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Abstract
In this work, we show that intramolecular hydrogen bonding can be used to stabilize tri-coordinated phosphane-gold(I) com-
plexes. Two molecular structures of 2-(diphenylphosphino)benzoic acid (L) coordinated to a gold(I) atom were determined 
by single-crystal X-ray diffraction. The linear L–Au–Br shows a standard linear coordination and dimerizes via hydrogen 
bonds of the carboxylic acid. Upon addition of two additional phosphane ligands the complex  [L3Au]X is formed which is 
stabilized by three intramolecular –C(O)O–H…X hydrogen bonds as proven by the X-ray structure of the respective chlorido-
complex. X-ray powder diffractograms suggest the same structure also for  X– =  Br– and  I–.

Graphic abstract

Keywords Gold complexes · Crystal structure · Tri-coordinate gold(I) · Hydrogen bonds

Introduction

The structural chemistry of gold(I) complexes is dominated 
by a linear coordination, although higher coordination 
numbers are not particularly rare [1–4]. Interestingly, for 

isoelectronic cations like Ag(I), Pt(0), or Hg(II) the prefer-
ence for a linear coordination is much weaker and they usu-
ally form complexes with coordination numbers higher than 
two. Due to a possible formation of aurophilic interactions 
a huge structural diversity is observed for various types of 
ligands in their gold(I) complexes. Especially well investi-
gated are phosphane complexes of gold(I) for a variety of 
reasons: (i) they are easy to prepare, (ii) a wide variety of 
structural diverse phosphanes are commercial available, (iii) 
they are relatively stable under ambient condition, although 
sometimes light sensitive, (iv) with 31P NMR spectroscopy, 
a very convenient and sensitive method for a fast and effi-
cient characterisation is available, (v) gold(I) phosphane 
complexes have been proven to be very useful in many dif-
ferent applications and can be found as luminescent material, 
catalyst, or pharmaceutical active agent [5–14].

However, there are surprising few systematic struc-
tural studies on the extension of the coordination sphere of 
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mononuclear gold(I) complexes beyond the linear geometry. 
By adding additional phosphane ligands  R3P to complexes 
of the type  R3P–Au–X (X = mostly anionic ligand, e.g. hal-
ides or pseudohalides), different coordination environments 
are conceivable and have been reported. For a P:Au ration 
of 2:1, either the distorted trigonal-planar and neutral form 
 (R3P)2AuX or the ionic form [(R3P)2Au]X are known. In 
the latter case, the gold atom is often in a linear, sometimes 
more or less distorted environment with the halide non- or 
weakly bonded [15–22]. The neutral form is often found for 
rigid bidentate phosphanes like 1,2-bis(diphenylphosphino)
carborane or 1,2-bis(diphenylphosphino)benzene and have 
the form (P^P)AuCl [23–27].

The ratios 3:1 and 4:1 is often but not exclusively found 
for X = weakly coordinating anions and these compounds 
contain a trigonal-planar [(R3P)3Au]+ or tetrahedral 
[(R3P)4Au]+ coordinated cation, respectively [12, 28–30]. 
The latter is also the highest coordination number found for 
phosphane-gold(I) complexes but very rare for monoden-
tate phosphanes [31–33]. Seldom, neutral tetrahedral spe-
cies are found  (R3P)3AuX (X = halide) [34–37]. Again, rigid 
bidentate phosphane ligands facilitate higher coordination 
numbers. In these cases, several complex cations of the 
form [(P^P)AuL]+ (L = phosphane or carbene ligand) and 
[(P^P)2Au]+ have been reported [38–43].

Mononuclear, tri-coordinated gold(I) cations are interest-
ing as they often feature phosphorescence based on mainly 
ligand field excited states [44–46]. Due to Jahn–Teller dis-
tortion, these complexes feature T-shape geometries in the 
excited state [47]. This strong distortion is also the reason 
for the huge Stokes shift, broad and unstructured emission 
band and the fact that luminescence is often relatively weak 
in solution or only observed at cryogenic temperature [48]. 
It should be mentioned that there are also several exam-
ples of bidentate phosphane ligands which form dinuclear 
gold(I) complexes with short  Au…Au distances. However, 
such phosphorescence is based on aurophilic interactions 
and also observable at room temperature [49].

For monodentate phosphanes steric and electronic prop-
erties seem to subtly influence the stability of gold(I) com-
plexes with higher coordination numbers [50]. In the litera-
ture, the complete series of  (Ph3P)nAuX complexes (with 
n = 1–3, X = anion) is described whereas there are no reports 
on the existence of other, even very similar phosphanes 
which would form the whole set of possible complexes [45, 
51]. Taking the dynamic behaviour of gold(I) complexes 
in solution into account, the polarity of the solvent might 
also play a crucial role as the formation of ionic or neu-
tral complexes are sometimes determined by the polarity of 
the solvent [52, 53]. Besides sterics, it had been reasoned 
that higher coordination numbers could be established with 
(moderate) electron-poor ligands and indeed several gold(I) 
complexes bearing such phosphane ligands have been 

reported [29, 31, 36, 37]. This observation is conform with 
the fact that the less electron-donating  Ph3E (E = As, Sb) 
readily form the respective gold complexes [(Ph3E)4Au]BF4 
[54]. However, there are also examples of electron-donating 
phosphanes forming highly coordinated gold(I) atoms [28]. 
In this contribution, we would like to introduce a concept 
to stabilize mononuclear, tri-coordinate gold(I) complexes 
via E–H…X (E = O, N) interactions. A previously reported 
example is a complex, where an amide N–H functions as 
hydrogen-bond donor to the coordinated chloride facilitat-
ing tri-coordination of the form  (Ph2RP)2AuCl (R = o-tri-
fluoroacetanilide) [55]. An extensive hydrogen-bond net-
work was also found in the tetrahedral gold(I) complex 
bearing 1,3,5-triaza-7-phosphaadamantane [31]. Similar, 
the tri-coordinated gold(I) complex bearing the trisulfonated 
triphenylphosphane is stabilized via an excessive network 
between the sulfonate groups and  Cs+ counterions [29].

Results and discussion

Synthesis

Reaction of 2-(diphenylphosphino)benzoic acid, 
 Ph2(o-BzOH)P, with equimolar amounts of (tht)AuCl 
(tht = tetrahydrothiophene) leads to the formation of 
2-(diphenylphosphino)benzoic acid gold(I) chloride, 
 Ph2(o-BzOH)PAuCl, 1-Cl. It should be mentioned that vari-
ous gold(I) complexes bearing a diphenylphosphino-benzoic 
acid—both ortho and para—have been reported, among 
them also 1-Cl [56–59]. Through metathesis with KBr and 
KI the bromido and iodido congener 1-Br and 1-I are easily 
accessible. Upon addition of two further equivalents of the 
phosphane ligand, [Au(PPh2(o-BzOH))3]X (X = Cl, Br, I), 
2-X, is formed (Fig. 1). 

NMR spectroscopy

Due to the low solubility of the tri-coordinate gold(I) 
complexes 2-X, a thorough characterization by NMR 
spectroscopy was only possible for 1-X. Nevertheless, 
we conducted 31P{1H} NMR studies to get some basic 
information by adding different equivalents of the phos-
phane ligand to solutions of 1-X in  CDCl3 (see Sup-
porting Information, Fig. S1). The 31P NMR shift of the 
free ligand is at − 4.1 ppm. Upon adding (tht)AuCl in 
equimolar amounts, the peak is shifted to 36.1 ppm for 
1-Cl. For 1-Br and 1-I the peaks can be found at 38.3 and 
42.5 ppm, respectively. An additional equivalent of the 
phosphane ligand gives a very broad signals at ~ 45 ppm, 
the respective peaks of for the bromide (~ 42.5 ppm) and 
iodide (~ 39 ppm) are slightly sharper. These observa-
tions are indicative for a dynamic behaviour of the present 
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gold(I) species, presumably due to an equilibrium between 
the neutral tri- and ionic di-coordinated form according 
to  [AuL2X] ⇄  [AuL2]++  X– [L =  PPh2(o-BzOH)]. After 
the addition of the third equivalent of the ligand, the 31P 
NMR signals either almost vanish (for 2-Br and 2-I, both 
at ~ 41  ppm) or have a low intensity (2-Cl, ~ 43  ppm) 
reflecting the low solubility of the complexes. Indeed, 
already with the addition of the second equivalent, some 
white precipitate forms. These observations are indicative 
for a lower solubility of the 2-Br/2-I compared to 2-Cl, 
which might be the reason for the unsuccessful attempts 
of growing single crystals of all prepared complexes (vide 
infra). Interestingly, upon addition of an excess of the 
ligand to 2-Cl, not only the peak of the complex, but also 
the free ligands are broad possible due to an exchange 
between bound and free phosphane ligands.

Structural studies

Crystals suitable for single-crystal X-ray diffraction analy-
sis of 2-(diphenylphosphino)benzoic acid gold(I) bromide, 
1-Br, could be obtained by slow gas diffusion of n-pentane 
into a concentrated solution of 1-Br in DCM (Fig.  2). 
The compound crystallizes in the monoclinic space group 
P21/n. Crystals of chlorido-complex contains one molecule 
of  CHCl3 [59], hence 1-Cl and 1-Br are not isostructural. 
However, the arrangement of the molecules is very similar 
in both crystals: in their crystals the complexes dimerize via 
hydrogen bonds between the carboxylic groups (Fig. 2). The 
O⋯O distance of two adjacent gold complexes is 2.686(3) Å, 
which is typical for O–H⋯O of hydrogen bonded carboxylic 
acid groups [60, 61]. The gold atom is linearly coordinated 
with an angle Br1–Au1–P1 of 175.38(2)°. The distance 

Fig. 1  Reaction scheme for 
the synthesis of mono (a) 
and trifold (b) coordinate 
Au(I) complexes bearing the 
diphenylphosphino-benzoic acid 
ligand (X = Cl, Br, I)

(a)

(b)

Fig. 2  Left: molecular structure 
of 2-(diphenylphosphino)ben-
zoic acid gold(I) bromide, 1-Br 
(H omitted for clarity); right: 
dimerization of 1-Br in the 
solid state via hydrogen bonds. 
Selected bond lengths in Å and 
angles in °: Au1–Br1 2.3957(4), 
Au1–P1 2.247(1), P1–C1 
1.825(3), P1–C8 1.817(3), 
P1–C14 1.815(3), Br1–Au1–
P1 175.38(2), Au1–P1–C1 
119.8(1), Au1–P1–C8 108.7(1), 
Au1–P1–C14 110.9(1), O1–
C13–O2 124.7(3)
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Au1–P1 is 2.247(1) Å and only slightly shorter than that of 
the chlorido congener {2.26(1) Å [59]}. The Au1–Br1 bond 
length is 2.3957(4) Å and typical for  R3P–Au–Br complexes 
[62, 63]. Contrary to the para-substituted homologue, there 
are no aurophilic interactions present [64]. The shortest 
Au–Au distance of 7.431(1) Å is far beyond the aurophilic-
ity limit of ~ 3.5 Å [65]. 

In the course of the synthetic work, also a few crystals 
of the complex [Au(PPh2(o-BzOH))2I] could be isolated, 
however, we were not able to synthesis this compound in 
pure form. This is somewhat surprising as the homologue 
chlorido-complex is known [56]. Unfortunately, the crystals 
contain solvent molecules which could not be modelled sat-
isfactorily and thus lead to poor structural refinement data. 
For the sake of completeness, we have added this structure 
to the supporting information but will not further discuss it 
here (Fig. S2 + Table S1).

Complex 2-Cl crystallizes in the cubic space group Pa
-

3 . 
The asymmetric unit consist of one third of the molecule. 
The gold atom is coordinated by three phosphorus atoms 
of the phosphane ligands in trigonal-planar arrangement 
with a C3-axis passing through the gold and chlorine atoms. 
Therefore, there is only one Au1–P1 distance with 2.412(2) 
Å, which is considerably longer than those of 1-Br. The 
angle P1–Au1–P1 is 119.57(1)° and sums up to 358.71°. 
The carboxylic acid groups are oriented towards the C3-axis. 
This arrangement leads to intense hydrogen bonding of the 
carboxylic acid proton towards the chloride anion locking it 

in their center (Fig. 3). The O–Cl distance of the O–H…Cl 
group is 3.108 Å indicative for moderate hydrogen bonds 
[60, 61]. The previously reported complex of the form 
 (Ph2RP)2AuCl (with R = o-trifluoroacetanilide) feature com-
parable N–H…Cl hydrogen bonds (N–Cl ~ 3.2 Å), which sta-
bilize the trigonal-planar coordination environment around 
the Au(I) atom [55]. Thus, the utilization of hydrogen bonds 
might be regarded as a general synthetic strategy to stabilize 
otherwise not isolable, tri-coordinated Au(I) complexes. 

Unfortunately, single crystals suitable for structural 
analysis could only be obtained for the chlorido compound. 
Although numerous attempts to grow crystals for the bro-
mido and iodido congeners were undertaken, only pow-
ders could be isolated. The reason is their general very low 
solubility in common organic solvents. Immediately after 
addition of the third equivalent of the phosphane ligand, the 
complexes precipitate out of solution. Various attempts with 
different solvents, concentrations, and crystallization condi-
tions always lead to micro-crystalline samples. Hence, pow-
der X-ray diffractograms were recorded for comparing the 
samples and ascertain whether they crystalize isostructural. 
The single-crystal structure data of 2-Cl are used to simu-
late its powder pattern. As depicted in Fig. 4, the diffraction 
patterns are similar for all three compounds and also match 
the simulated pattern of 2-Cl. The most intense peaks are 
generated from the (200), (210), and (211) planes. Another 
characteristic pattern arises from the (510) and (520) planes. 
Therefore, it can be inferred that the bromido and iodido 
complexes are isostructural to the chlorido congener featur-
ing a tri-coordinated Au(I) atom.

Although tri-coordinate phosphane-gold(I) complexes 
often feature photo-luminescence, we could not detect any 
light emission upon excitation with UV-light.

Fig. 3  Molecular structure of 2-Cl (with exception of carboxylic acid 
all other H atoms omitted for clarity). Selected bond lengths in Å and 
angles in °: Au1–P1, P1–C7 1.81(1), O1–H1 0.821,  O…Cl 3.108, P1–
Au1–P1i 119.57(1)

Fig. 4  PXRD of 2-Cl, 2-Br and 2-I. Top: simulated pattern of 2-Cl 
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Conclusion

In this work, we suggest a new concept to stabilize coordi-
nation numbers larger than two of gold(I) in its phosphane 
complexes beyond the dominating standard linear coordi-
nation. Using intramolecular hydrogen bonds, it is possible 
to stabilize a complex of the form  [L3Au]X (L = 2-(diphe-
nylphosphino)benzoic acid, X = Cl, Br, I). The molecu-
lar structure of  [L3Au]Cl could be determined by single-
crystal X-ray diffraction, whereas those of X = Br and I are 
deduced by a similar pattern of powder-diffractograms. 
We suggest intramolecular hydrogen bonds for facilitat-
ing tri-coordination of sometimes difficult to stabilize tri-
coordinated gold(I) atoms. Further synthetic work has to 
prove the scope of this concept, particularly for complexes 
which are better soluble than 2-X. Formation of 2-X is 
clearly favoured by the low solubility of these complexes 
whereas in solution, both coordinated ligands as well as 
intramolecular hydrogen bonds would have to compete 
with possibly interfering solvent molecules.

Experimental

All commercially available solvents and starting materials 
were used without further purification. 2-(Diphenylphos-
phino)benzoic acid was purchased from abcr. (tht)AuCl 
(tht = tetrahydrothiophene) was prepared according to a 
reported procedure [66].

NMR spectra were recorded on a Bruker 300 MHz 
Avance III spectrometer. For all measurements, deuter-
ated solvents were used. Chemical shifts are related to the 
residual solvent signal and are stated to the δ-convention 
in ppm. HR-MS measurements were carried out on an Agi-
lent 6520 QTOF mass spectrometer with an ESI source. 
X-ray powder diffraction was recorded on a Philips X’pert 
Pro diffractometer operated in Bragg–Brentano geometry 
and employing  CuKα radiation (λ = 1.541874  Å). The 
patterns were acquired using a step size of 0.008° with a 
counting time of 60 s per step; the samples were rotated 
with 15 rotations per min.

Single-crystal structure analysis was carried out at 
room temperature on a Bruker D8 Quest ECO diffrac-
tometer with graphite-monochromated  MoKα radiation 
(λ = 0.71073 Å). The structures were solved by direct 
methods (SHELXS-97 [67]) and refined by full-matrix 
least-squares on F2 {SHELXL-2014/7 [68]}. The H atoms 
were calculated geometrically, and a riding model was 
applied in the refinement process. Crystallographic details 
can be found in Table 1 and S1. CCDC 2094495 (1-Br), 
2094497 (2-Cl), 2094497 ([Au(PPh2(o-BzOH))2I]), con-
tain supplementary crystallographic data for this paper. 
This information can be obtained free of charge via https:// 
www. ccdc. cam. ac. uk/ struc tures/

Chlorido‑[2‑(diphenylphosphino)benzoic acid]gold(I), 
(1‑Cl, C19H15AuClO2P) 1‑Cl  was prepared according to 
a modified literature method [56, 57]: (tht)AuCl (98.8 mg, 
0.308 mmol) was dissolved in 20  cm3 DCM and 2-(diphe-
nylphosphino)benzoic acid (91 mg, 0.30 mmol) was added and 
the mixture was stirred for 2 h at r.t.. Pentane was added until 
a white precipitate formed. Yield: 118 mg (71%); 1H NMR 
(300.13 MHz,  CDCl3): δ = 8.31 (m, 1H), 7.66 (m, 1H), 7.51 
(m, 11H), 6.96 (m, 1H) ppm; 13C{1H} NMR (75.47 MHz, 
 CDCl3): δ = 168.55 (s), 134.85 (d, J = 7.24 Hz), 134.07 (d, 
J = 15.13 Hz), 133.11 (d, J = 8.18 Hz), 132.89 (d, J = 9.54 Hz), 
132.83 (d, J = 7.08 Hz), 131.84 (s), 131.64 (d, J = 1.76 Hz), 
130.42 (s), 129.57 (s), 129.19 (d, J = 12.13 Hz) ppm; 31P{1H} 
(121.49 MHz,  CDCl3): δ = 35.97 (s) ppm; HRMS(ESI): m/z for 
[M +  Na]+ calculated 561.0056, found 561.0094.

Bromido‑[2‑(diphenylphosphino)benzoic acid]gold(I), 
(1‑Br, C19H15AuBrO2P) 1‑Cl  (17.6 mg, 32.7 µmol) was dis-
solved in 5  cm3 DCM. KBr (16.7 mg, 0.140 mmol) was 

Table 1  Crystal data and data collection and structure refinement 
details for 1-Br and 2-Cl 

1-Br 2-Cl

Empirical formula C19H15AuBrO2P C57H45AuClO6P3

Mr/g  mol−1 583.16 1151.26
Crystal size/mm3 0.29 × 0.10 × 0.05 0.46 × 0.34 × 0.08
Crystal system monoclinic cubic
Space group P21/n Pa

-

3

a/Å 15.3001(10) 21.4601(4)
b/Å 7.4332(4) 21.4601(4)
c/Å 17.4332(10) 21.4601(4)
α/° 90 90
β/° 114.829(1) 90
γ/° 90 90
V/Å3 1800.60(18) 9883.1(6)
ρcalcd./g  cm3 2.151 1.547
Z 4 8
μ(MoKα)/mm−1 10.49 3.18
T/K 296 296
Θ Range/° 2.9–26.3 2.7–23.4
Reflections collected 57,743 67,167
Unique reflections 3644 2409
Observed reflections I > 2σ(I) 3181 1447
Absorption correction Multi-scan Multi-scan
Tmin/Tmax 0.15/0.60 0.32/0.78
∆ρfin(max/min)/e Å−3 0.46, − 0.49 1.31, − 0.69
R1 [I ≥ 2σ(I)] 0.020 0.048
wR2 0.042 0.131
CCDC 2094495 2094497

https://www.ccdc.cam.ac.uk/structures/
https://www.ccdc.cam.ac.uk/structures/
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dissolved in 5  cm3 water. After combining both solutions, 
the reaction mixture was stirred for 2 h at r.t. Phases were 
separated and the organic phase was dried over anhydrous 
 Na2SO4. Evaporation of the solvent resulted a white solid. 
Yield: 17.4 mg (91%); 1H NMR (300.13 MHz,  CDCl3): 
δ = 8.30 (m, 1H), 7.56 (t, 3JHH = 7.56 Hz, 1H), 7.51 (m, 
11H), 6.96 (m, 1H) ppm; 13C{1H} NMR (75.47  MHz, 
 CDCl3): δ = 169.36 (s), 135.10 (d, J = 6.38 Hz), 134.15 (d, 
J = 14.27 Hz), 133.09 (s), 132.47 (s), 131.67 (s), 131.12 (s), 
130.32 (s), 129.38 (d, J = 12.12 Hz) ppm; HRMS(ESI): m/z 
for [M +  Na]+ calculated 604.9551, found 604.9593. Crystals 
suitable for single-crystal X-ray diffraction were obtained 
by slow gas-phase diffusion of pentane into a diluted DCM 
solution.

Iodido‑[2‑(diphenylphosphino)benzoic acid]gold(I), 
(1‑I, C19H15AuIO2P) 1‑Cl  (10.0 mg, 0.02 mmol) was dis-
solved in 5  cm3 DCM. KI (20 mg, 0.12 mmol) was dissolved 
in 5  cm3 water. After combining both solutions, the reaction 
mixture was stirred for 2 h at r.t. Phases were separated and 
the organic phase was dried over anhydrous  Na2SO4. Evapo-
ration of the solvent resulted in a white solid. Yield: 10.8 mg 
(91%); 1H NMR (300.13 MHz,  CDCl3): δ = 8.29 (m, 1H), 
7.65 (t, 3JHH = 7.73 Hz, 1H), 7.52 (m, 11H), 6.96 (m, 1H) 
ppm; 13C{1H} NMR (75.47 MHz,  CDCl3): δ = 168.94 (s), 
135.01 (d, J = 6.94 Hz), 134.17 (d, J = 15.13 Hz), 133.09 
(s), 132.47 (s), 131.67 (s), 131.66 (s), 130.35 (s), 129.37 (d, 
J = 11.98 Hz) ppm; 31P{1H} NMR (121.49 MHz,  CDCl3): 
δ = 42.5 (s) ppm; HRMS(ESI): m/z for [M +  Na]+ calculated 
652.9412, found 652.9468.

Chlorido ‑tr is[2‑(diphenylphosphino)b enzoic 
acid]gold(I), (2‑Cl, C57H45AuClO6P3) 1‑Cl  (118  mg, 
0.219 mmol) was dissolved in dry DCM and cooled and 
2-(diphenylphosphino)benzoic acid (134 mg, 0.437 mmol) 
was added to the solution and stirred for 2 h at r.t. The prod-
uct directly precipitated from the reaction solution. Filtra-
tion of the product resulted in a white solid. The product 
was dried in vacuum. Yield: 217 mg (86%). Due to the low 
solubility of the compound, no NMR and MS spectra could 
be recorded. Crystals suitable for single-crystal XRD were 
obtained by addition of excess amounts of the respective 
ligand to a slurry of 2-Cl in chloroform.

Bromido‑tris[2‑(diphenylphosphino)benzoic acid]
gold(I), (2‑Br, C57H45AuBrO6P3) 1‑Br  (98 mg, 0.17 mmol) 
was dissolved in chloroform and 2-(diphenylphosphino)ben-
zoic acid (104 mg, 0.340 mmol) was added. After a few 
minutes of stirring at r.t. the product precipitated directly 
from the reaction solution. Excess solution was decanted and 
the white powder was washed with chloroform. The product 
was dried in vacuum. Yield: 191 mg (95%). Due to the low 

solubility of the compound, no NMR and MS spectra could 
be recorded.

Iodido‑tris[2‑(diphenylphosphino)benzoic acid]gold(I), 
(2‑I, C57H45AuIO6P3) 1‑I  (95 mg, 0.15 mmol) was dis-
solved in chloroform and 2-(diphenylphosphino)benzoic 
acid (94 mg, 0.30 mmol) was added. After stirring for a 
few minutes, the product began to precipitate directly from 
the reaction solution. Excess solution was decanted and the 
white solid was washed with chloroform. The product was 
dried in vacuum. Yield: 175 mg (93%). Due to the low solu-
bility of the compound, no NMR and MS spectra could be 
recorded.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00706- 021- 02843-2.
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