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Abstract
The past decade has seen tremendous progress in understanding hepatitis C
virus (HCV) biology and its related disease, hepatitis C. Major advances in
characterizing viral replication have led to the development of direct-acting
anti-viral therapies that have considerably improved patient treatment outcome
and can even cure chronic infection. However, the high cost of these
treatments, their low barrier to viral resistance, and their inability to prevent
HCV-induced liver cancer, along with the absence of an effective HCV vaccine,
all underscore the need for continued efforts to understand the biology of this
virus. Moreover, beyond informing therapies, enhanced knowledge of HCV
biology is itself extremely valuable for understanding the biology of related
viruses, such as dengue virus, which is becoming a growing global health
concern. Major advances have been realized over the last few years in HCV
biology and pathogenesis, such as the discovery of the envelope glycoprotein
E2 core structure, the generation of the first mouse model with inheritable
susceptibility to HCV, and the characterization of virus-host interactions that
regulate viral replication or innate immunity. Here, we review the recent findings
that have significantly advanced our understanding of HCV and highlight the
major challenges that remain.
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Introduction
Hepatitis C virus (HCV) is a single-stranded, positive-sense RNA 
virus of the Flaviviridae family. Although the inability to culture 
primary HCV isolates in vitro seriously hampered HCV research 
for the 15 years following its isolation in 19891, the generation of 
relevant in vitro systems in the early 2000s offered the first oppor-
tunities to accurately characterize the HCV life cycle. Since then, 
considerable progress has been made to understand HCV biology 
through the generation of increasingly relevant cell culture systems 
and animal models. These advances recently reached a milestone by 
the generation of effective direct-acting anti-viral agents (DAAs)2 
able to cure HCV.
However, a large number of challenges remain to significantly 
decrease HCV spread on a global scale. Indeed, 130 to 150 million 
people worldwide are still chronically infected with HCV (World 
Health Organization), and treatments remain poorly accessi-
ble because of their high costs. Moreover, their low barrier to 
resistance-associated mutations combined with their inability to 
treat challenging patient groups, HCV-induced liver disease, and 
hepatocellular carcinoma (HCC) all underscore the need for novel, 
cost-effective DAAs3–6. Finally, a prophylactic or preventive HCV 
vaccine is still urgently needed to significantly impact HCV spread 
worldwide.
Overall, these challenges strongly highlight that our understanding 
of HCV and its related disease remains incomplete and that efforts 
need to be maintained to expand it. Here, we review the recent 
advances that have greatly contributed to improving our knowl-
edge of hepatitis C and HCV and highlight the fundamental and 
clinical challenges that still need to be faced by the HCV scientific  
community.

A. Hepatitis C virus life cycle
1. Toward a better understanding of the hepatitis C virus 
entry process
HCV enters into hepatocytes through a dynamic, multi-step process 
involving multiple cell host factors7. As the primary attachment of 
viral particles at the hepatocyte surface occurs through interactions 
with lipoprotein receptors, the association between HCV particles 
and lipoproteins is critical for initiating the first step of virus entry8. 
After primary attachment, HCV particles interact with the tet-
raspanin CD81 via the viral E2 glycoprotein9, which, along with E1, 
constitutes a heterodimer complex at the surface of viral particles7. 
E2 interaction with CD81 is thought to induce signaling pathways 
involving epidermal growth factor receptor (EGFR)10,11 and HRas12 
that together lead to the clustering of CD81-viral particle complexes 
with the tight junction protein claudin-1 (CLDN1)13,14. Although 
direct interaction between HCV particles and CLDN1 was not ini-
tially demonstrated, recent evidence supports such interactions15,16. 
Another tight junction protein, occludin (OCLN), is also critical 
for a late step of virus entry17,18, although its precise role during 
this process has not been clearly defined. CD81-CLDN1 clustering 
is thought to induce the internalization of viral particles through 
clathrin-dependent endocytosis19,20. The fusion of the viral particle 
and late endosome membranes, which is thought to be mediated by 
structural rearrangements of the E1E2 heterodimer complex, then 
results in the release of viral RNA into the cytosol.

Uncovering the spatio-temporal dynamics of hepatitis C virus entry. 
A considerable challenge in understanding HCV entry is accu-
rately capturing the spatio-temporal dynamics of this process, as 
it involves a considerable number of host factors and regulators, 
both extracellularly and intracellularly. The recent identification of 
additional factors important for virus entry has only complicated 
this problem. Among those additional factors are the Niemann-Pick 
C1-like 1 (NPC1L1) receptor21, the transferrin-1 receptor22, and 
even more recently, via a proteomic approach, the serum response 
factor-binding protein 1 (SRFBP1)23. Although these new factors are 
thought to be important for late steps of virus entry, for rearrange-
ment of lipoproteins within the viral particle, or for CD81-induced 
signaling pathways, their role in the spatio-temporal dynamics of 
virus entry still needs to be clearly defined.
The elusive hepatitis C virus fusion mechanism. In addition to viral 
entry dynamics, the HCV fusion process remains not fully under-
stood because of the absence of crystal structures of E1 and the E1E2 
protein complex. It was previously thought that E2 glycoproteins 
might harbor a class II fusion protein structure24, thus mediating the 
fusion between the viral and the endosomal membranes in a manner 
similar to flaviviruses. However, very recently, the structural resolu-
tion of the central core of the E2 protein25,26, E2core, revealed that 
E2 harbors a globular, non-extended structure that does not display 
any features of a class II fusion protein. In parallel, this finding has 
been strengthened by evidence that E1 might function as a fusion 
protein27–29, despite unusual N-terminal structural organization30. In 
the future, structural resolution of E1 and E1E2 complexes at pre- 
and post-fusion conformational states should unveil critical features 
of the fusion mechanism. Overall, this process would likely be 
unique in the Flaviviridae family and be mediated by a very origi-
nal, interdependent interplay between E1 and E2.

2. miR-122 and lipid metabolism: key regulators of viral 
replication and assembly
HCV RNA replication occurs in altered, endoplasmic reticulum 
(ER)-derived membrane structures known as the “membranous 
web” (MW). Such structures are known to be critical for RNA rep-
lication and have been observed both in vitro and ex vivo31–34.
The MW is a complex network of altered membrane structures, 
formed through the concerted action of several non-structural 
proteins34. Several lines of evidence suggest that double membrane 
vesicles (DMVs), which represent the major components of the 
MW, could represent the sites of viral RNA replication in infected 
cells. Indeed, the viral proteins NS3 and NS5A and the active viral 
replicase have been found in DMVs, along with vesicle-associated 
membrane protein-associated protein A and cholesterol, host fac-
tors critical for viral RNA replication34,35.
During replication, the RNA-dependent RNA polymerase NS5B 
ensures the production of newly synthetized positive-strand 
RNA31,36,37 following generation of negative-strand RNA. Recently, 
12 different structures of NS5B were crystallized during primed 
initiation or elongation of RNA synthesis, thus providing a unique 
look at the structural basis of HCV RNA replication and the inhibi-
tory mechanism of nucleot(s)ide-analog inhibitors38.
Regulation of hepatitis C virus replication by miR-122. One of 
the unique features of HCV replication is its requirement for the 
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liver-specific microRNA miR-122, which enhances translation and 
replication through binding to the 5′ non-coding region (NCR) of 
HCV RNA39,40. Beyond contributing to the restricted tissue tropism 
of HCV for the liver, miR-122, in concert with Ago2, stabilizes the 
viral RNA41 and prevents its decay by the exoribonuclease Xrn142. 
Recent research suggests a role for another exoribonuclease, Xrn2, 
in miR-122-mediated prevention of viral RNA decay for certain 
HCV genotypes43. However, Xrn2 restriction of HCV RNA replica-
tion is likely a marginal, indirect effect observed with only a few 
genotypes44.
Recently, several reports brought novel insights to the roles and 
impacts of miR-122 sequestration by HCV on viral replication 
and liver homeostasis. By reducing the amount of viral genomes 
engaged in translation, miR-122 was recently shown to increase 
the fraction of viral RNAs available for replication, thus enhancing 
RNA replication and protein synthesis45.
Another study recently reported that through the sequestration of 
miR-122, HCV RNA induces a global de-repression of miR-122 
targets over the human transcriptome46. The authors suggested 
that the miR-122 “sponge effect” by HCV RNA may contribute 
to unbalance liver homeostasis, hence favoring the development of 
liver cancers.
Lipid peroxidation as repressor of hepatitis C virus replication. 
Unlike other viruses, HCV is sensitive to oxidative membrane dam-
age, which usually occurs in stressed tissues. Lipid peroxidation 
affects the conformation of NS3-4A protease and NS5B, restricting 
HCV replication in cell culture and thus facilitating the long-term 
persistence of the virus within infected tissues47.
The inability of non-adapted HCV strains or patient isolates to rep-
licate in cell culture has strongly impacted HCV research over the 
last decades, thus limiting cell culture assays and interpretation to 
a single, non-adapted molecular clone, JFH-1. More importantly, 
the molecular mechanisms restricting replication of non-adapted 
strains in cell culture were unknown. Recently, a genome-wide 
gain-of-function screen found that the cytosolic lipid-binding protein 
SEC14L2 is an HCV host factor that allows detectable replication 
of diverse, non-cell culture-adapted HCV replicons and molecular 
clones in hepatoma cell lines which do not endogenously express 
SEC14L248. Interestingly, the effect of SEC14L2 on viral replica-
tion was indirect, caused by an enhancement of vitamin E-mediated 
inhibition of lipid peroxidation. The discovery of SEC14L2 opens 
new avenues for the generation of non-adapted HCV cell culture 
systems, which could shed light on previously unknown aspects of 
HCV biology and genetic diversity.
Novel insights into hepatitis C virus assembly. HCV particle 
assembly is a complex molecular process involving the recruitment 
of structural proteins and viral RNA at the assembly site, forma-
tion of the nucleocapsid, and the envelopment and maturation of 
the viral particle49. As this process involves a considerable number 
of viral factors, host proteins, and lipid components, the molecular 
mechanisms and factors regulating this process are still not fully 
characterized, limiting the design of DAAs targeting the late steps 
of the HCV life cycle.
p7 is a small, hydrophobic viral protein that associates as multimeric 
complexes to form ion channels essential for viral assembly and 
release50. Nevertheless, the precise molecular mechanism by which 
p7 regulates assembly still needs to be characterized. The recent 
structural resolution of the p7 ion channel has brought new insights 

into the potential mechanism of the action of p751. p7 displays an 
unusual funnel-like architecture as well as a mechanism of cation 
selection mediated by two pairs of amino acids. Overall, this struc-
ture provides a clearer basis for p7-mediated cation conductance 
and insights on developing channel activity inhibition strategies.
Recently, another interesting report demonstrated that HCV’s 
hijacking of host innate immune signaling pathways enhances viral 
assembly. Indeed, indirect activation of the IκB kinase-α (IKK-α), 
a component of the NF-κB signaling cascade, by the 3′ NCR of 
HCV can activate a transcriptional program, leading to the induc-
tion of lipogenic genes and increased formation of core-associated 
lipid droplets52. This provides a strong link between HCV-induced 
innate immune responses, lipid metabolism, and disturbance of 
liver lipid metabolism.

B. Hepatitis C virus humanized mice models: moving 
forward
Owing to the narrow host tropism of HCV, restricted to humans and 
chimpanzees, HCV-host interactions in vivo, HCV-induced patho-
genesis, and the development of anti-viral strategies have all been 
hindered by the lack of a tractable, cost-effective animal model for 
HCV infection53. As murine hepatocytes do not support HCV entry 
and replication, human liver chimeric mice have been a prominent 
model to study HCV infection in vivo over the past few decades54. 
However, this model is limited by donor-to-donor variability, high 
costs, and the immunodeficient background of the recipient mice. It 
was previously reported that CD81 and OCLN represent the mini-
mal set of human factors required for HCV uptake into mouse cells  
in vitro17. Recently, two successive studies reported the first geneti-
cally humanized mouse model through transient expression of human 
CD81 and OCLN or through stable expression of the four canonical 
HCV entry factors (i.e. CD81, SCARB1, CLDN1, and OCLN)55,56. 
Blunting of anti-viral signaling allowed low-level viral replication, 
de novo particle production, and completion of the viral life cycle 
in vivo55. In the future, such a model, as well as its future refinements, 
will be of considerable use to further dissect HCV infection in vivo 
and evaluate vaccine strategies.
Furthermore, an immunodeficient mouse co-engrafted with human 
hepatocytes and human hematopoietic stem cells was found to sup-
port HCV infection and develop T-cell-specific responses57. How-
ever, no viremia or B-cell responses could be observed, highlighting 
the improvements needed in this system. In the future, co-engrafted 
humanized mice able to mount improved immune responses will 
represent a unique platform for characterizing HCV infection  
in vivo, understanding critical immunological events regulating out-
come of infection, and evaluating vaccine candidates.

C. Immunity and pathogenesis
1. Recent insights into the front lines of defense against 
hepatitis C virus
Acute HCV infection is spontaneously cured in 20% to 30% of 
patients, whereas the great majority of them are unable to clear the 
virus and will develop a chronic infection in the face of an ongoing 
innate and adaptive immune response. However, the early immuno-
logical events regulating the outcome of infection are still poorly 
described.
Innate immune responses to hepatitis C virus and viral counter-
measures. The innate immune system represents the first line of 
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defense of host cells against viral infections58. The innate immune 
system detects viral infection largely through germline-encoded 
pattern recognition receptors (PRRs) such as Toll-like receptors 
(TLRs), the retinoic acid-inducible gene I-like receptors (RLRs), 
the nucleotide oligomerization domain-like receptors (NLRs), and 
cytosolic DNA sensors. Activation of these PRRs leads to the secre-
tion of interferons (IFNs), key cytokines responsible for the estab-
lishment of an anti-viral state in cells59.
During HCV infection, TLR3 recognizes HCV double-stranded 
RNA intermediates, thus inducing the production of inflammatory 
cytokines60. In parallel, RIG-I recognizes the poly-U/UC tract of the 
HCV 3′ untranslated region (UTR), hence inducing the production of 
IFNs61. However, recent evidence increasingly suggests that MDA-5 
is also an important inducer of IFN production in HCV-infected 
cells62–64. Single-nucleotide polymorphisms of MDA-5 have been 
found to strongly correlate with the resolution of HCV infection, 
arguing a role for MDA-5 in the natural course of HCV infection65.
It was conventionally thought that the plasmacytoid dendritic cells 
(pDCs), the main IFN producers of the immune system, were able 
to produce IFNs by recognizing infectious particles66. However, a 
recent report showed that viral RNA-containing exosomes secreted 
by HCV-infected cells are the major immuno-stimulatory inducer 
of IFN secretion by pDCs via a TLR7-dependent mechanism67. 
Exosomes also now appear to be an HCV propagation carrier, as 
it has been shown that exosome-associated viral RNA can induce 
a productive infectious cycle in non-infected hepatocytes68,69. How-
ever, in contrast to infection with viral particles, exosome-mediated 
infection is presumably less effective and thus raises the question of 
its biological significance in vivo70.
To overcome the host innate immune system, the HCV NS3-4A 
protease can cleave the host adaptor proteins mitochondrial 
anti-viral-signaling protein (MAVS) and TIR-domain-containing 
adapter-inducing IFN-β (TRIF), thus inhibiting the RIG-I like 
receptors and TLRs-mediated type I and type III IFN signaling 
pathways within infected cells71–73. Recently, HCV NS4B was 
reported to block IFN production by disrupting STING interaction 
with MAVS and TBK174,75. These findings shed new light on the 
molecular mechanisms underlying the persistence of HCV infection.
The control of hepatitis C virus infection by interferon λ .  In HCV-
infected patients, genetic variations in the IFNλ locus are associated 
with spontaneous viral clearance and type I IFN-based treatment 
success76–79. However, the molecular mechanisms underlying the 
close association between IFNλ polymorphisms and the clinical 
outcome of HCV infection remain poorly characterized.
A study recently highlighted an unsuspected molecular mecha-
nism associating IFNλ3 polymorphism with HCV repression 
of the innate anti-viral response. An IFNλ3 mRNA carrying an 
unfavorable polymorphism was highly susceptible to AU-rich 
element-mediated decay and to binding of HCV-induced micro-
RNAs, hence favoring repression of this IFNλ3 polymorphism80. 
Overall, this study provides a potential explanation of why particu-
lar IFNλ3 alleles are better regulators of HCV infection.
In another study, laser capture microdissection was used to isolate 
HCV-infected primary human hepatocytes displaying different 
IFNλ genotypes. Interestingly, hepatocytes from donors with clini-
cally less favorable IFNλ genotypes were more permissive to HCV 
infection and exhibited reduced anti-viral responses compared with 

cells from donors with favorable alleles81. Hence, this represents 
additional, strong evidence that IFNλ alleles can predict the HCV 
permissiveness and innate immune responses of a particular host 
genetic background.
Overall, all these findings highlight the importance of host genetic 
factors and of inducers of the innate immune response in determin-
ing the early events of infection. In the future, the combination of 
high-throughput transcriptomic and single-cell technologies with 
relevant in vivo experimental models could help to better character-
ize the molecular and immunological factors regulating the early 
events of infection and, ultimately, outcome of HCV infection.

2. Adaptive immunity: impact of T-cell dysfunctions in 
chronic hepatitis C virus infection
Failure of the innate immune system to control early events of 
infection induces the development of an adaptive immune response 
against HCV, highlighted by the generation of an HCV-specific T-cell 
response and the production of HCV neutralizing antibodies82. 
However, the immune mechanisms underlying the failure of the 
cytotoxic and humoral responses in resorbing viral infection and 
leading to a state of chronic infection are not well understood.
Recently, several reports shed light on the impacts of T-cell 
dysfunction during HCV infection as well as on the molecular 
mechanisms contributing to such dysfunctions, which can favor 
the inhibition of long-term adaptive immune responses and thus 
the maintenance of chronic infection.
During chronic infection, continuous antigenic stimulation can 
enhance the expression of inhibitory receptors on cytotoxic T-cells 
(CTLs), leading to impaired CTL functions. A recent report sup-
ported this argument in identifying a novel inhibitory receptor, pros-
taglandin E2, overexpressed on the CTL surface during lymphocytic 
choriomeningitis virus infection83. Blocking of prostaglandin E2 
and programmed cell death 1 signaling improved CTL responses 
and favored better immune control of chronic viral infection. This 
evidence strongly suggests that similar mechanisms are at play dur-
ing HCV infection and likely contribute to sustain chronic infection. 
Another study also recently highlighted how T-cell function may 
be impaired during HCV infection. HCV E2 protein and a short 
E2-coding RNA fragment were found to inhibit distal and proxi-
mal T-cell receptor-mediated signaling, respectively84. By affecting 
T-cell activation, HCV E2 protein and RNA may contribute to a 
global state of T-cell dysfunction and impaired adaptive immune 
responses favoring chronic infection. Consistently, CD8+ T-cell 
responses have been shown to be restored in patients following DAA-
based, IFN-free therapy. The suppression of viral replication could 
disrupt the global state of T-cell dysfunction and reinstate T-cell 
function, which might be critical for the success of the therapy85.
Interesting findings have also been reported regarding the impact 
of maternal immune tolerance during pregnancy on HCV-specific 
T-cell functions. Impaired T-cell responses induced by pregnancy 
have been shown to limit T-cell-mediated selective pressure on 
HLA-I epitope, hence stimulating the loss of escape mutations and 
the emergence of fitter virus86. Indeed, T-cell selective pressure was 
shown to be restored after childbirth along with the predominance 
of escape mutations. This suggests that maternal immune tolerance 
allows viruses with enhanced fitness to be vertically transmitted 
into a new host.
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T-cell function can also be seriously impaired by extensive regula-
tory T (Treg) cell expansion during HCV infection. Indeed, a recent 
report analyzed the HCV-specific T-cell response following HCV 
challenge of non-human primates previously infected with a subin-
fectious dose of HCV. Although subinfection induced the develop-
ment of an HCV-specific T-cell response, subsequent challenge led 
to expansion of Treg cells that suppressed an effective T-cell and 
recall response87. Hence, individuals who were repeatedly exposed 
to HCV may be more prone to develop chronicity through exposure- 
induced immune suppression and strong Treg cell expansion.

D. Curing and preventing hepatitis C: where are we 
going?
1. Direct-acting anti-viral agents: promises and challenges
Over the last 3 years, a combination of DAAs involving NS3-4A 
inhibitors, NS5A inhibitors, and NS5B nucleos(t)ide or non-
nucleos(t)ide inhibitors has demonstrated their strong potency 
to induce a sustainable virologic response close to 90% to 100% 
against the most prevalent HCV genotypes2,88, thus allowing HCV 
patients to be cured. However, several challenges will likely appear 
in the future, as most of these drugs have a low barrier to resist-
ance, with the exception of NS5B nucleos(t)ide inhibitors. Indeed, 
resistance-associated mutations to several DAAs have already been 
characterized in NS3-4A, NS5A, and NS5B as well as natural 
polymorphisms observed in certain genotypes and subtypes3.
However, strategies are currently being developed to increase the 
resistance barrier of DAAs. Daclatasvir (DCV) interferes with 
NS5A functions and is a very potent HCV inhibitor, but mutations 
within NS5A can arise fairly easily, rendering HCV resistant to 
DCV’s anti-viral activity89. However, recent findings demonstrated 
that this resistance is overcome when DCV is used in combina-
tion with an NS5A inhibitor analogue, commonly inactive against 
both wild-type and resistance NS5A variants. This synergistic 
effect underscores the importance of inter-protein communication 
between NS5A molecules in the mechanisms of action of DCV. 
Moreover, this finding emphasizes that progress in understanding 
viral protein functions is critical to enhance resistance barriers of 
DAAs and to develop rational DAA combination therapy for effec-
tive clinical treatment90.
Moreover, another critical challenge lies in the fact that curing HCV 
patients does not mean they are cured of liver disease or protected 
against the development of potential HCC. However, our under-
standing of the HCV-induced mechanisms leading to liver disease 
and cancer remains somewhat limited. Hence, a strong emphasis on 
these mechanisms will be required in the upcoming years to develop 
original therapies preventing the development of such diseases and 
face the need of protecting HCV-cured patients against them.
The appearance of HCC in chronically infected patients is likely 
to be stimulated by the immune tolerance induced by continuous 
antigen stimulation and T-cell dysfunction. Hence, the preven-
tion of HCV-induced HCC requires an improved understanding of 
the immunological events favoring both the maintenance of HCV 
chronic infection and the appearance of HCV-induced liver cancers. 
A better profiling of the dysfunctions of the adaptive immune 
responses during HCV infection could provide innovative immu-
notherapy strategies that could reduce the risk of HCC in chroni-
cally infected patients or HCV-cured patients. Moreover, the recent 
success of immunotherapies against lung and melanoma cancers91 

also highlights the need for improved knowledge about liver cancer 
immune evasion mechanisms, which could open avenues for treat-
ing HCV-free patients who develop HCV-induced HCC.

2. The quest for an effective hepatitis C virus vaccine
Despite the clinical efficacy of the DAAs, the great majority of 
HCV-infected patients worldwide do not have access to these treat-
ments because of their high cost. One solution lies in the develop-
ment and production of novel, cost-effective DAAs or antibodies 
that could cure HCV patients. This possibility is supported by data 
from recent studies that demonstrated that passively administered 
anti-HCV envelope92 and anti-CLDN1 antibodies can cure human 
liver chimeric mice of chronic HCV infection93.
In parallel, a cost-effective, prophylactic, and therapeutic HCV vac-
cine is still urgently needed to significantly impact the number of 
HCV cases worldwide. However, such research has been extremely 
challenging over the past two decades. The incomplete knowledge 
of the adaptive immune response to HCV and exposure-induced 
immune suppression limits the design of T-cell-based vaccines. 
Additionally, the high E1E2 genetic variability has hampered the 
generation of broadly potent immunogens. Several past and recent 
reports have found that the generation and use of broadly neutral-
izing antibodies (bNAbs) targeting E1E2 can lead to efficient, pan-
genotypic neutralization of HCV in vitro94,95 and even HCV clearance 
in vivo92. However, such bNAbs are usually poorly induced in 
chronically infected patients. Hence, the generation of immunogens 
able to trigger an effective bNAb response in patients has emerged 
as a considerable barrier to the generation of a potent HCV vaccine. 
An important obstacle in the development of such immunogens 
likely lies in our poor understanding of the structural and functional 
basis of HCV neutralization, E1E2 conformational plasticity, and 
epitope accessibility. The recent structural resolution of an E2core 
structure25,26 represents a considerable advancement for elucidating 
the mechanisms of HCV neutralization. However, on the surface 
of viral particles, it is likely that E2 takes on other conformational 
states, as E2core is only a partial structure and E2 conformation is 
dependent on its association with E1. In the future, novel insights 
into E1E2 structures and conformational changes will provide 
important avenues for the generation of an effective vaccine.
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