID-19 did 
not reduce the hospital length of stay or improve clinical 
outcomes in hospitalized patients with moderate-to-severe 
COVID-19 [123]. This observation is not unexpected 
because the virus takes hold and initiates its damaging 
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consequences on the respiratory epithelium and an exag-
gerated immune response, leading to a cytokine storm [123]. 
A recent Mendelian randomization study also failed to show 
the protective role of vitamin D supplementation in terms of 
COVID-19 susceptibility [132]. Thus, the evidence is very 
limited on the role of vitamin D treatment and how it can 
be involved in preventing or mitigating the development of 
COVID-19 and its clinical outcomes.

Studies linking vitamin D status with the degree of 
SARS-CoV-2 infectivity have suggested a significant 
inverse relationship between them, along with the modu-
lation of the immune system. Although there are some 
reports that do not advocate vitamin D supplementation 
over placebo [100, 133–135], it would be prudent to cor-
rect vitamin D deficiency/insufficiency not only in patients 
with COVID-19 but in all individuals to reduce the risk 
for many acute and chronic illnesses.

Despite possible synergistic effects on immunomodu-
lation and anti-inflammation [136, 137], the relationship 

between vitamin D and COVID-19 therapies, such as rem-
desivir, monoclonal antibodies (casirivimab/imdevimab, 
sotrovimab, and bamlanivimab/etesevimab), and immune 
modulators (baricitinib and tocilizumab), has not yet been 
evaluated (see https:// www. idsoc iety. org/ pract ice- guide line/ 
covid- 19- guide line- treat ment- and- manag ement/. Accessed 
24 November 2021). Medications, such as dexamethasone, 
can complicate the effects of vitamin D supplementation in 
patients with COVID-19 [138]. Whether improving vitamin 
D status in symptomatic and asymptomatic patients with 
COVID-19 reduces the risk for long-term sequelae from 
COVID-19 (long COVID or post-acute COVID syndrome) 
also remains unknown.

COVID-19 vaccination programs have been initiated 
widely [139]. Interestingly, vitamin D supplementation 
promoted TGF-β levels in response to influenza vaccina-
tion in elderly individuals with vitamin D deficiency [140]. 
These effects were accompanied by changes in the degree 
of lymphocyte polarization towards a tolerogenic immune 

Fig. 2  The effects of vitamin D supplementation on (A) SARS-CoV-2 
RNA positivity in asymptomatic or mildly symptomatic patients with 
COVID-19 [17, 122] and  (B) all-cause mortality [16, 125] or (C) 
ICU admission [16, 125]  in moderate-to-severe COVID-19 patients. 

COVID-19, coronavirus disease 2019;  SARS-CoV-2, severe acute 
respiratory syndrome coronavirus 2; CI, confidence interval; ICU, 
intensive care unit; M-H, Mantel–Haenszel method
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response [140]. Improvement in vitamin D status might 
also enhance immunity associated with vaccination [29]. 
Thus, vitamin D status might affect the immune response 
to vaccines against COVID-19. Further studies regarding 
vitamin D status and vaccination efficacy are warranted.

5  Practical considerations in vitamin D 
supplementation against COVID‑19

To date, there are no consensus guidelines suggesting an 
adequate concentration of serum 25(OH)D in prevent-
ing COVID-19 or in reducing its morbidity and mortality. 
However, based on the available data, it is prudent to aim at 

vitamin D sufficiency with a serum concentration of 25(OH)
D of at least 30 ng/mL with a preferred range of 40–60 ng/
mL as recommended by the Endocrine Society’s Practice 
Guidelines on Vitamin D [1].

In modern societies, it is difficult to obtain an ade-
quate amount of vitamin D from sun exposure daily. It has 
been reported that a normal weight adult in a bathing suit 
exposed to one minimal erythema dose (which is defined 
as the amount of sunlight that causes a slight pinkness to 
skin in 24 hours) produces an amount of vitamin D that 
is equivalent to ingesting between 10,000 and 20,000 IU 
[141]. Time of day, season, latitude, weather conditions, 
altitude, and skin pigmentation all influence the effec-
tiveness of the sun in producing vitamin D in the skin. 

Fig. 3  Potential effects of optimum levels of vitamin D on critical 
pathways involved in the progress of COVID-19. COVID-19, coro-
navirus disease 2019;  IL-6, interleukin-6; Th1, type 1 helper T cell; 
Th2, type 2 helper T cell; TNF-α, tumor necrosis factor-α. References 

for evidence: antimicrobial peptides [36]; T cell responses [43]; apop-
tosis of infected respiratory epithelial cells [150]; and inflammatory 
cytokines [58]
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Similarly, proper sunscreen with a sun protection factor 
of 30 reduces the efficiency of sun exposure to produce 
vitamin D in the skin by more than 97% [141]. The pre-
ventive measures against the COVID-19 outbreak imple-
mented in many countries include recommending social 
distancing, telecommuting, remote class activities, and 
closure of exercise facilities. These measures are likely 
to contribute to vitamin D deficiency/insufficiency in the 
general public.

To prevent vitamin D deficiency, we propose following 
the Endocrine Society’s Practice Guidelines on Vitamin 
D [1]. To treat vitamin D deficiency, 50,000 IU of weekly 
vitamin D (equivalent to ~ 6,600 IU daily) for 8 weeks was 
shown to be effective in raising serum 25(OH)D concentra-
tions above 30 ng/mL without any untoward toxicity [142]. 
In the Short Term, High-Dose Vitamin D Supplementation 
for COVID-19 (SHADE) study, an RCT in which 60,000 IU 
of oral vitamin D3 was provided in the intervention arm, 
75% of the patients with COVID-19 achieved a 25(OH)D 
concentration of > 50 ng/mL by day 14 [17]. In that study, 
fibrinogen levels in patients who attained this status were 
significantly lower than in those with vitamin D deficiency, 
implying that adequate serum 25(OH)D concentrations 
might exert antithrombotic effects.

To maintain vitamin D sufficiency, the Endocrine 
Society recommends 400–1,000, 600–1,000, and 
1,500–2,000 IU of vitamin D2 or vitamin D3 daily for 
infants aged up to 1 year, children, and adults aged ≥ 18 
years, respectively [1]. For those patients hospitalized 
with moderate COVID-19, rapid augmentation with 
25(OH)D is imperative when the patient is found to be 
vitamin D deficient or insufficient. This can be achieved 
by giving pharmacological doses of vitamin D in the 
range of 50,000–100,000 IU on admission. It has been 
demonstrated that 50,000 IU of vitamin D given once 
every 2 weeks (equivalent to approximately 3,300  IU 
daily) is effective for up to 6 years in maintaining circu-
lating concentrations of 25(OH)D in the preferred range 
of 40–60 ng/mL [1]. However, obese adults need 2–3 
times more vitamin D to satisfy their requirement because 
of the dilutional effect of the fat-soluble vitamin D in 
the large body fat reservoir. Under such circumstances, 
we advocate a loading dose of 10,000 IU, followed by a 
maintenance dosage of 3,200–4,000 IU daily as used in an 
ongoing trial of Vitamin D for COVID-19 (VIVID) [143].

Oral vitamin D supplementation is generally preferred 
to intramuscular injection. Intravenous administration of 
vitamin D is usually not recommended because of vari-
able bioavailability. However, parenteral administration 
of vitamin D might be necessary for severely affected 
patients admitted to an ICU. Considering the minimal 
harm and potential benefits of vitamin D supplementa-
tion, an oral dosage of 50,000 IU daily or an intramuscular 

dosage of 100,000–200,000 IU daily could prove advanta-
geous. This recommendation of the oral dosage is based 
on a prospective study that demonstrated that administra-
tion of 50,000 IU of vitamin D for 10 days effectively 
and rapidly normalized serum 25(OH)D concentra-
tions in vitamin D deficient individuals without notable 
adverse events [144]. A systematic review suggested that 
200,000–600,000 IU as a single oral dose was effective in 
raising circulating concentrations of 25(OH)D to > 30 ng/
mL [145]. Transient hypercalciuria was observed in some 
patients who received 600,000 IU, but no other untoward 
toxicity was observed at any of these doses [145].

We do not recommend giving patients 1,25(OH)2D3 
(calcitriol) to treat vitamin D deficiency. Not only does 
this hormone have a very short half-life (~ 4 h), but it can 
cause a marked increase in intestinal calcium absorption, 
resulting in transient hypercalciuria and hypercalcemia. 
Animal studies have also demonstrated that 1,25(OH)2D3 
can cause vascular calcification [146, 147]. The dosing 
interval might be critical in vitamin D supplementation 
for patients with COVID-19. A systematic review and 
meta-analysis of individual participant data from 25 RCTs 
concluded that vitamin D supplementation was safe and 
provided modest protection against acute respiratory 
tract infections (adjusted OR 0.88; 95% CI 0.81–0.96) 
[109]. Notably, a subgroup analysis showed that benefi-
cial effects were observed in patients receiving daily or 
weekly doses (adjusted OR 0.81; 95% CI 0.72–0.91), but 
not in those receiving a single bolus dose (adjusted OR 
0.97; 95% CI 0.86–1.10). These findings were consist-
ently observed in the recently published update of this 
study [110].

6  Conclusions

There is now substantial evidence suggesting a significant 
association between vitamin D insufficiency/deficiency 
and COVID-19 susceptibility and its severity. Several 
RCTs have suggested the beneficial effects of vitamin D 
supplementation on ameliorating respiratory infections 
and COVID-19, although its efficacy was rather modest. 
Targeting the host’s metabolism might be a viable strat-
egy to protect against pathogenic signals induced during 
SARS-CoV-2 infection and to limit tissue susceptibility 
to damage signals [148]. Based on this evidence, it is 
advisable to avoid vitamin D deficiency in the general 
population to maximize innate and adaptive immunity 
[19] and prevent adverse cardiovascular outcomes [27], 
particularly during the COVID-19 pandemic. Current 
evidence suggests that taking a vitamin D supplement at 
doses recommended by the Endocrine Society to maintain 
a serum concentration of 25(OH)D of at least 30 ng/mL 
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can help reduce the risk of SARS-CoV-2 infection and its 
severe outcomes, including mortality (Fig. 4). Ongoing 
well-designed interventional studies should provide con-
clusive information on the effects of vitamin D supple-
mentation on the prevention and treatment of COVID-19 
(Supplementary Table S2).
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