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Abstract

Background: Inverse probability weighting (IPW) methods can be used to estimate the total number of cases from
the sample collected through sentinel surveillance. Central to these methods are the inverse weights which can be
derived in several ways and, in this case, represent the probability that laboratory (lab) sentinel surveillance detects
a lab-confirmed case.

Methods: We compare different weights in a simulation study. Weights are obtained from the proportion of
participating labs over all labs. We adjust these weights for attractiveness and density of labs over population. The market
share of sentinel labs, as estimated by the econometric Huff-model, is also considered. Additionally, we investigate the
effect of not recognizing sentinel labs as sentinel labs when they report no cases. We estimate the bias associated with
the different weights as the difference between the simulated number of cases and the estimate of this total from the
sentinel sample.

As motivating data examples, we apply an extended Huff-model to four pathogens under laboratory sentinel surveillance
in Belgium between 2010 and 2015 and discuss the model fit. We estimate the total number of lab-confirmed cases
associated with Rotavirus, influenza virus, Y. enterocolitica and Campylobacter spp.. The extended Huff-model takes the lab-
concept, the number of reimbursements and the number of departments, lab-density, regional borders, distance and
competition between labs in account.

Results: Estimates obtained with the Huff-model were most accurate in the more complex simulation scenarios as
compared to other weights. In the data examples, several significant coefficients are identified, but the fit of the Huff-
model to the Belgian sentinel surveillance data leaves much variability in market shares unexplained.

Conclusion: The Huff-model allows for estimation of the spatial and population coverage of sentinel surveillance and
through IPW-methods also for the estimation of the total number of cases. The Huff-model’s gravity function allows us to
differentiate inside an area while estimating from the full dataset. Our data examples show that additional data on the
participation to surveillance and practices of labs is necessary for a more accurate estimation.
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Background

Sentinel surveillance is defined as; ‘Surveillance based on
selected population samples chosen to represent the rele-
vant experience of particular groups’ [1]. Primary objec-
tives of sentinel surveillance are signaling trends [2] and
the early detection of events, such as outbreaks [3—5]. Par-
ticipants to sentinel surveillance are selected such that
representativeness, either by qualitative [6] or quantitative
approaches [7], for the aspects under surveillance is
reached. Since only a selection of health care providers
participate to sentinel surveillance, the total number of
cases cannot be obtained directly from the output. We
can however estimate this total using inverse probability
weighting with the probability of detection by sentinel sur-
veillance as inverse weight. Ideally, the proportion of the
population that is surveyed by the sentinel network is a
known quantity e.g. in primary-care sentinel networks a
fixed patient list might exist [8, 9]. These proportions can
then be used to obtain weights directly. For other surveil-
lance networks however, weights might not be available
directly. The desired proportions [10, 11] will ideally have
been established during the design of a sentinel network,
but since the actual network often is a network of con-
venience, driven also by resource restraints and the need
for voluntary participation, the actual proportion of the
population under surveillance often is unknown [4]. In
addition, it is not necessary to know the size of the pro-
portion to fulfill the primary objectives of sentinel surveil-
lance, as long as the proportion remains constant. How
best to estimate the probability of detection by the sentinel
surveillance therefore has mostly been a topic of discus-
sion among those interested in incidence-estimation from
sentinel data [12, 13].

The probability of detection, in this paper represented
by inverse weights, can be estimated in different ways,
each associated with different assumptions for unbiased
estimation. Weights can be estimated from the design of
the surveillance. If we make the assumption that the
average participant will detect the same number of cases
as the average non-participant located in the same area,
then the proportion of participants out of all health care
providers can be used as an inverse design-based weight.
It is possible however that participating to sentinel sur-
veillance is determined by participants’ characteristics. If
these characteristics are also related to the detected
number of cases, then the earlier stated assumption is
violated. Since some of these characteristics might be
spatially clustered, we can minimize their confounding
effects on the estimation by estimating the total number
of cases for smaller, more homogeneous (with respect to
these characteristics) areas. Likewise, we might opt to
estimate over smaller, more homogenous time periods.
Such solutions however are limited; smaller areas need
to sum to the total area, areas without participant will
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be unrepresented and smaller areas will increase vari-
ability in estimates. In addition, it seems likely that some
confounding characteristics will not be spatially or tem-
porally clustered. To correct for such characteristics, we
need to identify and quantify them and allow them into
the weight estimation procedure [14]. For example, by
adjusting the proportion of participants for the attract-
iveness of the participant (e.g. the size or expertise of the
participant), the attractiveness is now no longer neces-
sarily independent of participating to sentinel surveil-
lance and of the number of detected cases. Souty et al.
recently published an overview of such (adjusted)
design-based weights that can be used for incidence esti-
mation from sentinel data [15].

As an alternative to the design-based weights we sug-
gest the use of market share as estimated by the Huff-
model to derive weights [16]. A market share is defined
as the percentage of health care an institution is provid-
ing for a certain area. For a lab sentinel surveillance net-
work, this would represent the proportion of lab tests
performed on samples from a certain area by a lab out
of all lab tests on samples from that area. For a general
practitioners network this would represent the propor-
tion of consultations performed in a certain area by a
general practitioner out of all consultation performed in
that area. As in retail, the distance or accessibility, a con-
venient location, is an important consideration for pa-
tients looking for healthcare [17]. The Huff-model
contains a distance decay function to model this effect
on market shares. Generally, a provider will have less
market share in an area further away [16]. The Huff-
model further takes competition between providers into
account when estimating detection probabilities and al-
lows for aspatial attractiveness (e.g. the expertise or size
of the lab), which influences the market share irrespect-
ive of the distance.

The Huff-model has previously been used to estimate
catchment areas for and access to health care institutions
and to predict how a new institution might affect the
workload of existing institutions [18—21]. The Huff-model
has also been used to decide on the optimal number and
location of participants to sentinel surveillance [10].

Objectives of this study

We will focus on laboratory sentinel surveillance. Our
main objective is the estimation of the total number of
newly lab-confirmed cases during a year in the area
under investigation, Belgium, from a sample of lab-
confirmed cases detected by the sentinel surveillance
using IPW-methods. We compare how well design-
based (adjusted) weights and the weights estimated by
the Huff-model can estimate the total number of cases
in a simulation study. We then apply the best perform-
ing method to data from the Belgian laboratory sentinel
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surveillance. Labs that are not reporting cases are con-
sidered non-participants to sentinel surveillance by de-
fault. We investigate the effect of this assumption, by
including the true participation status (in the simulation
study) or an estimate for participation (in the data exam-
ples) in the analysis.

Methods

Methods for estimating the total number of incident lab-
confirmed cases

Inverse probability weighting methods use weights to
compute linearly weighted estimates of totals. The
weights (w,) are an estimate of the inverse of the prob-
ability of detection by the sentinel surveillance. To esti-
mate the total number of cases a Horvitz-Thompson-
type estimator is calculated as [22];

N pational = Z wyxNumber of detected cases,.

acnational

The estimated total N, for an area (a) is obtained by
multiplying the number of cases detected by the sentinel
surveillance by the inverse probability of detection. The
sum of the areas needs to equal the total area of interest.
The total area of interest of this study is Belgium (na-
tional). We use the existing administrative divisions to
divide this area in smaller sub-areas: NIS5 < NIS2 < Prov-
inces<Regions<National (from smallest to largest). We
estimate the total number of cases by province using
design-based weights.

Design-based weights
An unadjusted estimate (N) is obtained by using the pro-
portion of reporting sentinel labs over all labs as weight.

1 Sentinel lab .
- %b::s” = probability of detection by sentinel surveillance, N

= Z Number of detected cases,xw,

aenational

By adjusting the weight for auxiliary information x, we
account for the effect of this auxiliary information on
the probability of detection by sentinel surveillance. We
account for lab-density (= % at the NIS2-area
where the lab is located) and lab-attractiveness (a quan-
tity simulated for each lab) using a direct approach (
N jons and Nﬂm) and a calibrated approach (N,m,ml and
Ndens.cul) [14‘]

We calculate lab-density for the NIS2-areas (a;), we
use it to adjust the provinces’ weights (a,). One prov-
ince contains several NIS2-areas. When we sum over
all NIS2-areas, all values of the corresponding prov-
inces will be included.
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1 Lab-density(Sentinel labs,,)
w, =
“ Lab-density(all labs,,) '
Ngens = Z Mar y Number of detected cases *wy,.

ayenational " %2

. _ #labs,
with Ma = #population,

province-level (a,)

calculated on the NIS2 (a4;) and

N 4 is calculated as all attractiveness over the attract-
iveness of the sentinel labs:

Attractiveness(Sentinel labs),,
l/Wﬂz =

)

Attractiveness(all labs),,,
Z Number of detected cases,,*W,,.

ay€enational

N attr —

Calibrated weights are restrained by calibration equa-
tions, which guarantee that the weighted sums of the
auxiliary variables sum to their observed totals while
keeping the new weights as close as possible, as mea-
sured by a distance function, to the initial, uncorrected
weights. We opt for the linear distance function. Details
on the calibrated approach can be found in appendix.

Huff-model
The Huff-model is a spatial interaction model for retail-
ing and services and belongs to the family of probabilis-
tic market area models [16].

Asf

j
n

2455y

j=1

P, =

The Huff-model calculates the ‘market share’ (P,;) of
lab j for area a based on a spatial component S (a direct
path between the centroid of a and address of j in km)
and an aspatial component, attractiveness A (a simulated
quantity for lab j). Areas are NIS5-areas (municipalities).
Since the model is nonlinear (exponential weighting),
parameters a and S are estimated by ordinary least
squares regression after applying multiple step log-
centering transformation to the variables [23]. Once «a
and f3 are estimated from the sentinel data set, the mar-
ket share of every lab for every NIS5-area (a3) and sub-
sequently the market share of sentinel labs for area a
(Pa, sentinet) €an be estimated.

1

Was

= Duy sentinel = Probability of detection by sentinel surveillance,NHuﬂ

Z Number of detected cases,,*W,,

asenational

In contrast to the other weights, the weight associated
with the Huff-model allow for incidences and catchment
populations to be calculated. In the Huff-model each
sentinel lab potentially (depending on the distance decay
function) contributes to the weights in all areas. With
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the other methods, a sentinel lab only contributes to the
weight in the area in which it is located. In addition, a
detected case contributes to the total in the area from
which it originated with the Huff-model, while, with the
other methods, cases contribute to the area in which the
lab is located. Incidence estimates are obtained by divid-
ing the estimated number of lab-confirmed cases by the
total population/100 000 at the NIS5-area. The catch-
ment population is the result of summing the product of
the market share of a lab in a community and commu-
nity population over the communities.

An overview of the different methods is provided (Table 1).

Extending the Huff-model

Because we assume that not only the distance deter-
mines the spatial relation between a lab and a NIS5-
area, but also if and which regional borders have to be
crossed and the clustering of labs, we extended the
spatial component before we apply the model to the Bel-
gian laboratory sentinel surveillance network. The spatial
component is calculated as follows:

Sy = (Dap*Rad %Dy *“ xRB).

The areas a represent communities as defined by NIS5-
codes (N = 589). D,; represents the distance (in kilometers,
most direct path) between the location of the lab and the
centroid of the NIS5-area (since more detailed addresses
are not available for the cases). While the Huff-model takes
competition into account when estimating market shares
by dividing an area’s market over all labs active in the area,
we also allow for dependence between the distance function
and the number of laboratories in a 20 km radius Rad;. We
introduce a categorical variable to capture the effect of the
regional borders, which mostly coincides with the language
borders; Regional Border (RB,;). The three factors in the
RB,j-variable are the following:

Brussels = the region of the patient differs from the region of the lab, which is Brussels

Same = the region of the cases equals the region of the lab
All else = all other configurations (e.g.case located in Walloon region, lab located in the Flemish region)

Because we have no single measure for the attractive-
ness of a lab (4)), we included the following variables to
calculate the aspatial attractiveness component;
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The number of reimbursements per lab (RS)) is a con-
tinuous variable representing the number of tests for
which lab j is reimbursed. Depending on the pathogen
under investigation this can be a number specific to that
pathogen or specific to a group of pathogens. A lab-
concept variable (LC;) is introduced to separate ‘hos-
pital-associated’ laboratories from peripheral labs. The
factor is coded ‘H’ for ‘hospital-associated’-laboratories
and ‘P’ for peripheral labs. The number of different de-
partments of a lab is coded LD;. A department refers to
a different location at which lab-tests are also performed.
A normally distributed random effect for the laborator-
ies (b)) is also included. Data from the sentinel labs are
used for the model fit. An intercept is included in the
model. Model coefficients for which the 95% confidence
interval contains zero are set to zero. Details on the ex-
tended Huff-model and the coefficient estimation are
provided in Appendix.

A 95% bootstrap-based confidence interval is obtained by
resampling the records used for the coefficient and market
share estimation. A total of 1000 bootstrap samples are
used for the computation of each confidence interval.

To limit the variability associated with small probabil-
ities, we do not estimate the total number of cases in
areas with a weight higher than 10 (or sentinel coverage
lower than 10%). This is done for the design-based esti-
mators and the Huff-model.

Sentinel-status and zero-reporting

To study the influence of knowledge on the participation
status of labs, in contrast to having to assume no partici-
pation when no cases are reported, we calculate esti-
mates using prior knowledge on the participation status
within the simulation study and estimate the participa-
tion of labs in our data example. An additional “.S’ (e.g.
estHuff. NIS5. S) is added to the estimator to distinguish
it from the estimators for which participation is inferred
from reporting (e.g. estHuff. NIS5) in the simulation
study. We estimate participation as a discrete quantity
between 0 and 1 in the data example. Whenever a lab is
reporting cases associated to a certain pathogen, its

Table 1 Design-based calibrated estimators and Huff-model based-estimators

Input Augxiliary info Level of aggregation Name

Number of reported cases by lab and auxiliary info ~ None Province (auxiliary info on NIS2-level estHT.prov

on laboratories Attractiveness data by lab (arrondissement)) estHT.prov.attr
Lab-density (NIS2) estHT.prov.dens
Attractiveness and density estHT.prov.densattr
data

Number of reported cases by NIS5-code and by Attractiveness data and NIS5 (municipalities) estHuUfft.NIS5

reporting lab distance data
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participation status is 1 for that pathogen. If a lab re-
ports no cases for a certain pathogen, its participation
status is estimated from that labs’ reporting of other
pathogens. We calculate this quantity (Psentinellab) as
how many of the twelve most frequently reported patho-
gens, including viruses (e.g. influenza, rotavirus), para-
sites (e.g. Cryptosporidium spp., Giardia spp.) and
bacteria (e.g. Yersinia enterocolitica, Streptococcus pyo-
genes), are reported by that lab.

1 (if cases for the pathogen of interest were reported)

Psentinellab = { % (if no cases for the pathogen of interest were reported

With x being the number of pathogens (out of the 12
most frequently reported pathogens) for which cases were
reported by the lab for which we estimate Psentinellab.

If a lab is reporting cases associated with all twelve fre-
quently reported pathogens, it will be given a participation
status of 1. If it is reporting cases associated with six of
these pathogens, it will be given participation status of 0.5,
etc. A participation status of 0.5 will mean that only 50%
of the market share of that lab is added to the total senti-
nel market share. In the data example estimators obtained
with an estimated participation-status are marked by add-
ing Psentinel to the name of the estimator.

The simulation study

Varying scenarios: detecting cases

We generate a variable number of cases (range: 100—
1000) who are detected by 161 labs of which a varying
number participates in sentinel surveillance (range: 20—
100). The total number of labs as well as the location of
the labs in the simulation study corresponds to that of
the labs accredited for microbiology in Belgium. Cases
are given a NIS5-location. In the simulation study, the
background incidence over the different areas is con-
stant. We obtain this constant background incidence by
assigning NIS5-areas according to the population size at
that NIS5-area. Cases are detected by labs under four
different detection-scenarios. In general, we vary the
probability with which a case is detected by a certain
lab. In the first scenario, all probabilities are equal; cases
are detected by a lab irrespective of the distance between
the lab and the case or the lab’s characteristics. In the
second and third scenario it is either the distance or the
attractiveness that determines the probability by which a
specific lab will detect a case. In the fourth scenario, the
probability is determined by a combination of both; we
multiply the attractiveness by the distance decay. The
exponential distance decay function is: (most direct path
in km) "~ (-0.5). We add 0.1 km to the distances equal to
0 (lab at the centroid of the NIS5-area). The distance
decay function is chosen such that a lab located 10 times
further is 10 times less likely to detect a case. The
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attractiveness is sampled from a multinomial: ¢(1, 100,
1000, 5000, 10 000), p(2/3, 8/30, 1/30,1/30). The most at-
tractive lab therefore is 10 000 times more attractive
than the least attractive lab. Because of the steep dis-
tance decay function and the high differences in attract-
iveness, most cases are detected either by the closest lab
or by one of the most attractive labs in scenario 4. Each
scenario was run 1000 times for each number of varying
cases or labs (Table 2).

Performance of the methods
We calculate the RMSE as;

N represents the total number of lab-confirmed cases,
N represents an estimate of the total number of lab-
confirmed cases, n represents the number of samples.

The RMSE is presented over the number of cases and
labs.

The data of the Belgian sentinel laboratory surveillance
Data are provided by the Belgian laboratory sentinel sur-
veillance network. This network was previously described
in Muyldermans et al. [24]. The network relies on volun-
tary participating labs that submit data on a set of around
35 pathogens. The list of pathogens under surveillance is
constituted during a yearly meeting. The reported data
consist of patient demographic data; postal code, date of
birth and gender and data on the diagnosis; date of diag-
nosis, subspecies and type of test. We limit the dataset to
data from 2010 to 2015 and to four pathogens; Yersinia
enterocolitica, influenza, campylobacter spp and Rotavirus.
We chose four commonly reported pathogens that were
under surveillance before, during and after the period
2010 to 2015. An additional motivation for the choice of
pathogens was that these represent the different categories
of the nomenclature numbers; a pathogen-specific, a
group-specific and a non-specific number.

Data on reimbursed microbiology tests were obtained
from the Belgian National Institute for Health and Dis-
ability Insurance (INAMI-RIZIV) for the period 2010-
2015. The data consist of the number of reimbursed
tests by nomenclature number, year and lab. A specific
nomenclature number is available for Rotavirus antigen-
test or culture. A number associated with a test for a
group of enteric pathogens (< 6) is available for Yersinia
enterocolitica and Campylobacter spp.. No specific no-
menclature is available for influenza. When no specific
reimbursement data is available the total number of re-
imbursements is used.
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Table 2 Overview of the simulation scenarios

Detection Participating  Number  Probability of detection
scenario labs of cases Attractiveness  Spatial
of the labs: heterogeneity
Random Labs are 100- Uniform Uniform
) randomly 1000 ) )
Distance selected. The (100, Uniform C?stance
number of 150, 200, ecay
Attractiveness  labs varies 300,400, Multinomial  Uniform
) from 20 to 500, 600, ) ) )
Attracpveness 100 (20, 40, 700, 800, Multinomial Distance
and distance 60,80, 100) 900, decay
1000)

Some labs have reference activities with regards to
specific pathogens. These reference-labs are identified
and removed from the dataset for estimation of the total
number of lab-confirmed cases. Once the estimation
process is completed, their data are added to the esti-
mated total. We exclude the data from reference-labs
from the estimation process because these labs have sev-
eral unique characteristics and are not representative for
the other labs. For example, we assume their distance
decay function will be less steep as compared to the
average distance decay. They do however detect cases
and it is essential to allow them to contribute to the total
number of lab-confirmed cases.

Data on the location of microbiological labs is also ob-
tained from the INAMI-RIZIV. Data on the Belgian
demographics for the period 2010-2015 is obtained
from the general directorate statistics Belgium.

Results & interpretation

We provide an illustration of the output of a single simu-
lation run from scenario 4 (both spatial and reimburse-
ment heterogeneity, 80 sentinel labs, 500 cases) in Fig. 1.
For this illustration we estimate NIS2-area incidences both
with the unadjusted design-based weight and with the
Huff-model based weights. As stated in the methods-
section, the incidence with the design-based weight is to
be interpreted as the number of cases detected by sentinel
labs in a certain area over the total number of persons in
that area. For multiple NIS2-areas a design-based weight
could not be obtained since no sentinel labs were active in
those areas. They are left gray.

Results of the simulation
A discussion of the performance of the design-based
weights is included in Appendix.

Varying the number of cases

Under a varying number of cases the results obtained
by the weight estimated by the Huff-model have a
RMSE lower than or equal to results obtained using
other weights except for the scenario in which all labs
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have an equal probability of detecting a case (the sce-
nario without heterogeneity). In this scenario the
Huff-model is outperformed by the unadjusted
design-based weight (Fig. 2).

Varying the number of labs

Overall the Huff-model performs equally well to or better
than the design-based estimators under a varying number
of labs. There is one exception; the spatial scenario with
only 20 reporting labs. The higher RMSE in this scenario
is due to our choice to eliminate areas with a weight
higher than 10. Whenever only 20 labs participate to sen-
tinel surveillance, the mean weight is 8.05 (=161/20). In
the random scenario, in which all labs have the same mar-
ket share, this weight is small enough not to eliminate too
many areas. In a scenario with heterogeneity, areas will be
removed due to having too high a weight (Fig. 3).

Including the sentinel-status

After including the sentinel-status non-reporting sentinel
labs are recognized as sentinel labs. The Huff-model out-
performs the unadjusted weight in scenarios without het-
erogeneity. This is especially true in scenarios with few
cases or few sentinel labs. While the effect is smaller, it is
also present in scenarios with spatial and attractiveness het-
erogeneity (Fig. 4). A more detailed description of the effect
of including the sentinel-status is provided in Appendix.

Incidence estimation from the Belgian laboratory sentinel
surveillance dataset

We illustrate the model by presenting the reported and
estimated incidence and estimated market share for
Campylobacter spp. for 2015 (Fig. 5).

Model coefficients

For all four pathogens, the market share of a lab de-
creases as the distance from a lab to an area in-
creases. This effect interacts with the number of labs
in close proximity. Labs have a further reach if a
higher number of other labs are present in a 20 km
radius. The market share is larger when a lab re-
quested more reimbursements. This effect is largest
for campylobacter spp.. Whenever the lab is located
in Brussels its market share in the other regions is
smaller. These effects are significant for all pathogens.
A higher number of departments also increases the
market share for labs for campylobacter spp., but not
for the other pathogens. The lab-concept, peripheral
labs vs. hospital associated labs, has no significant ef-
fect for any of the pathogens. The precision of the
lab random variable is low for influenza (Table 3).
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Fig. 1 The Belgian NIS2-areas filled in for: the simulated incidence (a), the reported incidence (b), the market share of the sentinel surveillance (f),
the proportion of sentinel labs over all labs (d), incidences obtained with the Huff-model (e) and obtained with unadjusted design based
weights (c)
Model fit Reporting 0 cases = Not participating

While the extended Huff model has multiple significant
coefficients, the model fit is limited. We illustrate this by
plotting the predicted market share to the observed mar-
ket share for the sentinel surveillance dataset from 2015
for the four pathogens (Fig. 6).

Coverage of the sentinel surveillance and incidence
estimates

Once all market shares are estimated, which labs partici-
pate to the sentinel surveillance will determine the
coverage of the sentinel surveillance network. Since we
determine participation in two different ways, we
present two different coverage estimates.

Sentinel labs have a higher market share than the non-
sentinel labs. In addition, sentinel labs are located more
frequently in the more densely populated north of
Belgium. The difference between population coverage
and the proportion of sentinel labs over all labs varies
from 7% (Campylobacter spp.) to 11% (Y. enterocolitica)
in 2015. The difference between the population coverage
and the mean of the market shares, spatial coverage,
ranges from 3% for Campylobacter spp. to 9% for Y.
enterocolitica in 2015 (Table 4).

There is variation in the coverage between pathogens.
The population-coverage ranges from 58% for Campylo-
bacter spp. in 2010 to 36% for influenza in 2010. There
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Varying number of cases (labs=80)
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Fig. 4 Influence of the participation status in scenarios with (c & d) and without (a & b) heterogeneity

is ‘year to year’-variation for single pathogens. For influ-
enza the estimated spatial coverage of the sentinel sur-
veillance was 33% in 2010 and 41% in 2014. The year to
year variation in coverage for specific pathogens is
smaller than the variation between pathogens (Fig. 7).

Estimated participation

By assigning a participation status to labs that are not
reporting cases, the market share of sentinel labs increases.
This results in lower estimates for the total number of lab-
confirmed cases. Differences vary from 87 cases (Y. entero-
colitica, 15% of the initial estimate) to 654 cases (influenza,
36% of the initial estimate) (Table 5).

Discussion

In this study we compare different weight estimation
procedures for use in IPW-methods to estimate the
total number of lab-confirmed infectious disease cases
from sentinel surveillance data with a simulation study.
We find that the weight estimated with the Huff-model,
the market share, outperforms the use of other weights
in most simulation scenarios. In addition, market
shares have several desirable characteristics.

e With the Huff-model, the weight is the result of
a fitting process. With the other methods we ob-
tain the weight more directly as an (adjusted)
proportion. Directly adjusting the weight will re-
sult in a large RMSE if what is adjusted for does
not determine the number of cases reported by

the lab (e.g. adjusting for lab-density in the at-
tractiveness heterogeneity simulation scenarios).
The market share won’t be biased in a compar-
able way from introducing unrelated variables into
the Huff-model. In the absence of confounding
the coefficients will not be significant and will not
be used for further estimation.

The second important difference is how the distance
decay function allows us to differentiate inside an
area in a data-driven way. The probability to detect
cases decreases as the distance between case loca-
tion and lab increases. With the other weights, the
area that is aggregated over only has one denomin-
ator, so all additional spatial information from within
that area is lost. Choosing an area to aggregate over
is not a straightforward task and will be a comprom-
ise between eliminating differences between labs by
only aggregating over labs in close proximity and
having areas large enough to eliminate unwanted
variability. Not only the size, but also the shape of
the subareas will define the estimates. Administra-
tive areas are readily available and an interest might
exist in these specific areas, but labs might be lo-
cated close to the borders and therefore influenced
more by neighboring areas.

Finally the interpretation of the obtained estimates is
quite different; with the Huff-model we obtained the
number of cases per area, with the other methods
we obtained the number of cases detected by labs in
the area.
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Fig. 5 Reported (a) and estimated (c) incidence (/100 000 persons) and market share (b) per NIS2-area for Campylobacter spp. 2015, Belgian
laboratory sentinel surveillance

Limitations of the simulation study

The simulation study mirrors some aspects of the Belgian
sentinel labs surveillance network. These include the loca-
tion of the labs, areas of aggregation and associated popu-
lation sizes which were used to allocate cases to NIS5-
areas. We explored this approach previously with the ap-
plication of capture-recapture methods to surveillance
data [25]. Such an approach however has different limita-
tions, most importantly; the results of the simulation study
are specific to this setting. In the simulation study several

aspects are simplified, for example, we only simulate cases
from a constant background incidence. Additionally we
also opt for a simple case-definition without differences
between cases and the heterogeneity in the detection
probability of the labs is limited. With a real dataset, we
might expect design-effects such as higher detection prob-
abilities for more severe cases [26].

While adjusting for lab-density did not improve
any of our estimates, such a variable could be of
interest if it was computed differently. Souty et al.
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Table 3 Model coefficients for the Extended Huff model, 2015, Belgian laboratory sentinel surveillance (se standard error, P
peripheral, H Hospital, *represents an interaction term)

Fixed effects: mean (se) Campylobacter spp. Rotavirus Influenza Y. enterocolitica
Intercept 0.16 (0.06) 0.31 (0.09) 043 (0.19) 0.31 (0.10)
Distance —2.52(0.03) —1.96 (0.02) —2.64 (0.03) —0.89 (0.02)
Reimbursements 042 (0.06) 0.31 (0.10) 0.18 (0.08) 0.19 (0.09)
Lab-concept P (vs H) —-0.14 (0.14) —0.21 (0.25) —1.09 (0.86) -033(031)
Labs in Radius —0.10 (0.05) —0.16 (0.08) —0.11 (0.13) —0.02 (0.07)
Distance * Labs in Radius 0.16 (0.04) 0425 (0.03) 0.40 (0.05) 0.24 (0.03)
Number of departments 1.74 (0.27) 049 (0.44) 1.02 (0.92) —0.18 (0.24)
Borders: Brussels (vs ‘all else’) —1.05 (0.20) —1.95 (0.28) —4.94 (0.39) —2.18 (0.14)
Borders: Same (vs ‘all else’) —0.05 (0.04) —0.15 (0.03) —0.08 (0.04) —-0.05 (0.02)
Random effects: mean (se) of the precision Campylobacter spp. Rotavirus Influenza Y. enterocolitica
Lab-effect 11.26 (3.50) 4.12 (1.30) 067 (0.17) 2.7 (061)
P
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Fig. 6 Predicted (y-axis) vs observed (x axis) market shares for the four pathogens ((a) Campylobacter spp, (b) Yersinia enterocolitica (c) Rotavirus,
(d) Influenza), 2015, Belgian laboratory sentinel surveillance
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Table 4 Coverage estimates and the total number of cases (95% bootstrap-based confidence intervals) for the four pathogens. The
presented coverage-estimates are the proportion of reporting laboratories, the catchment population and the area covered by
sentinel surveillance (average of the market shares over all NIS5-areas). Participation is set equal to reporting, Belgian laboratory

sentinel surveillance

Germ Reporting 0 cases = Not participating
o

Campylobacter spp. 045

Influenza 0.35

Rotavirus 043

Y. enterocolitica 033

Reported Number of cases

Campylobacter spp. 8813
Influenza 7382
Rotavirus 2750
Y. enterocolitica 370

. oo e
052 049
043 040
052 051
044 035

Estimated number of cases (95% Cl)
14918 (11404-15446)

12059 (9454-13827)

4325 (3455-4657)

834 (740-1049)

found that including the density of GPs over popula-
tion improved their IPW-estimate [15]. In our simu-
lation study it was driven by the administrative
division in NIS2-areas. Future investigations could
focus on the effect of lab-density calculated over
custom areas with the labs at their center.

Limitations of the estimation of the market shares

Market shares are, in contrast to design-based weights, not
directly available. We need a model to estimate them. We
find that the model fit is limited. This can be caused by both;
a lack of power and unmodelled heterogeneity in the detec-
tion of cases by labs. To increase power, we could combine
several years of observations and include a temporal compo-
nent into the analysis. In addition, longitudinal analysis, e.g. a
time-series analysis would allow for the smoothing of
weights, which could be a solution for the high weights en-
countered in this study [27]. Furthermore, longitudinal
models might be used as possible outbreak/early event detec-
tion tools. Variation in coefficients (e.g. positivity rate of re-
imbursed tests) over time has been proposed as an outbreak
detection tool [28]. Keeping in mind however that temporal
variation might also be the consequence of changes in lab
tests or policies [29]. It is likely also possible to combine data
from similar pathogens to increase power. In addition to the
power necessary to estimate the coefficients of the extended
Huff-model, sentinel surveillance should also have enough
power, high enough market shares, in the areas of interest to
detect events and describe trends. The Huff-model allows us
to optimize power by taking lab-profiles into account [30];
market shares can be used to estimate both spatial and
population coverage associated with a specific lab. We find
that; the Belgian laboratory sentinel surveillance is a network
of convenience, with a high geographical overlap in the north
of Belgian and low market shares central and south. This un-
equal spatial coverage in combination with an exponential

distance decay function will lead to very small market shares
in some areas and consequently to unstable estimates and a
reduction of the effective sample size [31]. An arbitrary cut-
off or piecewise distance decay function can be used to avoid
a laboratory’s small market shares in distant areas, but might
lead to artificial observations. E.g. our choice to ignore
weights larger than 10 reduces the instability of the IPW-
estimator, but also leads to a considerable RMSE for the
Huff-model when there are few sentinel labs in a simulated
scenario with spatial heterogeneity. Other techniques to im-
prove the efficiency of IPW have been explored in epidemi-
ology, notably weight stabilization and augmented IPW [31].

Among the significant coefficients we did find, we found a
significant and positive relation between the number of reim-
bursements and the market share in all data examples. We
had however anticipated a higher effect size. Our results are
in accordance with previous research that established a large
variation in lab use by physicians [32]. We are likely missing
important variables which help determine labs’ market
shares. Several of these will be hard to capture as they can be
pathogen and time-specific. For example; an informal referral
system might exist among the labs. Referring samples is
straightforward as they are easy to transport. What consti-
tutes the attractiveness of a lab for cases will likely be differ-
ent from what constitutes attractiveness for other labs.
Another possible cause of heterogeneity in observed market
shares are local outbreaks that are unaccompanied by an
equal increase in testing behavior and that are not equally
detected by all labs active in that area. Consider, for example,
an outbreak in a hospital linked to one specific lab. An in-
crease in tests due to a local screening program or change in
attention/attitude that is not shared by all labs active in an
area, can also cause a limited model fit. State specific health
policies are a known cause of spatial heterogeneous reporting
in sentinel surveillance and could further explain our limited
model fit [11]. Health policies relevant to laboratory testing
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Table 5 Coverage estimates and the total number of cases (95% bootstrap-based confidence intervals) for the four pathogens,
2015, Belgium. The presented coverage-estimates are the proportion of laboratories participating in sentinel surveillance, the
catchment population and the area covered by sentinel surveillance (average of the market shares over all NIS5-areas). Participation
is estimated from reporting the most frequently reported pathogens, Belgian laboratory sentinel surveillance

Germ Estimated participation (Psentinel)
e

Campylobacter spp. 045

Influenza 0.35

Rotavirus 043

Y. enterocolitica 033

Reported Number of cases

Campylobacter spp. 8813
Influenza 7382
Rotavirus 2750
Y. enterocolitica 370

Covered pop Covered area

Total pop Total area
0.54 0.51
051 048
0.54 0.53
052 045

Estimated number of cases (95% Cl)
14438 (11110-14942)

11405 (9338-13010)

4203 (3395-4679)

585 (485-667)

however are tied to the federal level and therefore common
over all of Belgium. Public health policy did establish refer-
ence centers for laboratory tests. We excluded these labs
from the estimation process because of their unique
position.

In econometric studies ‘past performance’ is sometimes in-
cluded as laboratory/store-specific variable [33]. With such a
variable it is not necessary to identify all elements contribut-
ing to attractiveness. The significance of the random effect in
our extended Huff-model points to the usefulness of such a
parameter. Unfortunately such a variable would not be avail-
able for many labs as they have never participated in sentinel
surveillance and it is not possible to estimate this for non-
participating labs. A one-time measure, either through a sur-
vey or other data collection method could improve the
model fit.

Finally, data quality issues cannot be remedied by our
model and will contribute to a poor model fit. We assume
reporting consistency on a yearly basis; a lab that is partici-
pating to sentinel surveillance should report all detected
cases. Incomplete reporting (not reporting all detected cases),
low data quality (typos, missing variables such as case loca-
tion) and variations in the case-confirmation/definition
among laboratories (only reporting on cases detected with a
certain test or not being able to perform a certain test) will
lead to a poor model fit.

Limitations of the estimation of the incidence

A previous estimate of the representativeness of the Belgian
laboratory sentinel surveillance network, obtained through
analysis of the proportion of tests reimbursed by labs partici-
pating to sentinel surveillance, has found a coverage of
around 50% [34]. The central assumption of that study was
that sentinel labs report an equal number of cases as non-
sentinel labs given correction for the number of reimbursed
tests. We opt for a less strict assumption, by also correcting

for other variables, such as lab-density, location and regional
borders.

The absence of a participation status, not being able to dis-
tinguish zero-reporting labs (labs reporting no cases) from
non-participating labs, is a hindrance to all methods and ex-
plains why the Huff-model has a larger RMSE is some simu-
lation scenarios. This is an important limitation of the
Belgian laboratory sentinel surveillance. This is further com-
plicated by small yearly changes to the list of pathogens
under surveillance. The assumption that a sentinel lab that
did not report any cases did not participate and the assump-
tion that laboratories that are not reporting any cases partici-
pate with a probability estimated from the reporting of other,
frequently reported, pathogens are both strong. To illustrate
this, we present some observations. Eighty labs, out of 161
microbiological labs, have participated to sentinel surveil-
lance in 2015. A total of 35 pathogens were under surveil-
lance in 2015. No lab reported cases for all the pathogens,
two labs reported cases for more than 80% of the pathogens,
28 labs reported cases for more than 50% of the pathogens
under surveillance in 2015. So even for common pathogens
such as Rotavirus or influenza only 88 and 58% of all sentinel
labs reported cases. In addition to a participation status to
sentinel surveillance, it would be essential to know if a lab
has the technical capacity to perform a certain test. Through-
out this paper we assumed that all labs could detect all cases.

Confidence interval and full probability models

We apply a bootstrap algorithm for the estimation of confi-
dence intervals. This is time consuming and analytical
methods are available for direct confidence interval estima-
tion even in a small area estimation setting. For example;
using the weights obtained from the sampling design, effect-
ive sample sizes can be calculated [26]. Other methods are
available to obtain a full probability model for small area esti-
mation [35]. The nature of sentinel surveillance data, the
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quality and methodology of the systems, might however
make additional variance inflation components necessary
[36]. Additional research into the unmodelled heterogeneity
is necessary to come to such a variance inflation component.
Future extensions to the Huff-model include informative
priors in a full Bayesian framework. Sample weights have
already been incorporated in 3-stage Bayesian hierarchical
models, including variance estimation [26]. Other methods
(optimization algorithms such as harmony search) have also
been developed to estimate the coefficients of the Huff-
model [10].

Conclusion

We suggest the use of Huff-model based weights for estimat-
ing the coverage of a sentinel surveillance network and the
total number of lab-confirmed cases. Epidemiologists can
tailor fit the Huff-model to a specific surveillance setting in a
data-driven way. We estimate the population-coverage of the
Belgian laboratory sentinel surveillance from 36 to 58% for
four pathogens under surveillance from 2010 to 2015. Even
though the model fit to the observed sentinel market shares
is limited, several coefficients are found to be significant.
Data on the participation of labs to sentinel surveillance
would improve all methods under investigation. Variables on
laboratory-practices and capacities are not included in our
Huff-model, but could be topics of future research.

Appendix
Calibrated approach
We first introduce the linear distance function:

n 1
D(Wold weight » Wnew weight) = Zl‘zl Whew weight,i* 5
2
-1)7).
We calculate N jes.cq (calibrated on province totals)
as;
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where ¢, is the total of x in the population, £,, denote
the HT-estimator for the x- vector with expression,
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verse of T exists. p,,, represents the attractiveness of
participating laboratories on the NIS2-level. m

represents the lab-density = ﬁ%.

and

Tprow = , assuming that the in-

Fitting the extended Huff-model
We estimate the coefficients from the reported (sentinel)
data.

1. First prepare a file with all possible combinations
between NIS5-areas and labs. For these combina-
tions we calculate the distance between the NIS5-
area (in kilometer, most direct path D,j) and the lab
and the factor that represents the regional border
(RB_;) variable.

2. For every combination we add the lab-specific vari-
ables (the number of other labs in a radius of 20
km (Rad;), the number of departments (LDj), the
lab-concept (LC;: whether or not it is a hospital-
associated lab). Since we do not have area-specific
reimbursement numbers per lab, we add the total
number of reimbursements per lab (RS)).

3. Finally, we add the number of cases associated with
the combination. (The number of cases detected by
a certain lab originating from a certain NIS5-area.)

4. From the number of cases, for each NIS5-area we
calculate the observed market share:

Observed market share of lab; in area,
_ Number of cases detected by lab; in area,

Total number of cases detected in area,

5. Now that all variables are available we log-center
the variables to be able to fit them with a linear
model later on.

x
L =1
ogeentered(x) = log <geometric metm(x))

The geometric mean (average over the NIS5-area) of
variable x is estimated as:
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> (log(xlx > 0]))

n

geometric mean(x) = Exp
n

n represents the number of observations (over the
NIS5-area) available for variable x. (E.g. if there are 80
sentinel labs active in the NIS5-area, n = 80).

6. Once all independent and the dependent variable
are log-centered, we use a linear mixed model to fit
the data.

lc(market sharey;) = Blc(Dgj) + Bylc(RBg;)
+ B3lc(RS ;) + B,lc(LD;)
+ ﬂslc Rﬂdj
+,B6IC Rﬂdi */))7ZC(D,,]') + bj
+ &

b; is a random variable, representing a lab-specific ef-
fect (1|lab).

Results and discussion of the performance of the design-
based weights

Unadjusted weights

An unadjusted weight will only be unbiased if the aver-
age sentinel lab reports an equal number of cases as the
average non-sentinel lab in the same area and if all areas
contain at least one sentinel lab. The first condition is
met in a scenario without heterogeneity, but even with
80 sentinel labs and 250 cases the second condition is
likely not met if the chosen areas are provinces and the
selection of participating labs is random.

Adjusting for lab-density and lab-attractiveness (and
calibration)

Adjusting a weight will introduce bias if that what is ad-
justed for is not related to the number of reported cases
by lab. For example adjusting for attractiveness in a sce-
nario in which attractiveness does not determine detec-
tion, can lead to both an upward or downward bias. In
our simulation study most labs have low attractiveness;
therefore the bias will likely be upward. Lab-attractiveness
is a lab-specific variable, therefore it is area-independent
and calibrated estimates will not differ from non-
calibrated estimates. The lab-density is area-specific and
therefore sensitive to calibration.

Differences in lab-density between provinces are cap-
tured by the unadjusted weight as it is computed on the
province level. Differences in lab-density between NIS2-
areas are taken into account when lab-density adjusted es-
timates are computed on the province level. The adjusted
weights do not outperform the unadjusted weights in
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scenarios with spatial heterogeneity and will bias the esti-
mate in some scenarios. The reason for this observation is
that cases can be detected over area boundaries, while the
lab-density variable is area-specific. The lab-density of sur-
rounding areas also determines the number of detected
cases in a certain area, but is not taken into account.

Calibration weighting was introduced as a tool for re-
ducing the standard errors of many, if not most, finite-
population estimates. In this study a clear example of an
additional benefit, how calibration weighting can re-
move, or at least greatly reduce, the potential for nonre-
sponse bias in the resulting estimates, is found [37]. The
direct adjustment of weights for the density of the labs
over the population on the arrondissement-level is
biased since some arrondissements do not have any labs.
A part of the population is thus not taken into account
on the arrondissements level, but is on the province
level. The arrondissement population totals do not sum
up to the province population total. This leads to esti-
mates for province-totals that are biased upwards when
weights are not calibrated.

A distance function has to be chosen for the calibration
of the adjusted design-based weights. We explored only
the linear distance function. When the sample is small,
the linear approach may produce negative weights. While
this was not an issue during this study, other methods,
such as restricted calibration methods based on iterative
algorithms, might be applied in such a case [14].

Including the Sentinel-status

In scenarios without attractiveness heterogeneity, the
RMSE decreases over an increasing number of cases (ex-
cept for the weights adjusted for attractiveness hetero-
geneity). This is partly due to a decreasing number of
non-reporting labs and thus a decrease in the number of
labs wrongly classified as non-sentinel labs.

High weights are the result of few sentinel labs or low
market shares. High weights can lead to unstable esti-
mates. This problem can be solved by including more labs
in sentinel surveillance, but if we are unable to recognize
labs that are not reporting cases as sentinel labs simply in-
cluding more labs will not be sufficient. Non-reporting,
but participating labs are especially prevalent when there
are only few cases to detect or when there is high detec-
tion heterogeneity between labs. In such scenarios the
RMSE of the unadjusted and Huff-estimator increases as
the number of sentinel labs increases.

For the unadjusted estimator, when there are only few
sentinel labs, some provinces will not be taken into account.
As the number of sentinel labs increases, more provinces
will be included in the total and the estimate increases.

For the Huff-estimator another process is causing the in-
crease in RMSE. Observed market shares will be either very
high or zero, due to the simulated attractiveness
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heterogeneity. Small market shares are rarely observed. As
we increase the number of sentinel labs the chance to in-
clude a small market share increases. Including small mar-
ket shares will lead to coefficients that are closer to zero.
With coefficients closer to zero the estimated market shares
of non-reporting labs is higher. As these non-reporting labs
are seen as non-sentinel labs, the market share of non-
sentinel labs will increase, increasing the estimate.

Abbreviations
IPW: Inverse Probability Weighting; labs: Laboratories
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