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Abstract
We apply the recently developed adaptive non-harmonic model based on the wave-shape

function, as well as the time-frequency analysis tool called synchrosqueezing transform

(SST) to model and analyze oscillatory physiological signals. To demonstrate how the model

and algorithm work, we apply them to study the pulse wave signal. By extracting features

called the spectral pulse signature, and based on functional regression, we characterize the

hemodynamics from the radial pulse wave signals recorded by the sphygmomanometer.

Analysis results suggest the potential of the proposed signal processing approach to extract

health-related hemodynamics features.

1 Introduction
Hemodynamics is an essential ingredient of cardiovascular physiology which not only reflects
the forces the heart needs to pump blood through the cardiovascular system, but also reflects
the integrity of an individual’s physiological system. While there are many aspects to hemody-
namics [1–5], it is common to evaluate hemodynamics by assessing the pulse wave signals
recorded at different locations. For example, the brachial cuff systolic and diastolic blood
pressures derived from the pulse wave have important clinical applications, long established
beginning 1870 [6]. In addition to the blood pressure, the pulse wave signal itself contains an
abundance of clinical information. For example, in subjects with dysfunctional left ventricle,
different carotid pulse patterns can be observed, such as hyperkinetic pulse, pulsus alternans,
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pulse bisferiens, pulsus parvus et tardus, etc [7, 8]. However, it is difficult to obtain these
carotid pulse wave signals non-invasively [9]. On the other hand, the non-invasive pulse diag-
nosis (pulsology) based on, for example, the brachial or radial pulse signal, provides several
aspects of physiological information, such as the central pressure wave [10, 11]. Other indices
associated with the pulse wave signals recorded from different locations, including the augmen-
tation index [5, Section 6.1] [9, 12], are also available for clinical applications. Since there is a
great amount of information within the pulse signal, a deeper and more extensive understand-
ing of the pulse wave is undoubtedly important to better assess not only the cardiovascular but
also the physiological integrity.

The common approaches to analyzing the pulse wave signals can be classified into two cate-
gories—time domain analysis and frequency domain analysis. In both categories, it is necessary
to have either a representative pulse wave cycle, which reflects the interaction between the one
time heart pump driving force and the impedance to blood flow, or a sequence of pulse wave
cycles over a period of time, during which the heart rate is relatively constant. In the time
domain analysis, different landmarks or features are identified from the pulse signal. For exam-
ple, with the radial pulse signal is characterized by the height of the percussive wave, the height
of the dicrotic notch, the length of the cardiac cycle, the length of acute ejection, etc. Different
features with different physiological meanings can be obtained from the pulse signals recorded
from other areas, and these features have been widely used in clinics for health evaluation [8].
Furthermore, new mathematical methods have been applied to investigate additional physio-
logical information. For example, the central pulse wave could be reconstructed from the radial
pulse wave by a generalized transfer function, and then be separated into inflection and reflec-
tion waves in order to evaluate markers of early vascular aging [13]. In the frequency domain
analysis, the energy of different harmonic modes estimated by power spectrum analysis are
also potential features for clinical applications. According to the resonance theory [14], differ-
ent harmonic modes are associated with the integrity of different organs [15]. Several existing
works show the potential of this spectral approach, such as the relationship between the inter-
nal organ disorders and the spectral content [16, 17]. Although this approach is commonly
applied, it has two significant limitations.

The first limitation is the over-simplification of the model underlying the analysis tech-
niques. For example, heart rate variability (HRV) and pulsus alternans are often not used in
the analysis. Though the time domain landmark features reflect the hemodynamics from dif-
ferent aspects, they might be confounded by HRV and pulsus alternans. Since HRV and pulsus
alternans are inevitable physiological dynamics, without considering them in the model and
analysis, both time domain and frequency domain analysis results may be inaccurate and the
results might lead to incorrect interpretation. The second limitation is that it is not always
straightforward to determine a representative pulse cycle or a period of time when the pulse
wave signal is suitable for these analysis techniques, so that human intervention and subjective
decision making are required. Indeed, to determine a pulse cycle, it is necessary to define what
a pulse cycle means or, at least, to determine landmarks within the pattern to separate one
pulse cycle from another. For example, with an electrocardiogram (ECG) signal, the repeating
basic pattern is related to the electrophysiological activity of a normal heart beat, and a com-
mon chosen landmark for this is the R peak. As the R peak is usually dominant and significant,
determining the oscillatory pattern for an ECG signal is not difficult. However, for pulse signal
such as those acquired in this study, it is not always easy to define an oscillatory pattern or a
landmark, in particular when the signal is recorded from an abnormal subject. Even more seri-
ously, due to the possibility of a noisy record, the pulse cycle morphology can dramatically
change from one pulse to another or from one subject to another (See Fig 1). Although this
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difficulty can be mitigated to some extent by noise reduction algorithms, due to the non-linear
nature of the signal, their performance is not guaranteed.

To address these limitations, in this paper we apply a recently proposed and analyzed
descriptive model, called the adaptive non-harmonic model, to describe the pulse wave signals.
This model is characterized by what is referred to as the wave-shape function [18], which is
defined in order to capture what a pulse wave cycle should look like, including the features in
the time domain and frequency domain mentioned above. The main characteristic of the pro-
posed model is that the HRV and pulsus alternans are decoupled from the wave-shape func-
tion. A companion algorithm, referred to as the synchrosqueezing transform (SST), is applied to
provide an accurate estimation of the wave-shape function. SST is a recently proposed time-
frequency analysis technique that has a mathematical foundation and robustness to different
kinds of noise and different practical issues have been well established in the literature [19, 20].
By the adaptive non-harmonic model and SST, the above-mentioned limitations can be allevi-
ated. By a suitable manipulation of the estimated pulse wave cycle, a vector can be obtained as
an associated feature, which further leads to our final index, referred to as the global pulse sig-
nature (GPS) [18, 21].

This paper is organized as follows. In Section 2, we systematically model the pulse signal
using the notion of wave-shape function and the adaptive non-harmonic model. In Section 3,
we summarize the SST algorithm and discuss how the wave-shape function can be estimated
based on the SST and functional regression technique and then generate the GPS index. In Sec-
tion 4, we apply the proposed algorithm to study the radial pulse signal. The data collection
procedure, the physiological background of pulsology and the analysis result are reported. In
Section 5, we discuss our findings with their clinical interpretations and indicate directions for
future research.

2 Adaptive Non-Harmonic Model

2.1 Adaptive non-harmonic model for the pulse signal
In this section, we propose a mathematical model to describe the pulse wave signal. It is well
known that hemodynamics is a highly complex subject [2–4, 22, 23]. Different signals recorded
from different areas of the body by different instruments can shed light on different aspects
of hemodynamics. The question of modeling hemodynamics has been discussed by several
authors, who have proposed different models based on different physiological factors, such as

Fig 1. An example of the radial pulse signal recorded from a subject with congestive heart failure.Note that at the 3rd second
there is an obvious artifact, indicated by the blue arrow, and at the 5.5th second there are two shock noise events. The relatively
small pulse wave at the 3rd second is related to a premature atrial contraction. This is significant since patients with heart failure may
have more premature beats than a normal control.

doi:10.1371/journal.pone.0157135.g001
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pressure gradient, resonance, vibration, etc, have been proposed; see [1, 3, 4, 24] and the litera-
tures cited therein for detailed discussions of these models. While these models shade a light on
the understanding of the pulse wave signal, having a signal model to effectively quantify the
pulse behavior remains a distant goal. In particular, inevitable physiological aspects, such as
HRV and pulsus alternans, are commonly missed or disregarded in the existing models. Ignor-
ing them in the model and analysis, however, might not only limit the analysis but also lead
to incorrect findings. In this paper, we apply a different model and approach to resolve these
issues.

The pulse wave signal is oscillatory in nature, and there are several well-known features that
we consider here: how fast the signal oscillates, how much the oscillatory rate changes, how
differently the signal behaves inside an oscillation, etc. Understanding these features plays a
significant role in the data analysis, which can help to obtain more information about the phys-
iological system. Based on these observations, we consider the following adaptive non-har-
monic model [18] to model the pulse signal. This model differs from most existing models in
that it is purely phenomenological; that is, the parameters in the model are solely driven by
observations of the physiological signal, rather than by explicit and quantitative underlying
mechanisms.

2.1.1 Wave shape function. Based on the periodic nature of an oscillatory function, we
introduce the wave shape function, which is used to model how a signal oscillates over the
period. This idea has been previously studied in [18, 25, 26]. To resolve the difficulty of defin-
ing a period, we shall call a function f τ—periodic, where τ> 0, if (1) the periodic condition is
satisfied; that is, for all t 2 R and all k 2 Z, f(t + kτ) = f(t); and (2) for all 0< τ0 < τ the periodic
condition is not satisfied. Take two positive values δ and θ and a positive integer D. A 1-peri-
odic function s is called a wave shape function with parameters δ, D and θ if the following
conditions are satisfied. First, the function is differentiable and its derivative is a Holder contin-
uous function with the Holder coefficient α> 1/2. Denotebs to be the Fourier transform of the
function s. The second condition that a wave shape function should satisfy is that s has the unit
energy (unit L2-norm) and all the Fourier modesbsðkÞ, k 6¼ 1 are dominated by the product of δ
and the first mode coefficient; that is,

8k 2 N; with k 6¼ 1; bsðkÞj j � d bsð1Þj j: ð1Þ

Furthermore, it is desirable forbs to be mostly concentrated in the low frequency region, which
is quantified by θ by: X

n>D

jnbsðnÞj � y: ð2Þ

Conditions (1) and (2) reflect the practical finding of the spectral analysis of the pulse signals
[27–29], and it can be observed that the amplitudes of tenth and higher order harmonics are
negligible. Note that the commonly selected landmarks and lengths considered in the time
domain analysis could be understood as morphological features describing the wave-shape
function that is modeling how a pulse repeats itself. While there is a one-to-one relationship
between these landmarks and Fourier coefficientsbs, this relationship is nonlinear in nature.
Thus, while we could view the Fourier coefficients of the wave shape function as the “features”
of the pulse wave, their physiological interpretations are not directly related to the hemody-
namic interpretations of these landmarks. See Fig 2 for an example of the wave-shape function
describing the pulse wave signal.

2.1.2 Adaptive non-harmonic model. Using the notion of wave shape function, we now
describe our phenomenological model to capture the recorded pulse signal. Fix parameters
δ, θ, D for a wave shape function s. We consider the following Intrinsic Mode Type (IMT)
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functions to model the pulse wave signal. An IMF function, f, is a bounded and continuous
function with a continuous derivative that satisfies the following format:

f ðtÞ ¼ AðtÞsð2p�ðtÞÞ; ð3Þ

where A is a positive differentiable function and ϕ is a monotonically differentiable function.

Intuitively, A(t) describes how large the oscillation is at time t, and the positive function ϕ0(t),
the first derivative of ϕ, describes how fast the oscillation is at time t. To see how it is inter-
preted in this way, consider a constant positive function A and a linear function with a positive
slope as ϕ. Suppose ϕ(t) = ξ0 t, where ξ0 > 0. In this case, we know that f is a harmonic function
with the frequency ξ0 and the amplitude A. We could thus view Eq (3) as a generalization of
the harmonic function. Though the heart rate is not constant, normally it does not change sud-
denly. Therefore we need following conditions to better quantify the pulse signal. Fix a small
positive constant �. Then we assume that A(t) does not change too fast in the sense that its

derivative is bounded by �ϕ0(t) and that ϕ0(t) does not change too fast in the sense that ϕ@(t)

exists and is bounded by �ϕ0(t); that is, we have
jA0ðtÞj � ��0ðtÞ and j�00ðtÞj � ��0ðtÞ for all time t: ð4Þ

We would thus model the pulse wave signal by Eq (3) with the Condition (4), and call this
model the adaptive non-harmonic model.

We would call the monotonically increasing function ϕ(t) the phase function, ϕ0(t) the instan-
taneous frequency (IF), and A(t) the amplitude modulation (AM). An important issue regarding
the identifiability issue of the phase function, the IF and the AM cannot be ignored if the discus-
sion is to be rigorous. Indeed, there might be infinitely many different ways to represent a cosine
function g0(t) = cos(2πt) in the format a(t) cos(2πϕ(t)) so that a> 0 and ϕ0 > 0, even though
it is well known that g0(t) is a harmonic function with amplitude 1 and frequency 1. Indeed,
we could find infinitely many smooth functions α and β so that g0(t) = cos(t) = (1 + α(t))
cos(2π(t + β(t))), and in general there is no reason to favor α(t) = β(t) = 0. Clearly, before
resolving this issue, amplitude 1 and frequency 1 cannot be taken as reliable features to quan-
tify the signal g0. This identifiability issue has been well studied in [20, 30], finding that if
g0(t) = A(t)s(ϕ(t)) and g0(t) = (A(t) + α(t))s(ϕ(t) + β(t)) also holds, and both satisfy the Condi-
tion (4), then |α(t)| and |β0(t)| are both bounded by � for all time t 2 R. Note that the IF and
AM are always positive, but usually not constant. Clearly, when ϕ is a linear function with a
positive slope and a is a positive constant, then the model is reduced to the harmonic model
and the IF is equivalent to the notion frequency in the ordinary Fourier transform sense. The
conditions |a0(t)|� �ϕ0(t) and |ϕ0 0(t)|� �ϕ0(t) force the signal to locally oscillate “regularly”,
that is, around time t0, the signal A(t)s(ϕ(t)) oscillates like A(t0)s(ϕ(t0) − t0 ϕ0(t0) + ϕ0(t0)t), and

Fig 2. Left: an illustrative wave-shape function s with D = 5, δ = 0.59 and θ = 0. Right: an IMT function with the wave-shape function s
and time varying amplitude and frequency. Here the frequency is about 1.2 Hz.

doi:10.1371/journal.pone.0157135.g002
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hence the nominations of IF and AM. We mention that this model is a special case of a wider
class of model composed of multiple oscillatory components in the sense that we only have one
oscillatory component in the model. For details about a more general model, see [18–20, 30].

2.1.3 Physiological interpretation. The main reason we consider a time-varying fre-
quency and amplitude model like Eq (3) is to capture the physiological facts of HRV and pulsus
alternans.

Since the heart does not beat at a constant rate [31], the pulse signal should not oscillate
with a constant frequency. The non-constant heart rate is modeled by IF and hence the HRV
could be evaluated from analyzing IF. In the past decade, due to the health information embed-
ding in HRV and the trend towards personalized health care requirements, estimating the
HRV from the pulse signal extracted from different resources has attracted significant research
[32–34]. However, the existence of HRV is commonly ignored in the pulse analysis literature.
For example, in the traditional spectral analysis approach to the radial pulse, researchers need
to analyze the pulse signal over the interval where the heart rate closely resembles a constant
[15, 29].

The possible pulsus alternans is captured by the AM. This model is particularly important
in patients susceptible to heart failure since pulsus alternans is a manifestation of severe
impairment of the left ventricular systolic function [7]. An example of a wave-shape function
and an IMT function representing the pulse signal are shown in Fig 2.

2.1.4 Recorded pulse signal. In practice, noise is inevitable when recording signals. Thus,
we model the recorded pulse signal by

YðtÞ ¼ AðtÞsð�ðtÞÞ þ sðtÞFðtÞ; ð5Þ
where A(t)s(ϕ(t)) is the adaptive non-hamornic model for the pulse signal, σ is a slowly varying
smooth function quantifying the possible non-stationarity in the data collection process, and F
is a stationary random process with unit standard deviation describing the noise. See, for exam-
ple, [20] for a discussion of the noise. Here, we do not assume that the noise is Gaussian or
white, while the commonly encountered Gaussian white noise is a specific example. Since in
general the noise might be complicated with time-dependence and be far from Gaussian, we
take this noise model into account.

While the pulse signal could be recorded by different ways, like tonometer, photoplethymo-
graphy, video [33], etc, the wave-shape function could be different for different types of pulse
signals.

3 Methodology

3.1 Synchrosqueezing transform
It is a common practice to apply the Fourier transform to study oscillatory signals, in particular
the pulse wave signal in which we are interested [15–17]. As useful as the spectral analysis is,
however, it is well known that when the signal is not composed of harmonic functions, the
power spectrum determined by the Fourier transform might be misleading. For spectral pulse
wave analysis, since HRV and pulsus alternans are inevitable, in practice analysts must care-
fully choose the signal. But there is still no guarantee that the HRV and pulsus alternans influ-
ence could be eliminated, and this could become a confounder in the analysis.

While the oscillatory signals with time-varying AM and IF are ubiquitous, much effort has
been extended over the past few decades to address this problem, and several approaches have
been proposed, ranging from empirical mode decomposition and its variations [35–37], to
optimized window and the approximation theory approach [38, 39], to name but a few. More-
over, research interest has recently been extended to multivariate time series analysis [40–44]
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to further take the spatial information into account. Among the different approaches, one
active field regarding this issue is time-frequency (TF) analysis. Based on different principles,
several TF analysis techniques have been proposed. Typical examples include linear methods
such as the short time Fourier transform (STFT) and the continuous wavelet transform
(CWT), or the quadratic methods such as the Wigner-Ville distribution or the Cohen class.
We refer the reader to a standard textbook [45] for more information. While these methods
have attracted a great deal of attention in different fields other than signal processing, they are
limited by either the Heisenberg uncertainty principal or the mixing issue. We demonstrate
this idea by discussing STFT. The main idea forming the basis for STFT is dividing the signal
into overlapping small pieces, and then studying the spectral behaviors over these small pieces.
Mathematically, for a function f, its STFT associated with a window function h(t) can be
defined as

V ðhÞ
f ðt; ZÞ :¼

Z
f ðsÞhðt � sÞe�i2pZðt�sÞds ð6Þ

where t 2 R is the time, Z 2 R
þ is the frequency, h is the window function determined by the

user—for which a common choice is the Gaussian function with kernel bandwidth σ> 0, i.e.
h(t) = (2πσ)−1/2 e−t

2/σ2. However, the Heisenberg uncertainty principal limits how well the spec-
trum could be estimated over each piece, thereby limiting the STFT. Similar discussions hold
for CWT and other linear TF analysis techniques, and we refer the reader to [45] for details. In
the current work, in order to capture the hemodynamics, which have oscillations on the order
of 1 second, we run STFT with σ = 0.5 so that the window is not too long to lose the dynamic
information, and is not too short to cause a numerical artifact.

To handle these fundamental issues, a nonlinear TF analysis technique, synchrosqueezing
transform (SST) [19, 20], which is a special reassignment technique (RM) [46], is proposed to
obtain a sharper time-frequency representation. Since these techniques were introduced, they
have been widely applied in different fields; see [47] for a summary of its applications in differ-
ent fields.

Here we briefly summarize SST, and refer the reader to [46] for RM. We mention that the
SST could be applied to different linear TF analysis, like STFT, CWT, wave packet transform
[25] or S-transform [48] and theoretically the results do not depend significantly on the chosen
linear TF analysis. But to simplify the discussion, we choose to do the analysis with STFT. The
Matlab code for the SST algorithm based on both CWT and STFT can be downloaded from
https://sites.google.com/site/hautiengwu/home/download. In brief, the SST sharpens the TF
representation determined by STFT by reallocating the STFT coefficients along the frequency
axis to the “correct” frequency slot which represents the IF of an oscillatory component. Math-
ematically, The SST of f is defined as

SðhÞf ðt; xÞ :¼ lim
a!0

Z
V ðhÞ

f ðt; ZÞ gaðjx� oðhÞ
f ðt; ZÞjÞ dZ; ð7Þ

where gα is an approximate δ-function in the sense that g is a fast decaying smooth function

with
R
g(x)dx = 1, so that gaðtÞ :¼ 1

a g
t
a

� �
tends to the Dirac delta measure δ supported at 0

weakly as α! 0, and with oðhÞ
f defined by

oðhÞ
f ðt; ZÞ :¼

�i@tV
h
f ðt; ZÞ

2pV ðhÞ
f ðt; ZÞ if V ðhÞ

f ðt; ZÞ 6¼ 0

�1 otherwise:

ð8Þ

8>><
>>:
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In plain language, by reading oðhÞ
f ðt; ZÞ, we collect all STFT coefficients indicating the existence

of an oscillatory component with frequency ξ to the slot ξ. Note that compared with RM, in
SST, the coefficients are reallocated along the frequency axis, so the causality is preserved; sec-
ond, in SST we reallocate the STFT coefficient instead of the spectrogram coefficient. These
two facts allow us to reconstruct the oscillatory components of interest, in particular when the
signal is noisy or is composed of several oscillatory components. It has been clearly found that
for the phenomenological model of the pulse wave signal of interest, the IF ϕ0(t) and the AM
A(t) can be accurately estimated from the recorded pulse signal [19, 20]. Precisely, we could

prove that at time t, the coefficients in SðhÞf ðt; xÞ are dominant when ξ� ϕ0(t). This property

allows us an accurate estimate of the IF ϕ0 by, for example, the curve extraction technique.

Denote the estimated ϕ0 by e�0. We can then estimate the amplitude modulation A(t) and the
phase function ϕ(t) by building

eRðtÞ :¼ hð0Þ�1

Z
fx: je� 0ðtÞ�xj��1=3g

SðhÞf ðt; xÞdx: ð9Þ

The estimator of A(t) is thus defined as eAðtÞ :¼ jeRðtÞj, and hence an estimator for ϕ(t),

denoted as e�ðtÞ, can be obtained by unwrapping the phase of the complex-valued signaleRðtÞ=eAðtÞ. We refer readers interested in SST to [19, 20] for the detailed numerical algorithms
and the theory beyond them.

Here, we show the results of pulse analysis by applying the SST in Fig 3. To demonstrate its
benefit on a noisy signal, we artificially add noise on the second half of the signal, and show
the result in Fig 4. In this example, the noise is an ARMA(1,1), where ARMA stands for autore-
gressive and moving averaging, time series determined by the autoregression polynomial
a(z) = 0.5z + 1 and the moving averaging polynomial b(z) = −0.3z + 1, with the innovation
process taken as i.i.d. student t3 random variables so that the signal to noise ratio, defined as

20 log stdðsignalÞ
stdðnoiseÞ , is 0 dB. It is clear that though the signal to noise is low, the noise is non-station-

ary since it exists only over a finite interval, and the noise has the fat tail behavior described by
the student t3 random variables. Thus, the SST algorithm could reliably extract the instanta-
neous frequency, so that we could obtain reliable HRV information.

3.2 Feature extraction by estimation of the wave shape functions
As discussed in Section 2.1, the main feature of interest for the pulse analysis is the wave-shape
function in the adaptive non-harmonic model, in particular in the pulse spectral analysis. In this
section, we describe an algorithm to extract the wave shape function. Note that since the wave-
shape function can be expanded by its Fourier coefficients, the pulse signal f(t) = A(t)s(ϕ(t)) can
be represented as

f ðtÞ ¼ AðtÞ
X
‘2Z

a‘ cos ð2p‘�ðtÞÞ þ b‘ sin ð2p‘�ðtÞÞ½ �; ð10Þ

where a‘ 2 R and b‘ 2 R are the Fourier coefficients of the shape function s. In this study, we
estimate the wave shape functions based on Eq (10) using the standard functional regression
[21, 49].

Consider the wave shape functions s with parameters δ, D, θ in Eq (5). To simplify our dis-
cussion, we assume that θ = 0 and that the noise is stationary, that is σ = 1. We would choose
D = 6 in this study, based on the discussion in Section 2. Thus, the pulse signal Eq (10)
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becomes

f ðtÞ ¼ AðtÞa0 þ AðtÞ
XD

‘¼1

a‘ cos ð2p‘�ðtÞÞ þ b‘ sin ð2p‘�ðtÞÞ½ �: ð11Þ

After discretization by the sampling period Δt> 0 over time interval [Δt,NΔt], the recorded pulse

signal is saved digitally as aN-dim vector, Y 2 R
N , so that its l-th entry is Yl = f(lΔt) +Fl, where

l = 1, . . .,N andF is a random vector satisfying var(Fl) = 1 for all l, which might not be Gaussian
and the covariant matrix might not be the identity. Denote the discretized estimators of A(t) and

ϕ(t) by eA 2 R
N and e� 2 R

N . Note that it has been well established the discretized estimation of

Fig 3. (a) The radial pulse signal R(t) recorded from a normal subject. It is also clear that the IF and amplitude modulation are not
constant due to the inevitable HRV and pulsus alternans. The peaks are marked by gray circles, and the lengths between two
consecutive peaks are shown. Note that there are two peaks around the second second, and we choose the one with the larger
value as the peak. (b) The time-frequency (TF) representation of R(t) determined by the synchrosqueezing transform. The dominant
curve in the TF representation is associated with the IF induced by the heart rate variability (HRV). It is clear that the pulse around the
5th second takes a longer time to finish, which leads to the slower instantaneous frequency. Indeed, the y-axis of the dominant curve
around time 5.3-th second is 1/1.15 = 0.87, which reflects how fast the signal oscillates at that moment. Note that the artifacts around
the 5.5 second and the 7.5 second do not play a major role in the analysis results.

doi:10.1371/journal.pone.0157135.g003
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A and ϕ are accurate with error of order � [20]. To simplify the discussion, we assume that the

estimates eA and e� are precise without error; that is, eAðlÞ ¼ AðlDtÞ and e�ðlÞ ¼ �ðlDtÞ for all
l = 1, . . .,N. In the general case, the analysis result will deviate by an error of order of �. We thus
construct the following “functional vectors”

c ¼ ½cT0 ; cT1 ; . . . ; cTD; dT
1 ; . . . ; d

T
D�T 2 R

2D�N ; ð12Þ

where ℓ = 0, . . .,D and cℓ, dℓ areN-dim vector whose k-th entries are

c‘ðkÞ :¼ eAðkÞ cos ð2p‘e�ðkÞÞ; d‘ðkÞ :¼ eAðkÞ sin ð2p‘e�ðkÞÞ; ð13Þ

Fig 4. (a) The radial pulse signal R(t) recorded from a normal subject that is contaminated by the autoregressive and moving
averaged noise generated from the student t3 i.i.d. random process from the 2.5-th second to the 5.5-th second, which is denoted as
Y(t). The radial pulse signal is the same as that shown in Fig 3. Note that there are several spikes in Y(t), which are generated by the
fat tail natural of the student t 3 random variable. (b) The time-frequency (TF) representation of Y(t) is determined by the
synchrosqueezing transform (SST). The dominant curve in the TF representation is associated with the IF induced by the heart rate
variability (HRV). It is clear that the TF representation determined by SST is robust to the noise even if the noise is time-dependent
with a fat tail distribution, while the dominant curve representing the instantaneous frequency is slightly deformed due to the noise.

doi:10.1371/journal.pone.0157135.g004
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where k = 1, . . .,N. As a result, the recorded pulse signal satisfies

Y ¼ gTc þ F ð14Þ

where g ¼ ½a0; a1; . . . ; aD; b1; . . . ; bD� 2 R
2Dþ1.

To estimate the parameters αℓ and βℓ from the functional vectors c, observe that the
(2D + 1) × (2D + 1) matrix ccT is diagonal dominant. Since EðDtFcTÞ ¼ 0 and var(ΔtFcT) =
O(LΔt). Thus we can estimate γ by

eg :¼ ðYcTÞðccTÞ�1
; ð15Þ

where eg ¼ ½ea0; ea1; . . . ; eaD;
eb1; . . . ;

ebD�T 2 R
2Dþ1, and hence estimate the oscillatory signal by

ef ðtÞ :¼ egTc: ð16Þ

When ef contains an accurate estimation of the wave-shape function s with L2 error of order �,
we could take the Fourier coefficients eg into account as the feature of the pulse signal. We call
the 2D + 1 dimensional vector eg the spectral pulse signature (SPS) for the recorded pulse signal.
Note that the ℓ-th component of the power spectrum of s could be estimated by ðea2

‘ þ eb2
‘Þ=4.

The main benefit of this approach is that the influence of HRV, which is modeled by IF, is elim-
inated automatically and the wave-shape function is better estimated.

3.3 Comparing the present method to previous ones
Here we summarize the difference between our approach and the commonly applied spectral
analysis [27–29]. Recall that in spectral analysis, the power spectrum of a selected recorded
pulse signal is evaluated and the energy of different harmonic modes are considered as features
of the subject, indicating aspects of physiological health. The selection criteria for the pulse
signal interval is that the heart rate is almost a constant [15, 29], since the power spectrum
approach is sensitive to the non-constant frequency and non-constant amplitude signal. The
first difference is that based on the adaptive non-harmonic model and SST, the instantaneous
frequency and amplitude modulation can be accurately obtained, so we do not need to select
an interval from a recorded pulse signal. Second, since the HRV and pulsus alternans are physi-
ologically inevitable, the proposed approach is more physiologically feasible.

Third, note that the information obtained from the spectral analysis is different from the
SPS. Indeed, under the assumption for Eq (11), we have the following direct expansion:

sðtÞ ¼
XD

‘¼�D

ŝð‘Þei2p‘t ¼ a0 þ
XD

‘¼1

a‘ cos ð2p‘tÞ þ b‘ sin ð2p‘tÞ½ �; ð17Þ

where a0 ¼ ŝð0Þ and for ℓ = 1, . . ., D, ŝð‘Þ ¼ a‘e
iy‘ , aℓ � 0, θℓ 2 [0, 2π), αℓ = 2aℓ cos(θℓ) and

βℓ = −2aℓ sinθℓ. Here, θℓ reflects the phase of the ℓ-th harmonic component hidden inside the

wave shape signal. Clearly, since power spectrum analysis commonly takes ĵsð‘Þj2 ¼ a2‘ , the
phase information of the ℓ-th harmonic component is missed. However, in SPS the phase
information is preserved and the hemodynamics could be more faithfully captured.

4 Testbed: the radial pulse diagnosis
To test how well the proposed adaptive non-harmonic model and the algorithm work in prac-
tice, in this section we study the radial pulse wave signal on congestive heart failure subjects.
The signals are recorded from three landmarks. First, the radial styloid process; second the
middle position between the radial styloid process and the palm and the proximal point with
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the same distance from the first to the second location. We mention that these three locations
are commonly recognized in the pulse diagnosis; the first one is called guan, the second one is
called chun and the third one is called chi. We thus use guan, chun and chi to refer to these
three locations in this study.

4.1 Material
All protocols in this study were approved by the Institutional Review Board of Chang Gung
Memorial Hospital, Linkou, Taoyuan, Taiwan (93-6288), Taiwan and written informed con-
sent was obtained from all patients. Nineteen normal subjects without history of heart disease
are included in the control group, and 17 subjects with congestive heart failure (CHF) are
included in the study group. The diagnosis of CHF subjects is based on the criteria indicated by
the Framingham heart study. The participants were invited for pulse examination in a quiet
and temperature-controlled room in Chang Gung Memorial Hospital, Linkou branch, Taiwan.
Pulse wave signals were recorded from chun, guan and chi positions of both hands by a tonom-
eter (Wang’s sphygmometer, PDS-2000). The sampling rate of the signal is at 100Hz. For each
subject, we collect 10 seconds signal for each position on both hands, and repeat 2 or 3 times.
The pulse wave was recorded in sitting position with the wrist comfortably resting on a small
pillow at the level of the heart.

We recruited 17 patients with CHF for the study group and 19 normal individuals for the
controls. The age of the study and control group are 64.3 ± 23.7 and 63.2 ± 15.8 respectively.
The male/female ratio were 15/7 in the study group and 10/10 in the control group. There were
no significant differences in age or sex. As a result, we obtain 53 (respectively 39) pulse wave sig-
nals recorded from chun from the normal (respectively CHF) group, 55 (respectively 34) pulse
wave signals recorded from guan from the normal (respectively CHF) group and 50 (respec-
tively 41) pulse wave signals recorded from chi from the normal (respectively CHF) group.

4.2 Statistical Analysis and Global pulse signature (GPS)
To test if the SPS indices of the normal group differ from those of the CHF group, we apply the
currently developed one-way ANOVA for functional data, called the globalized pointwise F
(GPF) test [50]. For readers having interest in this technique, we refer them to [50]. In this
study, we consider p values less than 0.01 as significant.

As the SPS index is a high dimensional vector, it is not easy to visualize. To provide an easy-
to-use index for the pulse diagnosis, we consider the following approach to integrate the informa-
tion in the SPS index. Suppose from a fixed position of the i-th subject we obtain a SPS index bg i.
The associated outcome of this SPS index is denoted as yi, and yi = 1 (respectively yi = 0) means

the subject is in the CHF group (respectively control group). Thus we have the dataset fbg i; yigNi¼1.
When the SPS index is located in the 2D + 1 Euclidean space and the sampling size is limited, we
apply the partial least squares (PLS) regression to find a linear regression model by projecting
SPS and the response variables to a new space. Here we briefly recall the PLS regression. PLS

regression finds components fromX ¼ fbg igNi¼1 that are relevant for the outcome Y ¼ fyigNi¼1 by
seeking a set of components that performs a simultaneous decompositionX and Y with the con-
straint that these components explain as much as possible of the covariance between X and Y.
Then the decomposition ofX is applied to predict the group. For details about PLS regression,

see [51]. Suppose the PLS regression coefficient is b 2 R
ð2Dþ1Þ�1. Then the prediction result

under the linear regression model for bg i, denoted as byi :¼ ½1 bg i�b 2 R, is referred to as the global
pulse signature (GPS) index. The GPS index is integrated information derived from the SPS
index, which reflects the subject’s condition of interest.
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For the purpose of prediction based on GPS, we can further apply the receiver operating
characteristic (ROC) to determine the threshold to classify the subjects into two groups. We
report the sensitivity, specificity, accuracy and the area under curve (AUC) to evaluate the clas-
sification result. The confidence interval (CI) of AUC is evaluated by 1000 bootstrap replicas.
To assess how the results based on PLS and ROC will generalize to an independent data set, we
run leave-one-out cross validation (LOOCV) 200 times for each position of both hands, and
report the accuracy.

4.3 Results
First, we show the synchrosqueezing transform of the pulse wave signal from a subject with
CHF and the associated estimated wave shape function in Fig 5. Note that due to the inevitable
deviation, for example the one at the 4-th second, and the HRV, the power spectrum estimated
from the pulse wave signal is spreading. Note that estimating the wave shape function could be
viewed as the power spectrum analysis of the pulse wave signal after correcting the IF and AM.
In other words, as we could estimate IF and AM accurately from the pulse wave signal, we
could resample the signal according to the estimated IF and then normalize the signal by the
estimated AM.

Fig 5. (a) The pulse signal recorded from a subject with congestive heart failure (CHF), with the y-axis as the arbitrary unit. (b) The
estimated wave shape function for the subject with CHF. (c) The time-frequency (TF) representation determined by the
synchrosqueezing transform. It is clear that the pulse around the 2.5th second takes a longer time to finish, which leads to the slower
instantaneous frequency (the dominant curve in the TF representation is around 0.9 Hz at time2.5th second). It is also clear that the
instantaneous frequency is not constant due to the inevitable heart rate variability (HRV). Note that while there is a significant
deviation at the 2.5-th second, the estimation result catches most of the shape information. (d) The power spectrum of the estimated
wave shape function shown in (b).

doi:10.1371/journal.pone.0157135.g005
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The set of SPS indices of different groups from different positions is shown in Fig 6. We
could see that the means of the normal group and the CHF group are different. The GPF func-
tional ANOVA test shows that the SPS indices evaluated from all positions on both hands are
significantly different. Except for the p value of the chun position on the right hand, which is
4.4 × 10−4, the p values of other positions are<10−4.

Then we apply PLS to obtain the GPS index to distinguish the two groups. The histogram of
GPS indices determined from different positions on both hands are shown in Fig 7. It is clear
that the GPS of subjects in the CHF group is smaller than that of the control group. The ROC
analysis results, including the sensitivity and specificity and AUC, from different positions are
shown in Fig 8. The sensitivity, specificity, accuracy, AUC and the accuracy of LOOCV of the
GPS determined from different positions on both hands are summarized in Table 1.

Fig 6. The deviation from themean of each entry of the spectral pulse signature (SPS) is shown in the error bar plot. The
error bar is determined by the standard deviation. In the top row, the distribution of SPS determined from guan, chun and chi
positions of the left hand are shown from left to right. In the bottom row, the distribution of SPS determined from guan, chun and chi of
the right hand are shown from left to right. The results of the normal subjects are shown in the gray error bar, and those of the
subjects with congestive heart failure are shown in the black error bar.

doi:10.1371/journal.pone.0157135.g006

Fig 7. The histograms of GPSs determined from chun, guan and chi positions on the left (respectively right) hand are
shown on the left, middle and right subfigures on the top (respectively bottom) row. The normal group is shown in the gray
color and the congestive heart failure group is shown in black. Gray stars represent the determined thresholds by the ROC binary
classification.

doi:10.1371/journal.pone.0157135.g007
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5 Discussion
In summary, in this paper we study the physiological signal by the adaptive non-harmonic
model, the SST and the functional regression technique. The usefulness of the proposed
scheme is supported by an encouraging analysis result of the radial pulse signal. Although we
analyze the radial pulse signal as the test case for this study, it should be noted that the pro-
posed model and analysis technique could be applied to other pulse signals obtained by differ-
ent instruments. For example, contact photoplethysmogram (PPG) measurement [52] or
PhysioCam non-contact PPG measurement [33], which represent the changes of blood volume
in the vessel obtained through an optical transmission measurement or real-time camera
images, and hence reflect the change in vascular blood volume associated with the cardiac beat.
While these signals represent different aspects of the hemodynamics than the radial pulse sig-
nal we study in this paper, we could expect to obtain a broader angle of view about human
health if information obtained from these signals could be combined. We will report the
research progress in the future work. Since the potential of the SST and other nonlinear TF
analysis techniques have been shown in this study and other clinical problems, for example,

Fig 8. Left (respectively middle and right): the receiver operating curve (ROC) of the global pulse signature (GPS) of the
chun (respectively guan and chi) position on the left hand is shown in the black curve and that of the right hand is shown in
the gray hand. Black and gray circles are the optimal operating point of the ROC.

doi:10.1371/journal.pone.0157135.g008

Table 1. Sensitivity (SEN), specificity (SPE), accuracy (AC), the area under curve (AUC) and the accuracy of the leave-one-out cross validation
(LOOCV) of the global pulse signature evaluated from different positions on both hands. The confidence intervals of the AUC are reported in
parentheses.

Left hand

SEN SPE AC AUC LOOCV

chun 0.87 0.9 0.88 0.92 (0.81-0.96) 0.8

guan 0.89 0.79 0.85 0.91 (0.85-0.96) 0.74

chi 0.94 0.78 0.87 0.89 (0.8-0.95) 0.74

Right hand

SEN SPE AC AUC LOOCV

chun 0.87 0.79 0.84 0.89 (0.79-0.95) 0.74

guan 0.94 0.73 0.85 0.91 (0.83-0.95) 0.79

chi 0.94 1 0.96 1 (0.97-1) 0.94

doi:10.1371/journal.pone.0157135.t001
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[53–55], by taking the wave-shape model into account, we could expect a broader application
and better analysis results.

We also point out the relationship of the pulse signal analysis results with the traditional
Chinese medicine (TCM) theory. In short, the results we obtained in this study could lead to a
potential means to help establish the foundation of TCM theory. See Fig 9 for an illustration of
the summary of the pulse diagnosis theory in the TCM theory. Note that while TCM has been
widely applied in the eastern culture, up to now, a systematical/scientific theory understanding
the mechanism beyond pulse diagnosis is not yet well established [56], but its usefulness has
been demonstrated [58]. There are several studies based on hemodynamics aiming to under-
stand the mechanism; for example, Wang et. al. [24, 59] proposed that the pulse wave consists
of numerous harmonic waves, and each harmonic wave is associated with an internal organ
and carries information of different meridians over the body. That study also noted that the
harmonic waves of the upper, middle and lower section of the body may correspond to the
three sections of pulse in timeline and that the waveform on both hands are not totally the
same. On the other hand, our approach is purely from the phenomenological viewpoint and
adaptive harmonic analysis. In our results, the classification result of the CHF group and the
normal group is better on the right hand side, especially the right chi. Since the right chi posi-
tion demonstrates the most significant difference between groups, it may reveal the importance
of the right chi (kidney yang) signal in evaluating the clinical condition of CHF. According to
TCM theory, kidney yang is the fundamental support to maintain the human life. In Western
medicine, the hemodynamics of renal artery, such as the blood pressure, plays an important
role in regulating the overall whole cardiovascular function. On the other hand, a possible
cause for this observation is that the pulse pressure of the right arm is usually higher than the

Fig 9. An illustration of anatomical locations associated with the terminologies used in pulse diagnosis. In the TCM pulse
diagnosis, it is stated that the pulse on the right hand manifests the condition of Qi [56, 57], while the pulse on the left hand reflects
the blood. For different pulse positions, left chun, guan and chi reflect the heart, the liver, and the kidney respectively; the right chun,
guan and chi reflect the lung, the spleen, the kidney respectively. The left chi manifests mainly the kidney yin, and the right chi
manifests mainly the kidney yang (the Life Gate in TCM).

doi:10.1371/journal.pone.0157135.g009

Modeling the Pulse Signal by Wave-Shape Function and Analyzing by SST

PLOSONE | DOI:10.1371/journal.pone.0157135 June 15, 2016 16 / 20



pulse pressure of the left arm. It is presumed that the pulse wave signal of the right arm may
have a higher signal-to-noise ratio than the pulse wave signal of the left arm. The left chun and
right guan position are the two second important roles in our analysis. According to TCM the-
ory, the left chun position (heart) manifests the general condition of the cardiovascular system,
hence our results are consistent with clinical experience. Thus, our findings partially support
the pulse diagnosis theory in TCM that the waveforms on different positions of radial artery
contain different information. A similar finding was reported by Young et. al., who found that
the although the augmentation indices determined from the radial pulse waves recorded from
chun, guan and chi are not significantly different, the estimated aortic augmentation indices
determined from the radial pulse waves recorded from chun, guan and chi are not identical
[60]. In conclusion, since the study of pulse diagnosis from different aspects is an active field,
we would expect our proposed model and method could help to further study the experiences
and working practice of pulse diagnosis, e.g. the nature and dynamic of disease, and its rela-
tionship to modern hemodynamics.

Limitations of this study should also be mentioned. First, the tonometer (PDS-2000) we
applied in this study records only the two-dimensional data (pressure-time) of the pulse. Since
more advanced instruments now available can obtain three dimensional data [61], further study
should be undertaken. Second, although the phenomenological model we propose is capable of
capturing IF and AM as well as the wave shape function, it is clearly not the optimal solution. It
is clear that there is a more complex interaction between IF, AM and the wave shape function
than what we consider in the adaptive non-harmonic model. On the one hand, a more general
model, like the time-varying wave shape function, could be considered based on the physiologi-
cal background. On the other hand, we conjecture that this relationship might be better cap-
tured by combining the existing hemodynamic models with the proposed phenomenological
model. This finer model might better capture the physiological information hidden inside the
pulse wave signal and lead to a better algorithm to better study the recorded pulse wave signal.
A systematic study and its application of this issue will be reported in future work. Moreover,
from the clinical viewpoint, the sample size in this study is limited, and the interesting clinical
problems, like outcome prediction or early CHF diagnosis are not discussed. Also, to simplify
the discussion and avoid possible confounders, in this study we limit our analysis to subjects
with CHF. Thus, we could not make the final conclusion about the pulse diagnosis. To use the
research results in clinics, a larger scale clinical study with CHF and other diseases is needed to
conclude the current findings, and we will report our continuing research in the future.

Supporting Information
S1 Code. The Matlab code. The Matlab code used to analyze the pulse wave signal.
(ZIP)
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