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Eradication of cancer cells through exposure to high doses of ionizing radiation (IR)

is a widely used therapeutic strategy in the clinical setting. However, in many cases,

cancer cells can develop remarkable resistance to radiation. Radioresistance represents

a prominent obstacle in the effective treatment of cancer. Therefore, elucidation of the

molecular mechanisms and pathways related to radioresistance in cancer cells is of

paramount importance. In the present study, an integrative bioinformatics approach

was applied to three publicly available RNA sequencing and microarray transcriptome

datasets of human cancer cells of different tissue origins treated with ionizing radiation.

These data were investigated in order to identify genes with a significantly altered

expression between radioresistant and corresponding radiosensitive cancer cells.

Through rigorous statistical and biological analyses, 36 genes were identified as potential

biomarkers of radioresistance. These genes, which are primarily implicated in DNA

damage repair, oxidative stress, cell pro-survival, and apoptotic pathways, could serve

as potential diagnostic/prognostic markers cancer cell resistance to radiation treatment,

as well as for therapy outcome and cancer patient survival. In addition, our findings

could be potentially utilized in the laboratory and clinical setting for enhancing cancer

cell susceptibility to radiation therapy protocols.

Keywords: ionizing radiation, DNA damage repair, cancer cell radioresistance, bioinformatics, gene expression

profiles, biomarkers

INTRODUCTION

Radiation therapy or radiotherapy (RT) represents one of the optimal, most widely used modalities
in the treatment of multiple cancers, either alone or combined with other curative anti-cancer
modalities like chemotherapy (Delaney et al., 2005; Begg et al., 2011) or immunotherapy (Tang
et al., 2014; Schoenhals et al., 2016). It is estimated that approximately 50% of all cancer patients
worldwide undergo radiotherapy throughout their illness trajectory (Baskar et al., 2012).

Advances in radiotherapy contribute greatly to cancer patients’ improvement of overall
survival and quality of life (Baskar et al., 2012). The aim of radiotherapeutic regimens is
to specifically and efficiently sensitize cancer cells to IR in order to eliminate them and
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prevent cancer recurrence and relapse, minimizing at the same
time the adverse effects of radiation on healthy tissue. RT
affects cancer cells either directly, by inducing genomic (DNA)
lesions, or indirectly, through the generation of DNA damaging
intermediates through the interaction with water, like reactive
oxygen/nitrogen species (ROS/RNS) and free radicals (e.g.,
hydrogen ion, hydroxide, etc.) (Mikkelsen and Wardman, 2003;
Yamamori et al., 2012).

However, cancer cells have the capacity to develop incredible
tolerability and resistance to RT, thereby evading death.
Radioresistance represents a major limiting factor in the effective
treatment of different types of cancers. The response of tumor
cells to radiation depends both on the resistance mechanisms
of the cells and also on the accelerated repopulation of the
tumor bulk by cells that have developed further radioresistance
(Pavlopoulou et al., 2016, 2017). As noted in previous studies,
the genes that are differentially expressed (either up- or down-
regulated) between radioresistant (RR) and radiosensitive (RR)
cancer cells are generally implicated in DNA damage response
and repair (DDR/R) pathways, apoptosis, hypoxia, or response
to oxidative stress, etc. (Pavlopoulou et al., 2016, 2017). The
complexity of radiation resistance mechanisms suggests the
involvement of different and diverse biological mechanisms.

During the last decade, the advances in high-throughput
(HTP) “omics” technologies (e.g., RNA-Seq and microarrays)
enabled the generation of an enormous amount of gene
expression data. Data produced with HTP technologies are
stored in international public repositories such as NCBI’s
GEO (Gene Expression Omnibus) (https://www.ncbi.nlm.nih.
gov/gds/) (Barrett et al., 2013; Clough and Barrett, 2016). GEO
DataSets contains both original records and curated datasets.

Accumulated knowledge over years of research on the
biological effects of radiation points toward the development of
holistic approaches to “big data” analysis by employing systems
biology methodologies (Unger, 2014; Beheshti et al., 2019; Spratt
and Speers, 2019; Kanakoglou et al., 2020). Herein, we employed
a rigorous systems biology approach to unravel the molecular
determinants of resistance of cancer cells to IR, based solely
on HTP data. To this end, publicly available transcriptome
datasets relevant to cancer cell response to radiation were
retrieved from GEO, and specifically, cancer cell lines that
displayed enhanced resistance to radiation. Statistical analyses
were carried out to identify the differentially expressed genes
(DEGs) between radioresistant and radiosensitive tumor cells.
Furthermore, functional annotation of genes allowed us to
identify specific biological pathways implicated in cancer cell
resistance to radiation. Our findings could be applied in the
laboratory and clinical setting as biomarkers for the design of
targeted and personalized radiotherapy regimens in order to
effectively sensitize cancer cells to radiation, enhance tumor
control and thereby minimize tumor recurrence and metastasis.

METHODS

Data Retrieval
The public repository NCBI GEO DataSets was searched
extensively for gene expression datasets using relevant keywords:

(“radiation therapy” or “radiotherapy”) and (“cancer” or
“tumor”) and (“resistance” or “tolerability”) and (“sensitivity” or
“responsive”) and (“human” or “homo sapiens”). A total of three
eligible datasets were selected:

The GEO series GSE97543 (Emons et al., 2017)
(Supplementary Table 1) includes global gene expression
by microarray of both wild-type and radioresistant Dukes’
type C colorectal adenocarcinoma (COAD) cell lines that were
either non-irradiated or irradiated repeatedly with 2 Gray
(Gy) of X-rays in order to acquire a radioresistant phenotype.
The Agilent-026652 whole human genome microarray 4x44K,
GPL13497 platform was used.

In GSE13280 (Marston et al., 2009) (Supplementary Table 1),
genome-wide gene expression by microarray was performed of
cell lines derived from pediatric B-precursor acute lymphoblastic
leukemia (ALL) after 8 h in vitro exposure to 5Gy IR. This dataset
contains cell lines both resistant and responsive to radiation. The
development of resistance and responsiveness to IR was assessed
by measuring apoptosis in cells. The Affymetrix human genome
U133A array, GPL96 platform was employed.

In GSE120798 (Gray et al., 2019) (Supplementary Table 1),
three novel radioresistant breast cancer cell lines were established
by exposing the corresponding parental cell lines MDA-MB-
231 (metastatic mammary adenocarcinoma), MCF-7 (breast
adenocarcinoma), and ZR-751 (luminal breast cancer) to
increasing doses of X-rays for 2 and 8 h. Genome-wide gene
expression analysis of both the parental and radioresistant cell
lines (i.e., MDA/MDAR, MCF/MCFR, ZR/ZRR) was performed
using high throughput sequencing. The NextSeq 550 (Homo
sapiens), GPL21697 platform was used.

Microarray-Based Transcriptomic Data
Analysis
For each microarray study, the gene expression data that
represent the gene expression summary for every probe and every
sample were recorded. In microarrays, many probes can map
to the same Gene Symbol for various reasons, and, conversely,
a probe may also map to more than one Gene Symbol if the
probe sequence is not specific enough. A simple approach would
be to use only the probes with one-to-one mapping for further
analysis; however, this approach results in the loss of important
information. To conduct an analysis based on genes and not
probes, the probe identifiers were firstly converted into gene
identifiers, according to Ramasamy et al. (2008) guidelines. To
this end, GPL files that contained information about the gene
symbols that correspond to probe IDs were used in order to
resolve the “many-to-many” relationships between probes and
genes by averaging the expression profiles for genes with more
than one probe (Ramasamy et al., 2008). We identified the
Gene Symbols with the usage of the HUGO Gene Nomenclature
Committee (Braschi et al., 2019) and the National Center for
Biotechnology Information (NCBI) GENE (Sayers et al., 2020).

The two-sample t-test was employed to identify genes
differentially expressed between the case (RR) and control (RS)
groups. However, a disadvantage of the t-test in the analysis of
microarray data is that if most of the experiments in a given
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study contain a relatively small number of samples per group,
the assumption of normality is untenable. To resolve this, the
statistical method t-test with bootstrap was used (Efron and
Tibshirani, 1993). Bootstrap provides an ideal method to generate
accurate estimates of the standard errors when no formula
for the sampling distribution is available or when available
formulas make inappropriate assumptions (e.g., small sample
size, non-normal distribution). In this study, bootstrap analysis
was conducted with 1,000 replicates, a relatively high number, in
order to generate accurate estimates of the standard errors.

A typical microarray experiment measures the expression
of several thousand genes simultaneously across different
conditions. When investigating for potential DEGs between two
conditions, each gene is treated independently, and the t-test
is performed on each gene separately. The incidence of false
positives (i.e., genes falsely declared as DEGs) is proportional to
the number of tests performed and the critical significance level
(p-value cut-off). In order to account for multiple comparisons,
a correction method proposed by Benjamini and Hochberg
(1995) which controls False Discovery Rate (FDR) was applied.
FDR-controlling procedures have greater power (i.e., they
can discover more statistically significant differences), at the
expense of increased Type I error rate. Genes with adjusted
p-value (or q-value) less or equal to 0.05 were considered as
statistically significant in this study. For all statistical analyses,
the Stata 13 statistical software package (StataCorp, 2013) was
used. For the creation of heatmaps from microarray data, the
average linkage clustering with Euclidean distance clustering
method implemented in Heatmapper (http://heatmapper.ca/)
was utilized.

RNA-Seq-Based Transcriptomic Data
Analysis
For the RNA-Seq based transcriptome analysis, the following
pipeline was utilized. The FASTQ files were extracted from
the respective Sequence Read Archive (SRA) files containing
raw RNA-Seq reads by using the SRA Tool Kit v.2.9.0
(Alnasir and Shanahan, 2015) with the “fastq-dump –gzip –
skip-technical –readids –dumpbase –clip –split-3” command.
The raw RNA-Seq reads in FASTQ files were aligned to the
human reference genome GRCh38 (Ensembl version 97) by
employing the splice junction aligner HISAT2 v.2.1.0 (Kim et al.,
2015) with “hisat2 -p -dta -x {input.index} -U {input.fq} -S
{out.sam}” parameters. The generated SAM file was converted
to the respective binary BAM file by using SAM Tools v.1.9.0
(Li et al., 2009) with “samtools sort -@ 10 -o {output.bam}
{input.sam}” commands. String Tie v.1.3.5 (Pertea et al., 2015)
was utilized with “stringtie -e -B -p -G {input.gtf} -A {output.tab}
-o {output.gtf} -l {input.label}{input.bam}” parameters for the
measurement of gene expression levels. The reconstructed
transcripts and transcript abundances were reported in the
output GTF file. In order to detect differentially expressed
genes between RR and RS samples, we utilized the EdgeR
package v3.28.0 (Robinson et al., 2010) of the R statistical
computation environment v.3.6.1 (https://www.r-project.org).
We firstly applied the trimmed mean of M-values (TMM)

normalization (Robinson and Oshlack, 2010) implemented in
EdgeR to the count data and we employed generalized linear
models with “cell lines,” “resistance,” and “time” as factors.
Then, estimating dispersion was computed with the estimateDisp
function, and differential expression analysis between the two
RNA-Seq groups (RR and RS) was performed using the glmFit
and glmLRT functions of the EdgeR package v3.28.0 (Robinson
et al., 2010) of the R statistical computation environment
v.3.6.1 (https://www.r-project.org). In order to detect statistically
significant differentially expressed genes, the threshold for the
absolute log2-fold change was set at two (|log2FC≥2|), and for the
FDR (Benjamini and Hochberg, 1995)-corrected p-value at 0.05.
All statistical calculations for the RNASeq data were performed
by using the R software environment. The pheatmap package of
R (https://CRAN.R-project.org/package=pheatmap) was utilized
to generate a heatmap from RNA-Seq data.

Pathway Enrichment Analysis
To assign biological role(s) to the genes under study that are
associated with biological pathways, gene set enrichment analysis
(GSEA), or functional enrichment analysis, was conducted.
GSEA is a method to identify biological processes or pathways
that are over-represented in a large set of genes. To this
end, WebGestalt (WEB-based GEne SeT AnaLysis Toolkit)
(Zhang et al., 2005; Liao et al., 2019) was employed to identify
statistically significant over-represented WikiPathways (Kutmon
et al., 2016) cancer terms in the sets of genes; the threshold for
the FDR-corrected p-value was set at 10−3, and hypergeometric
distribution analysis was used.

Functional Interactions Networks
The associations among the molecules under study were
investigated and visualized with the usage of STRING
(Search Tool for Retrieval of Interacting Genes/Proteins)
v11.0 (Szklarczyk et al., 2019), a database of either known or
predicted, direct or indirect, gene/protein associations derived
from diverse resources. The highest confidence interaction
score (≥0.9) was chosen to display the associations amongst
genes/proteins in the generated network.

Survival Analysis
The prognostic potential of the 36 radiogenes was investigated
in three types of cancers, namely, breast invasive carcinoma
(BRCA), colon adenocarcinoma (COAD), and acute myeloid
leukemia (LAML), a type of haematologic cancer like ALL,
through the web-based tool GEPIA (Gene Expression Profiling
Interactive Analysis) (Tang et al., 2017) version 2 (http://
gepia2.cancer-pku.cn/#index), based on data acquired from The
Cancer Genome Atlas (TCGA) (https://tcga-data.nci.nih.gov).
The cancer patient cohort is divided into the high-risk and low-
risk categories; the cut-offs for low and high gene expression level
patient cohorts were set at 50%.

Tissue-Wise Differential Gene Expression
Analysis
GEPIA2 (Tang et al., 2017), which contains gene expression
data from cancer and corresponding normal tissues from
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FIGURE 1 | Flowchart diagram of the overall methodology employed in this study. Three eligible transcriptome datasets were retrieved from NCBI’s GEO. Genes

differentially expressed (DEGs) between the radioresistant and radiosensitive cancer cells were identified per dataset. The DEGs of the three analyzed datasets were

integrated and compared with an earlier own study on cancer cell radioresistance-related genes/proteins derived from literature research. Functional enrichment

analysis of the common genes was performed to obtain the so-called “radiogenes”.

TCGA (https://tcga-data.nci.nih.gov) and the Genotype-Tissue
Expression (GTEx) (https://gtexportal.org/home/), respectively,
was used to investigate the differential expression patterns of the
radiogenes under study in BRCA, COAD, and LAML cancer-
normal tissue; |logFC| ≥ 2 and FDR-corrected p-value ≤ 0.05.

RESULTS

The overall procedure for data collection and analysis followed in
the present study is described illustratively in Figure 1.

Identification of Differential Expression
Patterns in Radioresistance vs.
Radiosensitive Cancer Cells
The two techniques for transcriptome profiling, RNA-Seq
and microarray, have large inherent differences. RNA-Seq is
considered “superior” since it allows the detection of low
abundance transcripts and novel transcript isoforms (Marioni
et al., 2008). For this reason, we applied different statistical
methods for RNA-Seq (Li, 2019) and microarray (Kontou et al.,
2018) data processing and analysis.

The number of differentially expressed genes (DEGs) found
between radioresistant and radiosensitive cancer cells (Figure 2)
for each dataset is 6372 (GSE120798), 782 (GSE13280), and
541 (GSE97543), respectively (Supplementary Table 2). The
pathways over-represented in the DEGs of the three datasets are
related primarily to DDR/R and cell survival (Figure 3).

Differential gene expression analysis was performed for the
three parental breast cancer cell lines in GSE120798 (Gray
et al., 2019) against their radioresistant derivatives, to identify
those genes that are significantly dysregulated in response to
radiation stress. A total of 11 samples were compared; one
biological replicate for each condition (Supplementary Table 1).
The number of detected DEGs (Gray et al., 2019) is remarkably
higher as compared to the ones derived from microarray gene
expression data (Supplementary Table 2). This discrepancy is
likely due to the ability of RNA-Seq to detect and quantify,
even rare, transcripts without a priori knowledge of a given
gene (Metzker, 2010). Accordingly, the number of enriched

pathways is also greater in this dataset (Figure 3). Three DDR/R
pathways were found to be enriched in the DEGs, including
the generic “DNA Damage Response” pathway. Two pathways
are specifically implicated in IR-induced DNA damage response,
namely “DNA IR-Double Strand Breaks (DSBs) and cellular
response via ATM,” and “DNA IR-damage and cellular response
via ATR.” Ataxia telangiectasia mutated (ATM) and ataxia
telangiectasia and Rad3-related (ATR) proteins are evolutionarily
conserved proteins that have a critical regulatory role in
DDR and maintenance of genome integrity (Marechal and
Zou, 2013; Awasthi et al., 2015). Furthermore, the “PI3K-
AKT-mTOR signaling pathway and therapeutic opportunities”
was shown to be over-represented in the set of DEGs;
increased activity of PI3K in the radioresistant cells of this
transcriptome dataset was also observed by Gray et al. (2019).
Phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of
rapamycin (PI3K/AKT/mTOR) signaling is critical to many
aspects of tumor cell growth and survival (Porta et al., 2014) and
therefore could be likely involved in the survival of irradiated
cancer cells.

Differential expression analysis was also carried out of the
irradiated COAD cells in the GSE97543 dataset (Emons et al.,
2017). A total of six samples were compared; three biological
replicates for the wild-type (radiosensitive) cell lines and three
for the radioresistant cells (Supplementary Table 1). The notch
signaling pathway is significantly over-represented (Figure 3)
in the DEGs of this dataset (Supplementary Table 2). Notch
signaling is suggested to confer a selective survival advantage
on tumors (Capaccione and Pine, 2013). Hence, the Notch
network could be implicated in the resistance and survival of
the COAD cells to irradiation. Regarding the over-represented
DDR/R pathways, one pathway is related to processing IR-
induced DNA lesions through ATR signaling and the other
to mismatch repair (MMR), which is responsible for detecting
and repairing mismatched nucleotides (Iyer et al., 2006; Larrea
et al., 2010). MMR reaction is initiated by binding of the MSH2
(MutS homolog 2)/MSH6 heterodimer to the mismatched DNA;
both MSH2 and MSH6 were found differentially expressed in
the radioresistant COAD cells. The MutS homologs MSH2 and
MSH6 form a heterodimer that binds to short insertion/deletion
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FIGURE 2 | Heatmap representing color-coded expression levels of DEGs for

the datasets (A) GSE120798 (breast cancer), (B) GSE13280 (ALL), (C)

GSE97543 (COAD); columns correspond to samples and rows correspond to

genes. RR, Radioresistant; RS, Radiosensitive.

DNA mispairs (Habraken et al., 1996; Edelbrock et al., 2013).
The MMR proteins also function in signaling DNA damage
(Duckett et al., 1996b;Modrich, 1997). Earlier studies have shown
that MSH2 is also involved in the processing of the biologically

significant clustered DNA damages, as well as the execution of
apoptosis induced by IR (Holt et al., 2009).

In GSE13280 (Marston et al., 2009), the gene expression
profiles of radioresistant and radiosensitive ALL cell lines
(eleven replicates for each condition) were compared
(Supplementary Table 1) for the identification of DEGs
(Supplementary Table 2). The enriched transforming growth
factor beta (TGFB) signaling pathway (Figure 3), like the
Notch network (Capaccione and Pine, 2013), is implicated in
several aspects of cancer initiation, promotion, and progression
(Syed, 2016). Hence, the Notch- and TGFB-mediated signaling
pathways might render ALL cells less vulnerable to IR-induced
apoptosis by exerting their cellular pro-survival effect.

Identification of Cancer Cell
Radioresistance–Related Genes
The procedure we followed to identify an optimal number
of cancer cell radioresistance–related genes is illustrated
in Supplementary Figure 1. A list of 175 bio molecules
(Supplementary Table 3) was proposed in a previous study
by Pavlopoulou et al. (2017) to be implicated in tumor cell
radioresistance. These genes/proteins were manually collected
through a comprehensive and thorough literature search.
The DEGs identified in each of the three transcriptome
datasets were merged; a list of 7,185 genes was compiled
(Supplementary Table 3). Those genes were compared to the
literature-derived molecules, and 88 genes were found in
common (Supplementary Table 3). In order to identify an
optimal number of genes implicated in radioresistance, we
performed functional enrichment analysis of these genes. The
pathways over-represented in the 88 genes (Figure 4) are related
to DDR/R, similar to those detected in the DEGs of the
individual datasets (Figure 3), as well as to apoptosis. Signaling
pathways mediated by the cardinal tumor suppressor TP53 are
also related to radioresistance (Figure 4). Collectively, 36 genes
were found to be implicated in cancer-associated biological
pathways listed in Table 1, 26 of those up-regulated and 10
down-regulated in RR cancer cells. The products of the 36 genes
also form a highly connected network (Figure 5), with high-
confidence interactions, suggesting that these proteins associate,
either functionally or physically, to confer cellular resistance
to IR. Therefore, we propose 36 interconnected pivotal genes,
henceforth referred to as “radiogenes,” which participate in
radioresistance-relevant pathways and mechanisms.

Differentially Expressed Radiogenes in
Cancer vs. Normal Tissue
Collectively, 19 radiogenes, found to be differentially expressed
in the three radioresistant vs. the radiosensitive cancer cell lines
(Table 1), are consistently deregulated in their corresponding
cancer-matched normal tissues with the same direction (i.e.,
up- or down-regulated) (Supplementary Figure 2). This finding
could be utilized in personalized tumor treatment for the selective
eradication of cancer cells by applying radiotherapy without
harming the adjacent healthy tissue at the same time.
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FIGURE 3 | Distribution of the over-represented cancer-related WikiPathways in the DEGs of each transcriptome dataset. The enriched pathways are indicated

by gray.

FIGURE 4 | Donut chart depicting the over-represented cancer-relevant pathways across the 88 common genes.

Radiogenes Are Potential Cancer
Prognostic Markers
The differential expression of the radiogenes can also predict the
clinical outcome of cancer patients. In particular, a statistically
significant association was found between CHEK1,MAP2K1, and
PLK1 overexpression andworse overall survival in breast invasive
carcinoma patients, indicated by pooled hazard ratio (HR) values
higher than 1 and p-values lower than 0.05. Conversely, a
significant relationship was observed between high expression
of NFKBIA, which is otherwise underexpressed in radioresistant
breast cancer cells, and favorable prognosis, indicated by an HR
value < 1 (Supplementary Figure 3).

DISCUSSION

Cancer cells confer resistance to irradiation through diverse
mechanisms including enhanced DNA damage repair capacity,

activation of cell survival signaling pathways, inhibition of
apoptotic pathways, and induced autophagy.

DDR/R is a complex entangled process consisting of
recognition (or detection, or sensing), signaling, and repair of
DNA damage (Rouse and Jackson, 2002). Ionizing radiation
usually generates a variety of DNA lesions, including abasic
(apurinic/apyrimidinic) sites, oxidized bases, crosslinks between
thymine and cytosine bases, DNA single-strand breaks (SSBs),
and DNA double-strand breaks (DSBs) (Sutherland et al., 2000).
In the case of SSBs, only one strand of the double stranded
DNA helix is severed. SSBs are recognized and processed by
base excision repair (BER) and nucleotide excision repair (NER)
mechanisms (Caldecott, 2008). DSB is the most detrimental type
of DNA lesions since both strands of the double helix are broken.
DSBs are repaired mainly through homologous recombination
(HR) if cells are present in the S/G2 cell-cycle phase or, the less
accurate, non-homologous end joining (NHEJ) (Budman and
Chu, 2005). Those different types of DNA lesions can be formed
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TABLE 1 | Gene symbol and expression status of the 36 differentially expressed

radiogenes (radioresistant vs. radiosensitive cancer cells).

Gene Expression status Cell line

AKT1 Up BC

ATM Up BC

BAX Down BC; ALL

BBC3 Down BC

BCL2 Up BC

BIRC5 Up BC

BRCA1 Up BC

BRCA2 Up BC

CASP3 Down BC

CCND1 Up BC

CHEK1 UP BC

EGLN1 Up BC

HIF1A Up BC; ALL

JAK1 Down BC

JUN Up BC

MAP2K1 UP BC

MAP2K2 Up BC

MCL1 Up BC

MSH2 Up BC; COAD

NBN Up BC

NFKB1 Up BC

NFKBIA Down BC

PARP1 Up BC

PLK1 Up BC

PMAIP1 Down BC

PRKDC Up BC

PTEN Down BC

RELA Up BC

RNF8 Up BC

SOD2 Up BC; ALL

STAT1 Down BC

STAT3 Up BC

TERF2 Up BC

TP53 Down BC

UBE2D3 Down ALL

XIAP Up BC

ALL, acute lymphoblastic leukemia; BC, breast cancer; COAD,

colorectal adenocarcinoma.

Those radiogenes found to be differentially expressed between TCGA-derived cancer

tissue and corresponding GTEx matched normal tissue are italicized.

either separately or in close vicinity (a few nm), resulting in
clustered DNA lesions or locally multiply damaged sites (MDS).
Clustered DNA damage, the hallmark of IR, is considered the
most severe type of genomic damage because of its complexity.
This complex DNA damage includes both DSBs and non-
DSBs, usually referred to as oxidatively-clustered DNA lesions
(OCDLs), occurring within a DNA region of 15–20 bp. The
corresponding DNA damage repair mechanisms are recruited
by the cell in response to clustered damaged sites. However,
harnessing the corresponding DNA repair machinery to the

clustered damaged sites is quite challenging since the presence
of a lesion in one strand can delay significantly the simultaneous
processing of another lesion on the complementary strand.
Furthermore, OCDLs can be rapidly converted into de novoDSBs
by a DNA glycosylase during the repair. As a result, unrepaired
MDS can lead to increasing levels of genotoxic damage, triggering
also systemic responses (Nikitaki et al., 2016). Clustered DNA
lesions, if not properly processed, could contribute to increased
genomic instability in the form of chromosomal aberrations
(e.g., deletions and inversions) and microsatellite instability,
leading eventually to carcinogenesis. Therefore, the induction of
clustered DNA damage increases the cytotoxic effect of radiation,
especially in highly proliferating cancer cells. Radioresistant
cancer cells though can counteract this effect through their
ability to respond to and repair complex/clustered DNA damage
more efficiently without avoiding necessarily increased genomic
instability, as compared to their radiosensitive counterparts
(Hada and Georgakilas, 2008; Georgakilas et al., 2013; Mavragani
et al., 2017, 2019; Bukowska and Karwowski, 2018). The
radiogenes identified in the present study are implicated in
diverse mechanisms underlying the acquisition of radioresistance
in cancer cells.

Among the 36 “radiogenes”, ATM, BRCA1/2, CHEK1,
CCND1, MSH2, NBN, PARP1, PLK1, PRKDC, and RNF8,
which are consistently up-regulated across the radioresistant
cancer cell lines (Table 1) and the corresponding cancer tissue
(Supplementary Figure 2), are crucially implicated in different
stages of DDR/R. In particular, ATM plays a protagonistic role
in the initial stage of DDR/R, that is, DNA damage detection
and stress-response signaling (Iliakis et al., 2003; Yang et al.,
2004). ATM signaling is activated by a wide variety of DNA
lesions, as well as DNA replication stress (Marechal and Zou,
2013; Burger et al., 2019). Mutations in ATM result in the genetic
disorder ataxia-telangiectasia (AT), which is characterized by the
high sensitivity of AT patients to IR and cancer predisposition
(Gatti et al., 1988). Checkpoint kinase 1 (CHEK1), which acts
downstream of ATM, is a core regulator of cell cycle checkpoint
signaling in DNA damage response (Flaggs et al., 1997; Patil et al.,
2013). Cyclin D1 (CCND1) was demonstrated to induce post-
DNA damage cell cycle arrest and apoptosis in different types
of cancers (Cai et al., 2012; Smith et al., 2016). PRKDC is a
serine/threonine DNA-activated protein kinase involved in DSB
recognition andDNA damage repair through NHEJ (Soubeyrand
et al., 2003). Notably, ATM and PRKDC were found to affect
greatly cancer cell response to IR through genome-wide genetic
screening in a recent study by Francica et al. (2020). Moreover,
BRCA1 and BRCA2 are largely involved in cell cycle control and
maintenance of genomic stability in response to DNA damage
(Deng, 2006; Gudmundsdottir and Ashworth, 2006). Another
radiogene,NBN (nibrin), encodes one of the three components of
the MRN complex (MRE11A-RAD50-NBN), which is implicated
in the recognition and repair of DSBs (Lamarche et al., 2010).
NBN is mutated in patients with Nijmegen breakage syndrome
(NBS), and cells from NBS patients are hypersensitive to IR
(Taalman et al., 1983). In addition, a functional link between
ATM and NBN proteins has been demonstrated by Zhao et al.
(2000). Also, the MMR protein MSH2 (MutS homolog 2) is
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FIGURE 5 | STRING interaction network of the products of the 36 radiogenes. The nodes represent proteins and the edges indicate different modes of interactions

with a confidence score ≥ 0.9.

suggested to contribute to radioresistance via SSB processing (Li
et al., 2016). Moreover, RNF8 (ring finger protein 8) protein
catalyzes the mono-ubiquitination of histones H2A and H2B
during DNA damage, thereby facilitating DNA damage repair
and activation of cell cycle checkpoint (Kolas et al., 2007;
Ma et al., 2011); RNF8 is associated with radioresistance in
human nasopharyngeal cancer cells (Wang et al., 2015). The
protein encoded by the radiogene PLK1 (Polo-like kinase 1)
is involved in cell cycle resumption following DNA damage-
induced checkpoint arrest (Hyun et al., 2014; Bruinsma et al.,
2017). It has been demonstrated that inhibition of PLK1 renders
glioblastoma and non-small cell lung cancer cells sensitive to IR
(Pezuk et al., 2013; Van den Bossche et al., 2019). Of particular
note, pharmacological inhibitors of the BER enzyme PARP1
[poly(ADP-ribose) polymerase 1], such as niraparib, olaparib,
and rucaparib, are widely used for targeted cancer therapy (Sulai
and Tan, 2018; Patel et al., 2020). Importantly, CHEK1 and PLK1
were found to be poor prognostic biomarkers for the survival
of breast cancer patients (Supplementary Figure 3), further
supporting that enhanced DNA damage repair mechanisms
in cancer cells play a catastaltic role in efficient radiotherapy

(Pavlopoulou et al., 2016, 2017). Therefore, DDR/R might
represent a primary “danger” signal, leading eventually to the
activation of downstream signaling cascades and pro-survival
mechanisms (Nikitaki et al., 2015).

The apoptotic pathway is also affected by the cellular response
to radiation-induced genomic damage in cancers, as we suggest
in this study. Radioresistant cancer cells have developed the
ability to evade apoptosis prompted by their response to extreme
and repair-resistant DNA damage, mainly due to deregulation
of key pro-apoptotic molecules like TP53 (Fridman and Lowe,
2003; Haupt et al., 2003), PTEN (Lu et al., 2016), PMAIP1
(mediator of damage-induced p53-mediated apoptosis) (Oda
et al., 2000), BBC3 (TP53-upregulated modulator of apoptosis)
(Han et al., 2001; Nakano and Vousden, 2001), BAX (BCL2-
associated X protein) (Pawlowski and Kraft, 2000), as well as
anti-apoptotic proteins like MCL1 (Fujise et al., 2000; Glaser
et al., 2012), BCL2 (Akl et al., 2014), BIRC5 (Chiou et al.,
2003), and XIAP (X-linked inhibitor of apoptosis) (Duckett
et al., 1996a; Deveraux and Reed, 1999). In a consistent manner,
in this study, the pro-apoptotic genes were shown to be up-
regulated, whereas the anti-apoptotic genes are down-regulated
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in radioresistant cancer cells (Table 1). Of those, BCL2, which is
down-regulated in radioresistant breast cancer cells and tissue
(Table 1, Supplementary Figure 2), can suppress apoptosis by
inhibiting the activity of caspases indispensable for apoptosis,
such as caspase-3 (CASP3) (Porter and Janicke, 1999; Swanton
et al., 1999). Of note, aberrant activation of the Notch signaling
pathway was demonstrated to inhibit TP53-mediated damage
response and promote breast carcinogenesis by preventing
apoptosis (Stylianou et al., 2006), suggesting a link between pro-
survival and apoptotic mechanisms. PTEN was also found to
promote apoptosis and cell cycle arrest via PI3K/AKT-dependent
and -independent signaling (Weng et al., 2001).

The radiogene NFKB1, which transactivates several pro-
inflammatory genes (Liu et al., 2017), was found to be
overexpressed in radioresistant breast cancer cells and tissue
(Table 1, Supplementary Figure 2). Furthermore, the members
of the NFKB1 family, NFKBIA and RELA, can act either as
inducers or inhibitors of apoptosis, respectively (Sonenshein,
1997; Barkett and Gilmore, 1999), consistent with their
expression status in RR cells (Table 1; over- and under-
expressed). The well-known NFKB1 inhibitor alpha (NFKBIA)
was shown to be a favorable predictor in breast cancer patients
(Supplementary Figure 3). Moreover, NFKB1, together with
the inflammatory factors HIF1A (hypoxia-inducible factor 1)
and STAT3, both of which were found to be up-regulated
in radioresistant breast cancer cells (Table 1) and HIF1A
overexpressed in breast cancer tissue (Supplementary Figure 2),
are critically implicated in cancer radioresistance and radiation-
induced inflammatory responses (Multhoff and Radons, 2012).
On the other hand, STAT1, found down-regulated in the
same cell lines (Table 1), as opposed to STAT3, elicits pro-
apoptotic and anti-proliferative responses and promotes anti-
cancer immunity (Avalle et al., 2012).

Suppression of UBE2D3, which is down-regulated in
radioresistant ALL cells (Table 1), was demonstrated in a study
byWang et al. (2013) to decrease radiosensitivity of human breast
cancer cells by promoting telomere maintenance. In addition,
UBE2D3 is negatively correlated with TERF2 (telomeric repeat
binding factor 2), the latter of which is primarily involved in
telomere maintenance (Kim et al., 2009) and is down-regulated
in radioresistance (Table 1).

Radiation can also exert its genotoxic and cytotoxic effects
through the indirect and systemic induction of severe oxidative
stress and the production of ROS in the organism (Kryston
et al., 2011). The radiogene HIF1A plays a pivotal cytoprotective
role against oxidative stress (Li et al., 2019) by inhibiting
autophagy and cell death (Pouyssegur et al., 2006). Moreover,
the superoxide scavenging enzyme SOD2 (superoxide dismutase
2), found overexpressed both in radioresistant breast cancer
and ALL cells (Table 1), at normal expression levels provides a
cytoprotective effect. Thus, SOD2 can likely exert a protective
effect on RR cancer cells by controlling potential ROS-mediated
DNA damage via catalyzing the reduction of superoxide into less
genotoxic molecules like oxygen (Wang et al., 2018).

Notably, in this study, pro-survival pathways (Figure 3) like
Notch signaling, were found to be implicated both in solid

and blood cancers, probably by mediating survival of cancer
cells to radiation-induced clustered/complex DNA damage
(Marston et al., 2009; Capaccione and Pine, 2013). Moreover,
the PI3K/AKT/mTOR signaling pathway is suggested to be
important in regulating cell survival in response to different
types of cellular stress (Hung et al., 2012; Porta et al.,
2014), including genotoxic stress. Hence, pro-survival pathways
could be considered as potential therapeutic targets in cancer
(Porta et al., 2014).

A major limitation of this study, particularly for the two solid
cancers datasets, is the lack of patient-derived tumor tissue, as
well as cancer stem cells, which constitute a subpopulation in
solid tumors that display stem-like characteristics (Pavlopoulou
et al., 2016). Instead, the respective experimental studies relied
on the use of commercial cancer cell lines; of particular note,
the ALL cells were derived from “real” patients. However, the
extent to which the individual cancer cell lines can capture the
cellular and genomic complexity of tumors is questioned. Further
research is needed to determine whether the results derived
from the cancer cell lines investigated in this study or other
studies could be extrapolated to their corresponding tissues of
origin, like breast tumor tissue and colorectal adenocarcinoma.
Nevertheless, it is suggested that large panels of cancer cell
lines can faithfully capture the genomic heterogeneity of cancers
(Sakellaropoulos et al., 2019; Vougas et al., 2019). Beyond the
discussed limitations, the over- or under-expressions of the
radiogenes in radioresistant phenotypes have been verified, to a
great extent, by independent experimental biochemical studies
available in the literature. In addition, the clinical implications of
those genes are further supported by the patient survival results
(Supplementary Figure 3).

CONCLUSION

In the present study, we employed an integrative bioinformatics
approach to analyze transcriptomic data regarding the molecular
determinants of cancer cell radioresistance. On the basis of our
findings, both solid and hematologic cancer cells likely depend
on similar mechanisms to confer resistance to IR (i.e., DDR/R
and cell survival). Moreover, we identified 36 functionally
associated radiogenes that participate in radioresistance-
associated pathways. Most of those radiogenes were also shown
to be differentially regulated in the corresponding cancer tissues.
Moreover, several of the radiogenes were found to have potential
prognostic value for the clinical outcome of cancer patients.
However, the availability of clinically derived cancer tissues
would provide a more reliable source for conducting research
on the response of cancer patients to radiation. The overall
data presented herein can be particularly useful for clinicians in
selecting suitable targets (e.g., DDR/R inhibitors) for appropriate
combination therapy using IR. In conclusion, we suggest that
this bioinformatics premise can be harnessed as a first step
in the rational design of in vivo experimental studies or in
personalized medicine for optimizing tumor response and
cancer cell susceptibility to therapeutic ionizing radiation and
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reduction of the total effective radiation dose administered to
the patient.
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Supplementary Figure 2 | Differential expression patterns of radiogenes in the
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tissue samples and the gray box indicates normal samples.

Supplementary Figure 3 | Kaplan-Meier curves depicting the prognostic value of

radiogenes for overall survival in invasive breast carcinoma (A) CHEK1, (B) PLK1,

(C) MAP2K1 and (D) NFKBIA. The HR “HR(high)” and the corresponding p-values

“p(HR)” are shown. The 95% confidence intervals (CI) are denoted by dotted lines.

The number of high-risk and low-risk patients are indicated by “n(high)” and

“n(low),” respectively.

Supplementary Table 1 | Samples from each transcriptomic dataset analyzed in

this study.

Supplementary Table 2 | List of the differentially expressed genes (DEGs) of

each of the three transcriptome datasets and the DEGs common among

datasets. Log2FC of radioresistant vs. radiosensitive differentially expressed genes

in GSE120798 (breast cancer) cell lines; cut-off |log2FC≥2|.

Supplementary Table 3 | List of the merged DEGs from each dataset,

literature-derived genes/proteins and common molecules.
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