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Abstract
Increased interest in the opportunities provided by artificial intelligence and machine learning has spawned a new field of health-
care research. The new tools under development are targeting many aspects of medical practice, including changes to the practice
of pathology and laboratory medicine. Optimal design in these powerful tools requires cross-disciplinary literacy, including basic
knowledge and understanding of critical concepts that have traditionally been unfamiliar to pathologists and laboratorians. This
review provides definitions and basic knowledge of machine learning categories (supervised, unsupervised, and reinforcement
learning), introduces the underlying concept of the bias-variance trade-off as an important foundation in supervised machine
learning, and discusses approaches to the supervised machine learning study design along with an overview and description of
common supervised machine learning algorithms (linear regression, logistic regression, Naive Bayes, k-nearest neighbor, support
vector machine, random forest, convolutional neural networks).
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Introduction

Medical data are reported to be growing by as much as 48%
each year.1 This explosion of data and the associated chal-

lenges of its optimal use to improve patient care are driving

development of a myriad of new tools that utilize artificial

intelligence (AI) and machine learning (ML). Artificial intelli-

gence is the capability for machines to imitate intelligent

human behavior, while ML is an application of AI that allows

computer systems to automatically learn from experience with-

out explicit programming. Paraphrasing Arthur Samuel and

others, ML models are constructed by a set of data points and

trained through mathematical and statistical approaches that

ultimately enable prediction of new previously unseen data

without being explicitly programmed to do so.2,3 Once residing

only in the realm of science fiction, advancements in comput-

ing power and accessibility has prompted a technological rev-

olution involving AI and ML that is already impacting many

domains of our everyday lives, including credit decisions,

travel, personalized suggestions for movies, books, and other

products as well as temperature control in our own homes.
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These tools are being increasingly incorporated into a broad

range of clinical practice in many different medical disciplines

and have become an area of intense investigation. Reflecting

the growing role of AI/ML in medicine, the Food and Drug

Administration recently issued a white paper4 to safely guide

AI development, which underscores the promise that AI and

ML are believed to hold for improving medical practice and

patient care.

The field of pathology and laboratory medicine is important

to the development and ongoing improvement in many medical

AI/ML tools and will likely play an even larger and more

pivotal role as AI and ML applications expand across health-

care settings. Perhaps as many as 70% of all medical decisions

are based on laboratory tests.5 Additionally, the bulk of data in

the electronic medical record is from the clinical laboratory.

Test results from pathology and the clinical laboratory fre-

quently serve as the gold standard for clinical outcomes studies,

clinical trials, and quality improvement. This massive amount

of data requires enormous capacity for storage and sophisti-

cated methods for handling and retrieval of information, neces-

sitating the application of certain data science disciplines such

as AI/ML.

Pathologists and laboratorians are therefore excited about

the promise that AI/ML can bring to their ability to impact

health care; however, even those interested in pursuing AI/

ML as an area of clinical investigation or quality improvement

are largely unfamiliar with the field and the processes involved

with utilizing the tools it has to offer. The variable quality of

medical and laboratory data available for use as well as the

sheer diversity and complexity of ML algorithms creates a

cornucopia of choices as well as challenges for investigators

seeking to develop the best AI/ML predictive model. Once a

quality data set has been established, an optimal ML model

needs to be identified which means fully vetting the algorithms

by building and testing multiple models for their appropriate-

ness to the task at hand.

The most successful AI/ML models arise from multidisci-

plinary teams with expertise in ML, clinical medicine, pathol-

ogy and laboratory medicine, biostatistics, and other relevant

skillsets. Such a multidisciplinary team will be best equipped to

address the following queries that are fundamental to success-

ful project design:

1) Does the project address a need?

2) Is there sufficient data and is it the “right” kind of data

that is both readily available and vetted by clinical

experts in the field?

3) Which ML approach to use?

4) Are the optimized ML models applicable and general-

izable when applied to a novel data set?

The purpose of this article is to facilitate cross-disciplinary

literacy among pathologists, laboratorians, biomedical scien-

tists, and individuals from other medical disciplines seeking

to work in multidisciplinary teams to develop or facilitate the

early adoption of AI/ML tools in health care. We define cross-

disciplinary literacy as having sufficient content knowledge

(including strengths and limitations of availability tools and

the concepts behind them) as well as a working understanding

of the field’s unique vocabulary that interested individuals

from other disciplines can understand written and spoken com-

munications, think critically, and use this knowledge and skill

in a meaningful way for their own discipline. To accomplish

this goal, we describe the current landscape for AI/ML in

pathology and laboratory medicine by defining the elements

and numerous available options necessary to address the 4

queries essential to design of AI/ML tools in health care out-

lined above: defining the purpose, data curation and quality,

choosing the most appropriate ML algorithm, and testing/vali-

dation. Table 1 is the glossary of commonly encountered ML

terminology within the scope of this article which provides

definitions and examples for each term.

Current Landscape and Approach to
Developing Machine Learning tools

1) Would the AI/ML tool address a real health-care

need (defining the purpose)?

There is clearly a need to apply rational and systems-based data

science principles for handling the ever-growing body of both

qualitative and quantitative aspects of medical laboratory infor-

mation and classification. Faced with the limitations of human

processing of rapid, accurate, and precise retrieval of data in

real time, the heuristic provided and amplified by ML offers an

attractive approach to substantially improve the delivery of

health care. Current health problems that are deemed suitable

to ML include, but are not limited to, integrating multiple

variables to mimic human clinical decision-making skills (eg,

multiparameter disease diagnosis), automation of testing and

treatment algorithms (eg, reflex testing) and workflows, pattern

recognition using imaging data (eg, radiology, histology slides,

and vital sign waveforms), and/or test utilization trends. How-

ever, although one could use AI/ML, it may not always be

necessary to apply such tools for every situation since simple

statistical approaches may sometimes suffice.

2) Is there sufficient data and is it the “right” kind of

data that is both readily available and its quality

verified?

The familiar concept of “garbage-in/garbage-out” highlights

the critical importance of having high-quality data for AI/ML

applications, since incomplete and/or erroneous values may

inappropriately train an algorithm in the wrong direction. Like-

wise, highly controlled data may not represent real-world con-

ditions. “Quality data” for AI/ML training applications must

include accurate, precise, complete, and generalizable informa-

tion.6 Laboratory data are often assumed to be sufficiently

accurate and precise by both health-care providers and

researchers. Unfortunately, it is a truism that not all laboratory

tests are created equal, and poor analytical bias and imprecision
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degrade the performance of AI/ML algorithms. Additionally,

both providers and researchers are often not aware that test

methods may lack standardization. For instance, a cardiac tro-

ponin I assay from one manufacturer may not be the same when

compared to another due to differences in epitopes for

antibody-based capture and detection.7 The concept of impre-

cision reported as coefficient of variation is also poorly under-

stood by most bedside providers with many assuming any

change in numerical values reflecting a true biological change

without taking into account sources of variability.

Data completeness and generalizability are other important

considerations when developing and training AI/ML algorithms.8

Unfortunately, despite the convenience of collecting real-world

information from electronic health records, the retrieved medical

data are often incomplete. This is attributed to the several incon-

sistencies in test ordering and resulting. Ordered laboratory tests

may be cancelled due to patients not showing up for a visit, or

samples were found to be not acceptable upon receipt by the

laboratory. Incomplete data create significant challenges for AI/

ML developers, where the predictive power of algorithms may be

severely diminished. The limitation of real-world evidence has

thus prompted investigators to gravitate toward more complete

and rigorous data derived from clinical trials. However, caution is

advised when using data that are “too complete” or “too con-

trolled,” since it may not represent the real-world population and

contribute to overfitting, discussed later in this article.9

Ultimately, the best and most balanced approach is to pilot

AI/ML algorithms using more controlled data during the initial

stages and later refining these algorithms using real-world data

to confirm generalizability.

3) Which ML approach to use?

Choosing the right ML approach for a given task requires a

basic understanding of the general categories of ML algorithms

as well as a basic understanding of these algorithms’ inner

workings, strengths, and limitations. These are outlined below.

Machine Learning General Categories: The
Big Picture

Within the various ML platforms, there are a multitude of

algorithms to choose from.10,11 The choice of an algorithm

depends on a variety of factors that include, but are not limited

to, data type/learning approach (supervised or unsupervised

learning), the need for k (clustering), the importance of accu-

racy in the chosen model, the need for speed in data analysis,

the data analyzed, the size of the data set, the need for hier-

archical output, and the need for categorical variables (Fig-

ure 1). Machine learning methods and algorithms belong to

one of the following 3 categories: (1) supervised learning,

including classification and regression approaches; (2) unsu-

pervised learning12; and (3) reinforcement learning (Figure 1).

A supervised ML algorithm makes use of the training data to

learn a function (f) by mapping certain input variables/features

(X) from the training data into some output/target (Y). In

general, supervised ML platforms employ “labeled” training

data sets to yield a qualitative or quantitative output. The

labeled nature of the data evaluated in the training phase is a

key feature of this method, since it allows the ML model to

ultimately emulate the expert’s input data. As a result, the ML

model can distinguish an unknown input based on its prior

training parameters. In the “classification” approach of super-

vised learning, the labeled data/variables (which can be num-

bers, text, or unstructured data such as images) yield a discrete

(qualitative) “class” output. An example of a classification

approach is the breast cancer histology image identification

model in which a supervised ML platform is used to yield a

qualitative answer/identification based on labeled histologic

image training data sets that are then used to predict future

unknown histologic images. In contrast, the “regression”

approach of supervised learning involves the cumulative acqui-

sition of data variables to yield a continuous (quantitative)

numerical output (Figure 1). Notably, most reproducible super-

vised studies follow the Cross Industry Standard Process for

Data Mining or some modification thereof.13,14

Unsupervised ML methods involve agnostic aggregation of

unlabeled data sets yielding groups or clusters of entities with

shared similarities that may be unknown to the user prior to the

analysis step. These are also sometimes referred to as clustering

algorithms. Some of the most common methods employed in

this approach include k-means clustering, anomaly detection,

or certain statistical methods such as principal component anal-

ysis.15-17 These approaches usually utilize discrete or continu-

ous data as their input parameter for identifying input

regularities (eg, k-means clustering) or for lowering dimen-

sional representations (eg, principal component analysis). An

example is the use of ML to cluster unorganized/unlabeled

laboratory data with no obvious commonalities into something

new and meaningful for the user. Notably, the outcomes of

various unsupervised ML methods (eg, results of a principal

component analysis) can often also complement and thus

enhance the performance of certain supervised learning ML

methodologies.

Reinforcement learning platforms may share features of

both a supervised and an unsupervised process and usually

function through a policy-based platform. An example of rein-

forcement learning is International Business Machine (IBM)’s

Deep Blue (Armonk, New York) and Google’s Go (Alphabet,

Mountain View, California) that were able to beat champion

chess18 and Go players,19 respectively. However, currently

reinforcement learning approaches are rarely employed in

pathology. This may change in the future.

“Supervised” Machine Learning Algorithms
(General Overview)

As noted earlier, in medicine and in pathology in particular,

ML models employed are chiefly based on supervised

approaches. Based on the amount of data and data type (eg,

image vs numerical values vs text), the type of algorithm

employed could drastically alter the ML model’s predictive

8 Academic Pathology



capabilities. In the sections below, the various supervised algo-

rithms within ML are discussed with an emphasis on the clas-

sification approach within the supervised learning category.

The advantages and limitations of each are also provided since

these provide insight into the approach to such studies.

The type of the input data can alter the approach to the

analysis step and the type of algorithm that needs to be

employed. Although similar algorithms may be applied to dif-

ferent data types, commonly used data types in the health

sciences include image and text which have made use of visual

recognition platforms and natural language processing frame-

works, respectively. In both of these settings, deep learning

neural network algorithms are now commonly employed. Deep

neural networks have become the gold standard for image clas-

sification. However, neural networks are not the only algo-

rithms within ML and may not always be the most suitable

method when using nonimage data (eg, numerical laboratory

data).

Commonly used supervised learning algorithms encompass

both convolutional neural networks (CNNs; eg, deep learning)

and various non-neural network algorithms (Table 2). Some of

the most common non-neural network algorithms employed

include linear regression, logistic regression, naive Bayes,

decision tree, k-nearest neighbor (k-NN), support vector

machine (SVM), and the ensemble decision tree algorithm ran-

dom forest (RF).

In supervised classification platforms, if accuracy is not the

ultimate goal, algorithms such as logistic regression or naive

Bayes may suffice. However, if accuracy is the primary objec-

tive in these classification tasks, then the algorithms of choice

currently include kernel SVM, k-NN, boosted tree, RF, and

CNNs (especially deep learning). As noted earlier, the method

of choice for most image classification tasks is now deep neural

networks, which are typically CNNs with a large number of

artificial neural connections within their hidden layers. More

importantly, these CNNs are not routinely built from scratch

but rather retrained based on a transfer learning approach from

preestablished neural networks. In transfer learning, unrelated

images (eg, cancer vs benign histology) are retrained into a

preestablished CNN (eg, ResNet-50) that is usually devoid of

such data.20 This approach is currently very popular and can be

used to build accurate ML models that can distinguish histolo-

gic variants of disease in a relatively rapid pace.

On the other hand, in supervised regression (nonclassifica-

tion) platforms, if accuracy is not the ultimate goal, algorithms

such as the linear regression and decision tree may suffice. In

contrast, if accuracy is the primary objective, then the algo-

rithms of choice currently include RF and CNNs (Table 2).

Bias-Variance Trade-Off in “Supervised”
Machine Learning: A Fundamental Concept

The concept of bias and variance and their relationship with

each other is fundamental to the true performance of supervised

ML models. To identify the most optimized supervised ML

model, the trade-off between bias and variance must be

addressed. Briefly, bias gives the algorithm its rigidity while

variance gives it its flexibility.21-23 A high bias causes under-

fitting; simply stated, this means missing real relationships

between the features of the data set and the target. In contrast,

a high variance causes overfitting which may be thought of as

introducing false relationships due to increased noise between

the data set features and the target.24 Thus, overfitting gives

rise to the model appearing as a good predictor on the training

data while underperforming on future new and previously

unseen data (ie, not generalizable). In the end, the ultimate goal

of any ML algorithm is to find the right balance between bias

and variance (bias-variance trade-off). This balance is key in

Figure 1. Overview diagram of machine learning algorithms. Machine learning is a subset of artificial intelligence. This figure illustrates the
hierarchy of different machine learning algorithms including supervised versus unsupervised versus reinforcement learning techniques. The
2 major categories of supervised learning are classification and regression which lead to discrete/qualitative and continuous/quantitative targets,
respectively.
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finding the most generalizable model (Figure 2). Within many

supervised ML approaches, with the appropriate test sets, this

balance can be intrinsically automated and sometimes incorpo-

rated into the platform to ultimately identify the most suitable

model. Being aware of such limitations and knowing how to

appropriately approach these platforms for building the most

suitable model is key to good ML practice.

Supervised Machine Learning Algorithms:
(Common Algorithms and Their Inner
Workings)

In addition to the abovementioned categorizations, the algo-

rithms can be further divided into either parametric or nonpara-

metric groups.25 The set of parameters in a parametric

algorithm is fixed which confines the function to a known form.

In nonparametric methods, the algorithm does not make any

assumptions about the function to which it will map its vari-

ables. In general, the assumption within parametric algorithms

is that the function is linear or assumes a normal distribution,

while nonparametric methods do not make such assumptions.

The most commonly encountered parametric algorithms

include linear regression, logistic regression, and naive Bayes,

while some of the most common nonparametric algorithms

include k-NN, SVM, CNN, and decision trees including RF

(Figure 3). A small description of the inner workings of these

algorithms along with highlights and limitations for each are

discussed below and also included in Table 2.

Linear Regression Algorithm

One of the oldest and simplest parametric statistical approaches

is least squares linear regression. This technique has been reg-

ularly used for various correlational studies.26 Linear regres-

sion models allow us to find the target variable (usually a

numerical value) by finding the best-fitted straight line that is

also known as the “least squares regression line” (the best

dotted line with the lowest error sum) between the independent

variables (the cause or features) and the dependent variables

(the effect or target). The ultimate goal of this technique is to fit

a straight line to the data set in question (Figure 3). The advan-

tage of such an approach is its simplicity and transparency for

finding linear relationship that can ultimately be very efficient

(rapid). However, its major limitation is not being generally

useful when relationships between the independent variable

(the cause or features) and the dependent variables (the effect

or target) are nonlinear.

Logistic Regression Algorithm

The term regression is somewhat of a misnomer since in gen-

eral this is a classification method that uses a logistic function

for predicting a dichotomous dependent variable (target). A

variation of this method (multinomial logistic regression) can

also be used to classify more than 2 targets.27,28 In the binary

approach, the function yields a value of 0 or 1 which represents

the negative (0) and the positive (1) case (Figure 3). This may

be accomplished by calculating an odds ratio probability for

assigning a value as positive (1) or negative (0) based on the

relationships between the independent input variables (fea-

tures) and the dependent variables (target). This algorithm is

relatively popular and has been regularly used in both indus-

try29 and medicine.30 The use of a logistic regression method

may become limiting if there are large number of features/

variables present or if the variables are highly correlated. Addi-

tionally, this approach assumes that the relationship between

the independent variables (features) and the dependent vari-

ables (target) are uniform which may limit the model’s

performance.31,32

Naive Bayes

Naive Bayes classifiers use a probabilistic approach that is

based on the Bayes theorem. This approach is a subset of the

Bayesian logic that assumes the naive notion that the features

being evaluated are independent of each other.33-35 Although

this basic assumption may seem to be a disadvantage of this

method, in reality, naive Bayes classifiers can sometimes

yield reasonable results,34 especially for simple tasks. How-

ever, their performance has been shown to be inferior to some

of the other well-established algorithms such as boosted trees

and RF.10

Figure 2. Bias-variance trade-off in machine learning. This figure
illustrates the trade-off between bias and variance. Training data
(green line) often do not completely represent results from the testing
phase. Underfitting data are less variable but exhibit a high error rate
and high bias (blue box). In contrast, overfitting data result in low bias
and high variance (yellow box). The ideal zone lies between over-
versus underfitting of data and may not be optimal until several
attempts at testing have been made (red line).
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Decision Tree and Boosted Tree (Gradient Boosting
Machine)

A decision tree uses a flowchart structure that typically con-

tains a root, internal nodes, branches, and leaves. The internal

node is where the attribute in question (eg, creatinine >1 or

creatine <1) is tested, while the branch is where the outcome of

this tested question is then delegated. The leaves are where the

final class label is assigned which, in short, represents the final

decision after it has incorporated the results of all the attri-

butes.36-39 The end result of the decision tree is a set of rules

that governs the path from the root to the leaves. Simple deci-

sion trees are not commonly used in ML. However, variations

such as the Gradient boosting machine is used for both classi-

fication and regression tasks.40,41 Gradient boosting machine is

an ensemble method that uses weak predictors (eg, decision

trees) that can ultimately be boosted and lead to a better per-

forming model (ie, the boosted tree). This method can

Figure 3. Comparison of popular supervised learning methodologies. This figure illustrates a variety of popular supervised machine learning
(ML) methodologies. In the top row, linear regression, logistic regression, and Naı̈ve Bayes Classifier (via TensorFlow) are shown. In the second
row, k-nearest neighbor (k-NN), the ensemble decision tree algorithm random forest (RF), and support vector machine (SVM) are compared.
Finally, the bottom row illustrates a convoluted neural network evaluating an image. Each image pixel is evaluated (input layer). The network
contains several “hidden layers” (yellow circles) which is then processed and sent to the output layer (green circles).
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sometimes yield very reasonable models, especially with unba-

lanced data sets. However, their limited number of tuning para-

meters may make them more prone to overfitting compared to

RF that contains a larger number of parameters for tuning and

finding the optimized model.

k-Nearest Neighbor

k-nearest neighbor (k-NN) is a nonparametric clustering algo-

rithm used for data classification and regression. Classification

is based on the number of k neighbors, where k is equal to the

square root of the number of instances and its distance (eg,

Euclidean) from a predefined point42-46 (Figure 3). An ideal

set of k-values may be identified that best predicts a desired

outcome.11 The use of k-NNs are relatively intuitive and as a

nonparametric approach makes no assumptions when data

points are assigned to a respective class. Additionally, they can

be applied to both classification and regression tasks. However,

they work best with a smaller number of input variables, they

require feature scaling/normalization (since they are distance

based), and they are sensitive to outliers within the data set.

Support Vector Machine

Support vector machine classifies data by defining a hyper-

plane that best differentiates 2 groups. This differentiation is

maximized by increasing the margin (the distance) on either

side of this hyperplane. In the end, the hyperplane-bounded

region with the largest possible margin is used for analysis.47

One of the key highlights of the SVM method is its ability to

find nonlinear relationships through the use of a kernel function

(kernel trick). In short, the kernel trick allows the data to be

transformed into another dimension which ultimately enhances

the dividing margin between the classes of interest48 (Figure 3).

The limitation of this method is its tendency for overfitting.

Random Forest

Random forest uses a network of decision trees for ensemble

learning. Bootstrap technique is commonly employed in this

method to generate the randomly generated data sets that can

then be used to train the data for the ensemble of decision

trees.49 Ultimately, each decision tree will determine an out-

come, and a majority “vote” approach is used to classify the

data (Figure 3). Appropriately, this is called RF, since a large

number of randomly generated decision trees are used to con-

struct the final model.50-54 This random sampling generally

enhances the generalizability of this ML process by minimizing

the overfitting phenomena. The number of trees and various

other internal parameters within this process may hinder its

performance. Additionally, the number of variables evaluated

may be more time-consuming using this approach compared

with the other nonparametric (eg, SVM and k-NN) and para-

metric methods (eg, logistic regression).

Convolutional Neural Network

Neural networks attempt to emulate the neuron and for that

matter the human brain. The artificial neuron within neural

networks uses certain input features/variables to find and

assign appropriate mathematical weights that are ultimately

able to predict some output target (Figure 3). A deep neural

network usually refers to a neural network with a large number

of nodal connections within its hidden layer, and the CNNs are

typically the deep neural networks that are most suitable for

more complex data analyses such as imagery. As noted, in most

CNN studies, a transfer learning approach is employed which

allows the training data of interest to be incorporated into a

retrained preestablished CNN.20,55 The CNNs with the transfer

learning approach are the method of choice for most image

analysis studies. However, they are also prone to overfitting

similar to the aforementioned algorithms.

4) Are the optimized ML models applicable and gen-

eralizable when applied to a novel data set?

Selecting the appropriate algorithm is essential in finding

the most suitable model for a given task. Hence, to enhance the

algorithm’s predictive capability (most importantly its ability

to generalize), an optimal study design along with an iterative

validation process is required.

Supervised Machine Learning Study Design
and Validation

After data are collected, cleaned, and preprocessed, and the

correct ML approach has been chosen, the next step is model

building and validation studies which ultimately yields the

deployed model (Figure 4). The supervised ML model building

phase usually includes splitting the data into an initial training

and testing set that allows training of the model followed by

testing for its initial validation phase. To minimize overfitting

of the models, certain model adjustments and incorporating

cross-validation (CV) processes allows the empirical build of

a large number of models whose performances can be subse-

quently assessed with the goal of finding the most generaliz-

able model. It is well known that assessment based on the initial

validation test set does not always yield a generalizable model

as we have shown in our recent studies.20 Hence, it is essential

to include secondary and sometimes tertiary external test sets

(previously unseen by the model) to assess its true

generalizability.

In brief, the model is initially trained and preliminarily vali-

dated on its train-test split data set. An example of this is where

an “80-20 train-test” split initially trains the model using 80%
of the data, followed by the remaining 20% which is used for

testing and its initial validation (Figure 4). However, this

approach alone for building a single ML model is prone to

overfitting. Hence, to minimize the overfitting phenomena as

noted earlier, good practice demands that one build large num-

ber of models with variable parameters through one or more

CV platforms. Some of the most commonly employed CV

Rashidi et al 13



studies include the “k-fold” CV, “leave-one-out” CV, and boot-

strapping. In k-fold CV, the train test data set is split k times.

For instance, if the k is 10, the data are split into 10 train-test

splits to assure proper sampling of the training set and more

importantly the testing data. This approach assures a better

sampling for the test sets and minimizes selection bias which

ideally leads to a more generalizable model as we have demon-

strated in a recent study.11 Leave-one-out CV is a similar con-

cept but is the extreme version of the k-fold approach in which

k will equal to n (eg, total number patients being studied).

Instead of train-test splitting them into k-folds of 5 or 10, as

the name implies, k will equal the total number of individual

data entries n (eg, n of 100 could be the individual sets of data

in 100 patients). In each train-test run, one (eg, one patient data

set) is left out for testing phase which leads to a complete

sampling of the data set, but this approach may not always

enhance the model dramatically and can also be computation-

ally very demanding. In contrast to k-fold and leave-one-out

CV, in bootstrapping one creates a new data set with the same

size as the original data set by randomly pulling samples from

the original data set. As is evident, this method may result in

duplicate data being used in the new bootstrapped data set. This

method is commonly employed in certain ensemble tree algo-

rithms such as RF in which a random subset of the bootstrapped

data set is used in creating the decision trees. A bootstrapped

data set that uses the aggregated data to make a decision is

called “Bagging” which stands for bootstrapping aggregation.

In this approach, a proportion of data within this randomly

selected bootstrapped data set is not present (Out of Bag) which

can be subsequently used to test the trained model within the

bootstrapped data set to assess the accuracy of the model. The

use of such CV approaches within the algorithm’s building

phase can ultimately help in finding suitable models that can

then be secondarily tested on a separate data set to assess their

true generalizability potential.

Summary

Artificial intelligence and ML have the potential to transform

health care in the coming years. To ensure that pathologists and

laboratorians are equipped to play important roles in the multi-

disciplinary teams, we have provided definitions, descriptions,

and an outline of 4 of the essential steps for developing AI/ML

applications. The need for high-quality data (Figure 5) illus-

trates the role of pathologists and laboratorians in appropriately

curating, interpreting, and providing results for AI/ML appli-

cations. We encourage a balanced approach utilizing clinical

trial data, when available, combined with real-world data to

optimize AI/ML training. The approach and technique chosen

should be tailored to the data available and the problem to be

solved. Since many AI/ML techniques are available and not all

are the same, pathologists and laboratorians must be suffi-

ciently familiar and literate with these options so that they can

communicate effectively and make meaningful contributions

Figure 4. Supervised (labeled) machine learning model study design overview. Steps for the deployment of a supervised machine learning
model. From left to right, the figure shows the initial team of multidisciplinary experts defining a study design to address a need. Data are then
collected, processed, trained tested, validated, and ultimately deployed.
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within the AI development team. Determining the overall gen-

eralizability of AI/ML models for real-world populations is

critical to most successful development and implementation

strategies. Researchers in this area are encouraged to be aware

of their data limitations and develop cross-disciplinary literacy

in AI/ML methods to effectively harness their optimal imple-

mentation plan, thus maximizing its impact.
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