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ABSTRACT

Methanotrophs are an important group of microorganisms that counteract methane emissions to the atmosphere.
Methane-oxidising bacteria of the Alpha- and Gammaproteobacteria have been studied for over a century, while
methanotrophs of the phylum Verrucomicrobia are a more recent discovery. Verrucomicrobial methanotrophs are
extremophiles that live in very acidic geothermal ecosystems. Currently, more than a dozen strains have been isolated,
belonging to the genera Methylacidiphilum and Methylacidimicrobium. Initially, these methanotrophs were thought to be
metabolically confined. However, genomic analyses and physiological and biochemical experiments over the past years
revealed that verrucomicrobial methanotrophs, as well as proteobacterial methanotrophs, are much more metabolically
versatile than previously assumed. Several inorganic gases and other molecules present in acidic geothermal ecosystems
can be utilised, such as methane, hydrogen gas, carbon dioxide, ammonium, nitrogen gas and perhaps also hydrogen
sulfide. Verrucomicrobial methanotrophs could therefore represent key players in multiple volcanic nutrient cycles and in
the mitigation of greenhouse gas emissions from geothermal ecosystems. Here, we summarise the current knowledge on
verrucomicrobial methanotrophs with respect to their metabolic versatility and discuss the factors that determine their
diversity in their natural environment. In addition, key metabolic, morphological and ecological characteristics of
verrucomicrobial and proteobacterial methanotrophs are reviewed.
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INTRODUCTION

The atmospheric concentration of methane (CH4) has been
increasing rapidly over the past quarter millennium due to

anthropogenic activities (Etheridge et al. 1998; Turner, Franken-
berg and Kort 2019). Currently, the amount of methane emitted
from sources exceeds the amount of methane taken up by sinks,
resulting in an imbalanced carbon cycle (Saunois et al. 2020).
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Consequently, the present atmospheric methane concentration
(1.86 ppmv) is 2.6 times higher than the preindustrial concen-
tration (Etheridge et al. 1998; Cai et al. 2016; Etminan et al. 2016;
Saunois et al. 2020). Since methane is a powerful greenhouse gas,
atmospheric methane is now estimated to contribute approxi-
mately 16% to global warming (Saunois et al. 2016). Moreover, an
increase in global temperature can induce additional release of
methane to the atmosphere, e.g. through permafrost thawing,
causing positive climate feedback that results in an acceleration
of climate change (Dean et al. 2018). Hence, it is important to
understand the microbial sources and sinks of methane (Stein
2020).

Each year, 548 to 678 Tg (1012 g) CH4 is emitted from vari-
ous sources into the atmosphere, of which 33%–54% and 46%–
67% are from natural and anthropogenic origin, respectively
(Kirschke et al. 2013; Dean et al. 2018). The majority of these
sources contain methanogenic archaea that catalyse the final
step of the biological degradation of organic matter by produc-
ing methane (Balch et al. 1979; Conrad 2020). The largest sources
of methane are wetlands, which are anoxic, water-logged soils
in which methanogenic archaea are present and active (Angel,
Claus and Conrad 2012; Bridgham et al. 2013; Evans et al. 2019).
Other natural sources of biogenic methane are aquatic systems
(e.g. lakes), marine systems (especially coastal sediments), ter-
mites and wild animals (Jensen 1996; Reeburgh 2007; Bastviken
et al. 2008; Brune 2010; Dean et al. 2018; Evans et al. 2019). Addi-
tional microbial processes that are implicated in methane pro-
duction include conversion of methylphosphonates by Thau-
marchaeota in the ocean and by cyanobacteria in freshwater
and terrestrial ecosystems (Metcalf et al. 2012; Bižić et al. 2020).
Natural sources in which methane is not produced microbially
but through abiotic processes include wildfires and methane
hydrates (located inside ocean floors and permafrost) (Buffett
2000; Vasileva and Moiseenko 2013; Dean et al. 2018). In addi-
tion, various geothermal systems such as fumaroles, mud vol-
canoes and hydrothermal vents emit 40 to 60 Tg CH4 annually
(Etiope 2009). Methane released from these geothermal systems
either has a thermogenic origin (e.g. formed through the ther-
mogenic breakdown of organic matter over millions of years),
an abiogenic origin (e.g. formed through the reduction of CO2 at
high temperature in the Earth’s crust) or even a biogenic origin,
produced by methanogens in the deep subsurface (Sherwood
Lollar, Lacrampe-Couloume and Slater 2006; Tassi et al. 2012;
Stolper et al. 2015). As is the case for several natural sources, var-
ious man-made systems emit significant amounts of methane
produced by methanogenic archaea. These sources include live-
stock (e.g. ruminants), landfills and rice paddies (Themelis and
Ulloa 2007; Carlson et al. 2017; Dean et al. 2018; Chang et al. 2019).
Other anthropogenic, non-biological sources are comprised of
fossil fuels (through mining, combustion and industry) and bio-
fuel/biomass (through combustion) (Hao and Ward 1993; Heede
2014; Hanaki and Portugal-Pereira 2018). The predominant sink
conversion of methane occurs chemically in the troposphere by
hydroxyl radicals (•OH) and to a lesser extent by chlorine and
oxygen radicals (Allan, Struthers and Lowe 2007; Rigby et al.
2017). In various ecosystems, methane is produced in deeper
anoxic layers that are covered by more oxidised sediments or
water columns. In oxidised zones such as those present in wet-
lands, and notably at the oxic-anoxic interface, methanotrophic
prokaryotes consume a major part of methane as energy and
carbon source, prior to emission to the atmosphere (Brune, Fren-
zel and Cypionka 2000; Conrad 2009). These microorganisms
therefore act as a biofilter for emissions of this potent green-
house gas (La et al. 2018). In addition, specialised high-affinity

methanotrophs present in soil seem to oxidise methane from
the atmosphere, although only present at a very low concentra-
tion (Holmes et al. 1999; Cai et al. 2016; Tveit et al. 2019). Consid-
ering the role methanotrophs play in mitigating methane emis-
sions, they are an important topic of study in understanding and
counteracting global warming.

METHANOTROPHIC MICROORGANISMS

Aerobic methanotrophs conserve energy by oxidising CH4 with
O2 to CO2. The first aerobic methanotrophs were discovered
and isolated more than a century ago (Kaserer 1905; Söhngen
1906). In the remainder of the twentieth century, numerous
novel isolates were described, all belonging to the Alpha-
and Gammaproteobacteria (Whittenbury, Phillips and Wilkin-
son 1970; Hanson and Hanson 1996). Methanotrophy is not
restricted to oxic environments, but can take place anaerobically
as well. Already decades ago, methane consumption in anoxic,
sulfate-rich marine sediments was observed, but the microor-
ganisms responsible for this process remained elusive (Barnes
and Goldberg 1976; Reeburgh 1976; Iversen and Jorgensen 1985).
At the beginning of the current century, a marine consortium of
methane-oxidising archaea and sulfate-reducing bacteria was
discovered, mediating sulfate-dependent methane oxidation
(Boetius et al. 2000). This finding was followed by the discov-
ery of a consortium of Methylomirabilis bacteria and Methanop-
eredens archaea, capable of coupling anaerobic methane oxi-
dation to denitrification of nitrite and nitrate (Raghoebarsing
et al. 2006). Hereafter it was shown that both the bacterium
and the archaeon were capable of methane oxidation indepen-
dently. Methanoperedens archaea are able to couple methane oxi-
dation to the reduction of nitrate (Haroon et al. 2013), iron (Beal,
House and Orphan 2009; Ettwig et al. 2016; Cai et al. 2018) and
manganese (Beal, House and Orphan 2009; Ettwig et al. 2016;
Leu et al. 2020), whereas Methylomirabilis bacteria (of the candi-
date phylum NC10) couple methane oxidation to the reduction
of nitrite (Ettwig et al. 2008, 2010; He et al. 2016; Versantvoort
et al. 2018). Remarkably, Methylomirabilis bacteria possess the
complete aerobic methane oxidation pathway and are postu-
lated to produce oxygen internally by reducing nitrite to nitric
oxide, which is subsequently dismutated into O2 and N2 (Ettwig
et al. 2010, 2012). Most aerobic and anaerobic methanotrophs
live in environments with moderate temperature and circum-
neutral pH (Bowman et al. 1993). Exceptions are several aero-
bic proteobacterial methanotrophs of the genera Methylocapsa,
Methylocella, Methylocystis and Methylosinus (Dedysh et al. 1998;
Dunfield and Dedysh 2010; Kip et al. 2011). These bacteria are
moderate acidophiles growing in acidic peat environments with
a pH as low as 4.2 and are frequently found as intracellular sym-
bionts of Sphagnum mosses (Raghoebarsing et al. 2005; Kostka,
Weston and Glass 2016; Kox et al. 2018). In addition, methan-
otrophs of the gammaproteobacterial genus Methylothermus are
thermophiles, growing in hot springs at temperatures up to 72◦C
(Bodrossy et al. 1999; Hirayama et al. 2011; Houghton et al. 2019).
In 2005, methane oxidation was observed in volcanic soils of the
Solfatara volcano (Campi Flegrei, Pozzuoli, Italy) that are char-
acterized by a high temperature (50 to 95◦C) and an extreme
acidity (pH 1.0) (Castaldi and Tedesco 2005). Two years later,
thermoacidophilic methanotrophs were isolated from hot and
acidic volcanic ecosystems at the Solfatara volcano (near Naples,
Italy), in the Uzon Caldera (Kamchatka, Russia) and in Hell’s gate
(Tikitere, New Zealand) (Dunfield et al. 2007; Pol et al. 2007; Islam
et al. 2008). Surprisingly, phylogenetic analyses revealed that
these microbes belong to the phylum Verrucomicrobia, refuting
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the dogma that all aerobic methanotrophs are part of the phy-
lum Proteobacteria.

METHANOTROPHS OF THE PHYLUM
VERRUCOMICROBIA

The first isolated verrucomicrobial methanotrophs were clas-
sified in the novel genus Methylacidiphilum (Op den Camp et al.
2009). These methanotrophs were observed to have tempera-
ture optima of 50 to 60◦C (Dunfield et al. 2007; Pol et al. 2007;
Islam et al. 2008). Currently, five Methylacidiphilum strains have
been isolated that differ enough, based on DNA-DNA hybridi-
sation and on the analysis of 16S rRNA and housekeeping
genes, to be classified as separate species (Erikstad et al. 2019):
Methylacidiphilum fumariolicum SolV, Methylacidiphilum infernorum
V4, Methylacidiphilum kamchatkense Kam1, Methylacidiphilum
sp. Yel and Methylacidiphilum sp. Phi (Table 1). The geothermal
ecosystems they were isolated from have an extremely low pH,
primarily as a result of the biogenic formation of sulfuric acid
(H2SO4) from the oxidation of hydrogen sulfide (H2S) (Schoen
and Rye 1970; Quatrini and Johnson 2018). Accordingly, the pH
optima of all isolated Methylacidiphilum strains range from pH
2.0 to 3.0. Still, the pH range in which these strains can grow
is much broader (Table 1). Methylacidiphilum fumariolicum SolV
was shown to grow up to pH 6 when it was slowly adapted
to higher pH (Mohammadi et al. 2017b). Moreover, this strain
was shown to grow even below pH 1 (Pol et al. 2007) (Table 1).
Through current culture-independent molecular methods,
clones related to the isolated strains were found at geothermal
sites across the globe, of which several could be novel species
(Fig. 1).

Since all isolated Methylacidiphilum strains were found in hot
and acidic geothermal habitats, the question arose whether ver-
rucomicrobial methanotrophs could have a more widespread
distribution in habitats with different physicochemical param-
eters (Dunfield et al. 2007). Therefore, Sharp et al. (2014) con-
ducted pyrosequencing of 16S rRNA genes on samples derived
from geothermal habitats, acidic peat bogs and fens with a
temperature range of 6.3 to 81.6◦C and a pH range of 1.8 to
8.6. Surprisingly, 16S rRNA gene sequences of verrucomicro-
bial methanotrophs were detected in the full range of 22.5 to
81.6◦C, but only below pH 5.0 (Sharp et al. 2014). From a sed-
iment sample of 22◦C and pH 2.6, the novel verrucomicrobial
strain LP2A was enriched and isolated when incubated with
methane as the sole energy source (Sharp et al. 2014). Inter-
estingly, the 16S rRNA sequence of this newly isolated strain
was only 90.6% identical to that of Methylacidiphilum inferno-
rum V4, isolated from hot and acidic soil sediment (Dunfield
et al. 2007). The novel mesophilic strain LP2A was subsequently
placed in the novel genus Methylacidimicrobium within the phy-
lum Verrucomicrobia (Van Teeseling et al. 2014). That same
year, three additional mesophilic strains within this genus were
isolated from geothermal soil at the Solfatara in Italy: Methy-
lacidimicrobium tartarophylax 4AC, Methylacidimicrobium fagopyrum
3C and Methylacidimicrobium cyclopophantes 3B (Van Teeseling
et al. 2014) (Fig. 1). These acidophiles have pH growth optima
of 1.0 to 3.0, while strain 4AC can even grow at pH 0.5 (Van
Teeseling et al. 2014) (Table 1). The major difference between
Methylacidiphilum and Methylacidimicrobium strains was thought
to be the growth temperature. Methylacidimicrobium strains were
reported to be mesophiles, with temperature growth optima of
30 to 44◦C and the apparent inability to grow at temperatures

above 49◦C (Sharp et al. 2014; Van Teeseling et al. 2014). How-
ever, recently, Methylacidimicrobium thermophilum AP8 was iso-
lated from Pantelleria island (Italy) with a temperature optimum
of 50◦C (Picone 2020), questioning the clear temperature-based
division between Methylacidiphilum and Methylacidimicrobium
strains.

Apart from the strains isolated from geothermal soils in Italy,
Russia and New-Zealand, 16S rRNA gene sequences belonging
to strains of the Methylacidimicrobium genus were detected in
hot springs and geothermal soil in other parts of the world
(Fig. 1). In addition, a metagenome-assembled genome (MAG)
representing a novel verrucomicrobial methanotroph genus
and species, Ca. ‘Methylacidithermus pantelleriae’ PQ17, was
obtained through sampling of geothermal soil on Pantelle-
ria island (Picone et al. 2020a). Interestingly, verrucomicrobial
methanotrophs do not seem to be restricted to geothermal habi-
tats (Pagaling, Yang and Yan 2014). Clones related to Methy-
lacidimicrobium strains were abundantly present in biofilms in
the crown of corroded concrete sewage pipes on Hawaii, which
suggests that verrucomicrobial methanotrophs have adapted
to man-made systems (Pagaling, Yang and Yan 2014) (Fig. 1).
These sewage pipes are characterised by a low pH and the pres-
ence of methane and sulfur compounds (e.g. H2S), which could
explain the abundance of verrucomicrobial methanotrophs in
this environment. Sequencing of samples from other acidic,
methane-rich environments could reveal whether verrucomi-
crobial methanotrophs are present in other non-geothermal
habitats.

Besides the importance of verrucomicrobial methanotrophs
in the environment, they could also be relevant in biotech-
nology and industry, as they are capable of producing valu-
able molecules such as methanol, glycogen, polyhydroxybutyric
acid, vitamins, compatible solutes and (thermostable) enzymes
(Kalyuzhnaya, Puri and Lidstrom 2015; Strong, Xie and Clarke
2015; Bodelier et al. 2019). Although still in its infancy, notable
examples of the biotechnological potential of verrucomicrobial
methanotrophs are the recently shown improved methanol pro-
duction (63% mole methanol produced per mole methane) by
Methylacidiphilum fumariolicum SolV (Hogendoorn 2020; Hogen-
doorn et al. 2020) and the purification of a thermostable, high-
affinity [NiFe] hydrogenase from the same bacterium (Schmitz
et al. 2020a).

KEY SIMILARITIES AND DIFFERENCES
BETWEEN VERRUCOMICROBIAL AND
PROTEOBACTERIAL METHANOTROPHS

Proteobacterial methanotrophs can be found in diverse oxic
environments in which methane is present, such as wetlands,
soil, peat lands, marine sediments, landfills and rice pad-
dies (Bodelier et al. 2019). On the contrary, verrucomicrobial
methanotrophs are almost exclusively found in acidic (pH < 3.5)
geothermal systems. Whether proteobacterial methanotrophs
are present in such acidic habitats is unknown. However, phy-
logenetic analyses of pmoA genes present in acidic geothermal
soil and mud pots show clustering with proteobacterial pmoA
gene sequences (Pol et al. 2007; Gagliano et al. 2014). This find-
ing suggests that verrucomicrobial and proteobacterial methan-
otrophs could share habitats, which could ultimately be proven
by the isolation of a proteobacterial methanotroph from an
acidic geothermal ecosystem where Methylacidiphilum or Methy-
lacidimicrobium were isolated from. Although mostly living in
vastly different habitats, they share their preference for the
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Table 1. Summary of the pH and temperature optima, isolation location and verified growth substrates of the isolated verrucomicrobial methan-
otrophs discussed in this review.

Strain
pHoptimum

(and range)
Toptimum (◦C)
(and range)

Verified growth
substrates Isolation location References

Methylacidiphilum
fumariolicum SolV

2 (0.8–6.0) 55 (40–65) CH4, H2, methanol,
propane, ethane

Acidic thermal mudpot,
Solfatara, Italy

Pol et al. 2007;
Mohammadi et al. 2017a;
Picone et al. 2020b

Methylacidiphilum
infernorum V4

2–2.5 (1.0–6.0) 60 (40–60) CH4, methanol Acidic thermal soil,
Tikitere, New Zealand

Dunfield et al. 2007; Hou
et al. 2008

Methylacidiphilum
kamchatkense Kam1

2–2.5 (2.0–5.0) 55 (37–60) CH4, methanol Acidic thermal spring,
Kamchatka, Russia

Islam et al. 2008

Methylacidiphilum sp. Phi 3 55–65 CH4 Acidic hot spring,
Makiling, The Philippines

Erikstad et al. 2019

Methylacidiphilum sp. Yel 2.8 50 CH4 Acidic hot spring,
Yellowstone, USA

Erikstad et al. 2019

Methylacidimicrobium
tartarophylax 4AC

1–3 (0.5–5.5) 38 (?–43) CH4, H2, methanol Acidic soil, Solfatara, Italy Van Teeseling et al. 2014;
Mohammadi et al. 2019

Methylacidimicrobium
cyclopophantes 3B

1.5–3 (0.6–5.5) 44 (?–49) CH4, methanol Acidic soil, Solfatara, Italy Van Teeseling et al. 2014

Methylacidimicrobium
fagopyrum 3C

1.5–3 (0.6–5.5) 35 (?–39) CH4, methanol Acidic soil, Solfatara, Italy Van Teeseling et al. 2014

Methylacidimicrobium sp.
LP2A

3.1 (1.0–5.2) 30 (17–37) CH4 Acidic mud pool, Reporoa,
New Zealand

Sharp et al. 2014

Methylacidimicrobium
thermophilum AP8

3–5 (1.5–5.5) 50 (30–55) CH4, H2 Acidic geothermal soil,
Pantelleria island, Italy

Picone 2020

Figure 1. (A) Overview 16S rRNA gene phylogenetic tree of Verrucomicrobia, Lentisphaerae, Chlamydiae, Planctomycetes and methanotrophic Alpha- and Gammapro-

teobacteria. Blue shading indicates species that are methanotrophic. Accession numbers are indicated between brackets. 16S rRNA gene alignment was constructed
using SINA v1.2.11 (Pruesse, Peplies and Glöckner 2012) and a tree that was constructed using FastTree v2.1 (Price, Dehal and Arkin 2010) with 1000 bootstraps and
substitution model GTR-gamma. The tree was visualised using ITOL v5.5.1 (Letunic and Bork 2007). Bootstrap values are indicated as a proportion of 1000 re-samplings
ranging from 1 to 100. (B) Detailed 16S rRNA gene tree of the verrucomicrobial methanotrophs. 16S rRNA gene alignment of verrucomicrobial methanotrophs together

with an outgroup of Planctomycetes constructed using SINA v1.2.11 (Pruesse, Peplies and Glöckner 2012) and a tree that was constructed using FastTree v2.1 (Price,
Dehal and Arkin 2010) with 1000 bootstraps and substitution model GTR-gamma. The tree was visualised using ITOL v5.5.1 (Letunic and Bork 2007). Bootstrap values
are indicated as a proportion of 1000 re-samplings ranging from 1 to 100. Isolation location and accession number are indicated after each strain.
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greenhouse gas methane. Besides this metabolic trait, several
noteworthy differences exist between the two groups. Classi-
cally, an important property for the classification of proteobac-
terial methanotrophs is the type of intracytoplasmic membrane
(ICM) structures they have in electron micrographs, either visi-
ble as membrane pairs or vesicular discs (Davies and Whitten-
bury 1970). In verrucomicrobial methanotrophs, ICM structures
are mostly absent, although membrane stacks have been found
in Methylacidimicrobium fagopyrum 3C and also in some cells of
Methylacidiphilum infernorum V4 tubular membrane structures
were observed (Dunfield et al. 2007; Van Teeseling et al. 2014).
Another interesting difference between verrucomicrobial and
proteobacterial methanotrophs are the phospholipid fatty acids
(PLFAs) of their membranes (Bodelier et al. 2009; Op den Camp
et al. 2009). Membranes of verrucomicrobial methanotrophs are
almost exclusively made up of saturated fatty acids, whereas
membranes of proteobacterial methanotrophs are mainly com-
posed of unsaturated fatty acids (Bodelier et al. 2009; Op den
Camp et al. 2009; Erikstad et al. 2019). Verrucomicrobial methan-
otrophs probably require a saturated membrane to minimise
proton permeability in an extremely acidic environment (Sili-
akus, van der Oost and Kengen 2017).

Remarkably, the genome sizes of verrucomicrobial and pro-
teobacterial methanotrophs differ significantly. The former typ-
ically have a genome size of 2.2 to 2.5 Mbp (Hou et al. 2008;
Anvar et al. 2014; Kruse et al. 2019; Cremers et al. 2020) while
the latter have larger genomes of 3.3 to 5.1 Mbp (Ward et al.
2004; Chen et al. 2010; Stein et al. 2010; Boden et al. 2011; Sven-
ning et al. 2011; Vuilleumier et al. 2012). The larger genomes
of proteobacterial methanotrophs could render them better
adapted to more diverse environments in comparison with
verrucomicrobial methanotrophs (Cobo-Simón and Tamames
2017). Interestingly, genome comparison of eleven verrucomi-
crobial methanotrophs reveals 317 core gene clusters that are
shared by all these verrucomicrobial strains, whereas the same
analysis of eleven proteobacterial methanotrophs reveals 74
core gene clusters shared by all these proteobacterial strains
(Fig. 2). The smaller amount of core gene clusters shared by pro-
teobacterial methanotrophs could be explained by the fact that
these microbes are found in very distinct habitats under var-
ious circumstances. The verrucomicrobial methanotrophs, on
the other hand, are adapted to a specific niche. The composi-
tion of Clusters of Orthologous Groups of proteins (COGS) of the
core genomes of verrucomicrobial and proteobacterial methan-
otrophs show a similar distribution (Fig. 2). A notable example is
the relatively large percentage unique gene clusters involved in
cell wall/membrane/envelope biogenesis (COG group M) found
in verrucomicrobial methanotrophs. This might be explained
by the harsh environment in which these microbes thrive,
which could require additional machinery to cope with acid
stress.

Although verrucomicrobial methanotrophs have smaller
genomes, genomic analyses suggest verrucomicrobial methan-
otrophs are metabolically quite versatile microorganisms. In this
review, we discuss the physiological and biochemical knowl-
edge that has been obtained on the key metabolic pathways of
verrucomicrobial methanotrophs since their discovery 13 years
ago. As such, a connection between the metabolic potential in
the genome and experimental observations is made. Metabolic
genes investigated in this review involved in the oxidation of
methane, ammonia, hydrogen and sulfur compounds, nitrogen
assimilation, the respiratory chain and the synthesis of tetrahy-
drofolate and menaquinone can be found in Table S1 (Support-
ing Information).

METABOLIC VERSATILITY OF
VERRUCOMICROBIAL METHANOTROPHS

Initially, the first isolated strains appeared to be obligate methy-
lotrophs, growing only on methane and methanol (CH3OH) (Op
den Camp et al. 2009). In fact, all described Methylacidiphilum and
Methylacidimicrobium strains were isolated on methane (Dunfield
et al. 2007; Pol et al. 2007; Islam et al. 2008; Sharp et al. 2014;
Erikstad et al. 2019). However, after more than a decade of addi-
tional experimental research, we now know that verrucomi-
crobial methanotrophs are actually metabolically quite versa-
tile microorganisms, able to metabolise a variety of compounds
present in volcanic ecosystems, which together could influence
methanotrophy.

Carbon and nitrogen assimilation

Similar to any other microorganism, methanotrophs need to
assimilate carbon and nitrogen to generate biomass (Levicán
et al. 2008). Methanotrophs use either formaldehyde (CH2O) or
CO2 as a carbon source to generate biomass (Hanson and Hanson
1996). In general, gammaproteobacterial methanotrophs assim-
ilate formaldehyde via the ribulose monophosphate pathway,
whereas alphaproteobacterial methanotrophs employ the ser-
ine pathway, in which both formaldehyde and CO2 are used
as a carbon source (Chistoserdova, Kalyuzhnaya and Lidstrom
2009). Verrucomicrobial methanotrophs lack a few essential
genes for the complete serine cycle (i.e. hydroxypyruvate reduc-
tase and malyl-CoA lyase) or ribulose monophosphate path-
way (i.e. 3-hexulose-6-phosphate synthase and 6-phospho-3-
hexuloisomerase), but possess genes encoding the complete set
of enzymes of the Calvin-Benson-Bassham (CBB) cycle (Khadem
et al. 2011; Van Teeseling et al. 2014). In this cycle, the enzyme
ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is
involved and CO2 is used as the sole carbon source. Several pro-
teobacterial methanotrophs also harbour genes involved in the
CBB cycle, although activity of this cycle has not yet been exper-
imentally validated in these bacteria (Stein, Roy and Dunfield
2012; Khmelenina et al. 2018). Through 13C stable isotope mea-
surements, Methylacidiphilum fumariolicum SolV and three Methy-
lacidimicrobium strains were shown to indeed exclusively use CO2

as carbon source, not methane-derived formaldehyde (Khadem
et al. 2011; Van Teeseling et al. 2014). The autotrophic CO2 fix-
ation via the CBB cycle was also experimentally shown for the
denitrifying methanotroph Ca. ‘Methylomirabilis oxyfera’ (Rasi-
graf et al. 2014). In geothermal habitats, high concentrations of
ammonium can be present (Khadem et al. 2010; Holloway et al.
2011; Mohammadi et al. 2017b). Although methanotrophs can-
not use ammonium as an energy source, this reduced form of
fixed nitrogen is the preferred inorganic nitrogen source as it can
be directly assimilated (Wang et al. 2016). Indeed, all known ver-
rucomicrobial methanotrophs carry a gene encoding a highly-
conserved ammonium transporter. Central molecules in nitro-
gen assimilation are glutamate and glutamine, from which other
amino acids and purines and pyrimidines can be synthesised
(Prusiner and Stadtman 1973; Zalkin and Smith 1998). Genes
encoding glutamate dehydrogenase, glutamine synthetase and
glutamate synthase are found in all isolated verrucomicro-
bial methanotrophs. The utilisation of these three enzymes for
nitrogen assimilation has been validated experimentally in sev-
eral proteobacterial methanotrophs (Murrell and Dalton 1983a;
Lees, Owens and Murrell 1991).

Although ammonium is often present in the geother-
mal environment, exponentially growing microorganisms can
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Figure 2. Bar graphs comparing the composition of Clusters of Orthologous Groups of proteins (COGS) of the unique core genomes of the verrucomicrobial methan-
otrophs and the proteobacterial methanotrophs. Core genomes were calculated by using usearch (Edgar 2010) with a cut-off value of 0.5 to group all genes into gene
clusters. Clusters present in all genomes of the verrucomicrobial methanotrophs, as well as absent in all genomes of the proteobacterial methanotrophs, are defined as

the unique core genome of verrucomicrobial methanotrophs. Clusters present in all genomes of the proteobacterial methanotrophs, as well as absent in all genomes of
the verrucomicrobial methanotrophs, are defined as the unique core genome of proteobacterial methanotrophs. Analysis performed with 22 genomes in total, of which
11 verrucomicrobial methanotrophs: Methylacidiphilum fumariolicum SolV, Methylacidiphilum infernorum V4, Methylacidiphilum kamchatkense Kam1, Methylacidiphilum sp.
Phi, Methylacidiphilum sp. Yel, Methylacidimicrobium cyclopophantes 3B, Methylacidimicrobium fagopyrum 3C, Methylacidimicrobium tartarophylax 4AC, Methylacidimicrobium

thermophilum AP8, Methylacidimicrobium sp. LP2A and Methylacidithermus pantelleriae PQ17, and 11 proteobacterial methanotrophs: Methylobacterium extorquens AM1,
Methylocaldum szegediense O-12, Methylocapsa acidiphila B2, Methylocella silvestris BL2, Methylococcus capsulatus Bath, Methylocystis rosea SV97T, Methyloferula stellata AR4,
Methylomarinum vadi IT4, Methylomicrobium alcaliphilum 20Z, Methylomonas denitrificans FJG1 and Methylosinus trichosporium OB3b.

rapidly deplete this source of nitrogen from their direct sur-
roundings (Van Heeswijk, Westerhoff and Boogerd 2013). If
insufficient ammonium is present in the environment, many
microorganisms have the possibility to take up nitrate or nitrite
from the environment and invest energy to produce ammonium
(Moreno-Vivián et al. 1999). All isolated Methylacidiphilum strains
possess a gene encoding a transporter that could transport
nitrate and/or nitrite across the membrane. In addition, they
harbour a gene encoding a cytoplasmic NAD(P)H-dependent
nitrate reductase that reduces nitrate to nitrite and a cytoplas-
mic NAD(P)H-dependent nitrite reductase that catalyses the 6-
electron reduction to ammonium. The assimilatory reduction
of nitrate to ammonium is catalysed at the expense of four
NAD(P)H molecules and is therefore only used when ammo-
nium in the environment is scarce. In several Methylacidimicro-
bium strains, the pathway for nitrate assimilation is unclear, or
could be absent.

All isolated verrucomicrobial methanotrophs possess the
nifHDK operon, indicating their ability to fix N2 from the
atmosphere. Methylacidiphilum fumariolicum SolV and Methy-
lacidiphilum kamchatkense Kam1 were experimentally shown to
use N2 as nitrogen source (Islam et al. 2008; Khadem et al. 2010).
Diazotrophy has also been shown for several proteobacterial
methanotrophs (Murrell and Dalton 1983b; Khmelenina et al.
2018). Although the ability to obtain nitrogen from the atmo-
sphere provides a major advantage in an environment devoid
of fixed nitrogen molecules, the fixation of nitrogen gas is very
energy-demanding, requiring 16 ATP molecules per N2 molecule
fixed (Dixon and Kahn 2004). As a result, the maximum spe-
cific growth rate of Methylacidiphilum fumariolicum SolV with N2

as nitrogen source is 2.8 times slower than when supplied with

ammonium (Khadem et al. 2010). The absence of fixed nitrogen
in the environment might therefore lead to a reduction in growth
of verrucomicrobial methanotrophs and therefore to increased
methane emissions.

Oxidation of methane and other hydrocarbons

Significant amounts of methane are emitted from mud pools,
hot springs and fumaroles in terrestrial geothermal systems
(Etiope and Klusman 2002; Castaldi and Tedesco 2005; Kven-
volden and Rogers 2005). Typically, geothermal gas consists of
0.01 to 1% (v/v) methane, although much higher concentrations
have been detected (Giggenbach 1995; Etiope and Klusman 2002;
D’Alessandro et al. 2009; Dunfield and Dedysh 2010). Under suit-
able conditions, verrucomicrobial methanotrophs could repre-
sent a significant filter against emissions of methane to the
atmosphere in these environments (Op den Camp et al. 2009;
Venturi et al. 2019). Studying in which circumstances verrucomi-
crobial methanotrophs consume more methane than in oth-
ers is worth investigating to elucidate which factors enhance or
inhibit methane oxidation.

The first step in methane oxidation is the conversion of
methane to methanol (CH3OH), which can be catalysed by two
genetically unrelated enzymes: the membrane-bound copper-
containing particulate methane monooxygenase (pMMO) and
the cytosolic iron-containing methane monooxygenase (sMMO)
(Ross and Rosenzweig 2017). Several proteobacterial methan-
otrophs harbour genes encoding both the soluble and the par-
ticulate methane monooxygenase (Semrau, DiSpirito and Yoon
2010). However, none of the verrucomicrobial methanotrophs
carry a gene encoding sMMO. Methylacidiphilum strains possess
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three complete but distinct pmoCAB operons and therefore in all
probability oxidise methane to methanol via pMMO (Hou et al.
2008; Anvar et al. 2014; Van Teeseling et al. 2014; Kruse et al. 2019)
(Figs 3 and 4). As exception, Methylacidiphilum sp. Yel only car-
ries a single complete pmoCAB operon most closely related to the
pmoCAB3 of the other Methylacidiphilum strains. All pMMOs char-
acterised thus far show an (αβγ )3 oligomeric state, consisting of
the two membrane-spanning subunits PmoC and PmoA and a
predominantly periplasmic subunit PmoB, which is tethered to
the membrane by two transmembrane helices (Lieberman and
Rosenzweig 2005; Ross and Rosenzweig 2017). The enzyme acti-
vates O2 to break the C-H bond of methane, producing methanol
and water, via a yet unresolved mechanism (Ross and Rosen-
zweig 2017; Ross et al. 2019) (Fig. 4). Interestingly, similarities
between two pmo operon structures of proteobacterial and ver-
rucomicrobial methanotrophs indicate evolution from a com-
mon ancestor (Op den Camp et al. 2009; Van Teeseling et al. 2014).
Besides, the most distant pmoCAB3 operon seems to be obtained
through horizontal gene transfer from an unknown microorgan-
ism (Dunfield et al. 2007). In fact, a large variety of key metabolic
genes of verrucomicrobial methanotrophs are thought to be
derived via horizontal gene transfer, especially from Proteobac-
teria (Sharp et al. 2013).

In Methylacidiphilum fumariolicum SolV, the oxygen concen-
tration seems to regulate the expression of the pmoCAB1 and
pmoCAB2 operons (Khadem et al. 2012). Notably, the pmoCAB3
operon is barely expressed in Methylacidiphilum fumariolicum SolV
when grown on methane (Khadem et al. 2012). Recently, Methy-
lacidiphilum fumariolicum SolV was shown to grow on ethane and
propane but not on butane (Picone et al. 2020b). pmoCAB3 could
be specifically tuned towards the oxidation of alkanes, enabling
Methylacidiphilum fumariolicum SolV to utilise gaseous hydrocar-
bons other than methane (Picone et al. 2020b). However, Methy-
lacidiphilum sp. Yel only carries pmoCAB3 and is able to grow
on methane, suggesting the enzyme encoded by this operon
is at least also involved in the oxidation of methane (Erikstad
et al. 2019). In contrast to Methylacidiphilum strains, Methylacidimi-
crobium strains and Ca. ‘Methylacidithermus pantelleriae’ PQ17
possess a single pmoCAB operon, related to the closely related
pmoCAB1 and pmoCAB2 types of Methylacidiphilum species. As
exception, Methylacidimicrobium thermophilum AP8 and Methy-
lacidimicrobium sp. LP2A possess two almost identical operons
(Sharp et al. 2014).

For a long time, the well-studied calcium-dependent
methanol dehydrogenase (MDH) MxaFI was thought to be the
key enzyme for methanol oxidation in both methanotrophs
and methylotrophs (Anthony 2004). This periplasmic enzyme
contains a pyrroloquinoline quinone (PQQ) prosthetic group at
the catalytic centre and converts methanol to formaldehyde
(CH2O) (Anthony 2004; Keltjens et al. 2014). The alphapro-
teobacterial methylotroph Methylobacterium extorquens AM1
carries genes encoding MxaFI and an MDH homolog named
XoxF (Nakagawa et al. 2012). A �mxaF mutant strain was
unable to grow on methanol when supplied with calcium,
but growth on methanol was restored when cells were sup-
plied with the lanthanide lanthanum (La3+) in the medium.
Similarly, Methylacidiphilum fumariolicum SolV is only able
to grow on methane when lanthanide-containing mud pot
water (from the environment where the strain was isolated
from) is added to the growth medium, or when the mineral
medium contains micromolar concentrations of one or more
lanthanides (Pol et al. 2014). These lanthanides are essential
for verrucomicrobial methanotrophs when using methanol as
an energy source, because they do not possess genes encoding

the canonical calcium-dependent MxaFI, but a gene encoding
the novel lanthanide-dependent MDH (XoxF) (Pol et al. 2014)
(Fig. 3). Remarkably, the biological relevance of these rare
earth elements was previously deemed unthinkable (Lim and
Franklin 2004). Genomic analyses surprisingly revealed xoxF to
be widespread in methylotrophs and methanotrophs, and is
classified into five different clades (Chistoserdova 2011; Keltjens
et al. 2014; Pol et al. 2014; Wu et al. 2015; Versantvoort et al.
2018; Kato et al. 2020). In fact, XoxF-type MDHs are actually
much more abundant in nature than the MxaFI-type (Keltjens
et al. 2014, Chistoserdova and Kalyuzhnaya 2018). The MxaF
protein (large subunit) seems to have descended from a XoxF
prototype (Keltjens et al. 2014) and all methylotrophs that
harbour genes encoding MxaFI also possess a gene encoding
the XoxF-type MDH (Chistoserdova and Kalyuzhnaya 2018).
Dissolved lanthanide concentrations in most environments
are very low (nM range) and its limitation may have driven the
evolutionary adaptation of the proteobacterial methylotrophs
towards an MDH variant that dependents on calcium, present
in excess. The discovery of lanthanide-dependent XoxF-type
MDHs has led to a completely new field of research, including
the differential regulation in bacteria containing both types
of MDHs (Zheng et al. 2018; Daumann 2019; Good et al. 2019;
Picone and Op den Camp 2019; Good et al. 2020; Yanpirat et al.
2020). As example, the alphaproteobacterium Methylobacterium
extorquens AM1 carries genes encoding both MDH types and was
shown to upregulate xoxF expression already at a lanthanide
concentration of 2.5 nM and downregulate mxaF expression at
a lanthanide concentration of 25 nM or above (Vu et al. 2016;
Daumann 2019).

Electrons yielded from methanol oxidation by XoxF are first
transferred to a dedicated cytochrome partner (Zheng et al. 2018;
Versantvoort et al. 2019) homologous to cytochrome cL, the elec-
tron acceptor of MxaFI-type MDH (Anthony 1992) (Fig. 4). In
Methylacidiphilum strains, this cytochrome is a fusion protein of
the cytochrome c protein XoxG and the periplasmic substrate
binding protein XoxJ, but they also harbour a separate xoxJ gene.
In Methylacidimicrobium strains, XoxG and XoxJ are encoded by
two separate genes. Methylacidiphilum strains possess only one
XoxF enzyme, whereas Methylacidimicrobium strains carry genes
encoding for a copy of both the XoxF1 and XoxF2 clade that
are less than 50% identical, which suggests that they could be
expressed differentially under different conditions (Chistoser-
dova 2011; Keltjens et al. 2014; Picone and Op den Camp 2019).
In addition, Methylacidimicrobium sp. LP2A harbours two genes
encoding XoxF1 that are 96% identical to each other, presumably
as a result of a relatively recent gene duplication (Van Teeseling
et al. 2014; Op den Camp et al. 2018).

Similar to MxaFI-type MDH, XoxF-type MDH also contains
a PQQ cofactor, and its overall structure is conserved in com-
parison with the MxaFI-type MDH (Keltjens et al. 2014). From
Methylacidiphilum fumariolicum SolV, cultivated on lanthanide-
containing mud pot water, XoxF was crystallised as a homod-
imer with a cerium ion coordinating with the PQQ cofactor
(PDB: 4MAE; Pol et al. 2014). In addition, XoxF-type MDHs with
a europium or lanthanum ion in the active site were crys-
tallised (Deng, Ro and Rosenzweig 2018; Jahn et al. 2018; Good
et al. 2020). The lanthanide coordinating with the PQQ cofac-
tor of XoxF seems to render this enzyme catalytically more effi-
cient compared to MxaF, since lanthanides are stronger Lewis
acids than calcium, facilitating the hydride transfer (Keltjens
et al. 2014; Daumann 2019). MxaFI-type MDHs produce formalde-
hyde from methanol oxidation, but XoxF was shown to pro-
duce formate (HCOOH) in vitro (Pol et al. 2014). Moreover, XoxF
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Figure 3. 16S rRNA gene phylogenetic tree of verrucomicrobial methanotrophs and the presence or absence of genes involved in the oxidation of hydrocarbons,

ammonia, hydrogen and sulfur compounds. Planctomycetes were used as an outgroup. Sequences were aligned using SINA v1.2.11 (Pruesse, Peplies and Glöckner
2012) and a tree was constructed using FastTree v2.1 (Price, Dehal and Arkin 2010) with 1000 bootstraps and substitution model GRT-GAMMA. The tree was visualised
using ITOL v5.5.1 (Letunic and Bork 2007). Bootstrap values are indicated as a proportion of 1000 re-samplings ranging from 1 to 100. Presence of genes of interest

was examined using BLASTp and of each hit the amino acid sequence was manually inspected for domains and identity. The result table was transformed to a
binary ITOL dataset and both the 16S tree and the table were visualised using ITOL v5.5.1. pMMO: particulate methane monooxygenase; XoxF-MDH: lanthanide-
dependent methanol dehydrogenase; FolD: methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase; FtfL: formate-tetrahydrofolate ligase;
FDH: formate dehydrogenase; HAO: hydroxylamine oxidoreductase; NOR: nitric oxide reductase; NIR: nitrite reductase; Hyd: type of [NiFe] hydrogenase (based on

Søndergaard, Pedersen and Greening 2016); MTO: methanethiol oxidase; SQR: sulfide:quinone oxidoreductase.

Figure 4. Possible pathways for methane oxidation in verrucomicrobial methanotrophs. pMMO oxidises methane to methanol (CH3OH), while an unknown electron
donor is oxidised. The lanthanide-dependent XoxF methanol dehydrogenase (MDH) could subsequently oxidise methanol to either formate (HCOOH) or formaldehyde
(CH2O), while donating electrons to its redox partner XoxGJ. If formate is produced it could diffuse into the cytoplasm and be converted to CO2 by the NAD+-dependent

formate dehydrogenase (FDH). CO2 is fixed into biomass via the Calvin-Benson-Bassham (CBB) cycle. Alternatively, if formaldehyde is produced, it could bind to
tetrahydrofolate (H4F) spontaneously or enzymatically by an unidentified enzyme, to form methylene-tetrahydrofolate (CH2-H4F). The enzyme FolD converts CH2-H4F
to methenyl-tetrahydrofolate (CH-H4F), which is subsequently converted to formyl-tetrahydrofolate (CHO-H4F). This product is then converted to H4F and formate,
while producing ATP. P: periplasm; C: cytoplasm.

from Methylacidiphilum fumariolicum SolV can oxidise formalde-
hyde with high affinity and MxaFI-type MDHs in general are
also able to oxidise formaldehyde (Keltjens et al. 2014). How-
ever, recently the XoxF5 of the alphaproteobacterium Methy-
lobacterium extorquens AM1 was shown to oxidise methanol to
formaldehyde in vivo, not to formate (Good et al. 2019). Cur-
rently, it is unresolved how formaldehyde would be oxidised fur-
ther to formate in verrucomicrobial methanotrophs (Chistoser-
dova 2011). Formaldehyde could be oxidised directly to formate
by formaldehyde dehydrogenase (Chistoserdova, Kalyuzhnaya
and Lidstrom 2009), but verrucomicrobial methanotrophs do
not possess a gene encoding this enzyme. Alternatively, methy-
lotrophs can make use of the tetrahydromethanopterin (H4MPT)
or the tetrahydrofolate (H4F) pathway for formaldehyde oxida-
tion, as found in proteobacterial methanotrophs (Vorholt 2002;

Marx, van Dien and Lidstrom 2005; Chistoserdova 2011). H4F is
synthesised by bacteria de novo (Bermingham and Derrick 2002).
Indeed, genes encoding all enzymes involved in tetrahydrofolate
biosynthesis are present in the genomes of the verrucomicrobial
methanotrophs. Formaldehyde produced by periplasmic XoxF
could diffuse into the cytoplasm and bind spontaneously to H4F
to form methylene-H4F (Kallen and Jencks 1966). Whether this
condensation is of sufficient high rate for bacterial growth in vivo
is under debate (Crowther, Kosály and Lidstrom 2008; He et al.
2020). In the proteobacterium Methylobacterium extorquens AM1,
the formaldehyde-activating enzyme actually catalyses this
reaction at high rate (Vorholt et al. 2000). Whereas this enzyme
is present in proteobacterial methanotrophs, it is absent in
verrucomicrobial methanotrophs, suggesting another enzyme
should be involved in the condensation of formaldehyde and
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H4F. All verrucomicrobial methanotrophs carry a gene encoding
the bifunctional enzyme FolD (Fig. 3), which is known to convert
methylene-H4F to methenyl-H4F, and produce NAD(P)H, simi-
lar to the methylene-H4F dehydrogenase (Pawelek and MacKen-
zie 1998; Hou et al. 2008; Chistoserdova 2011; Eadsforth, Maluf
and Hunter 2012). Subsequently, FolD acts as a methenyl-H4F
cyclohydrolase, converting methenyl-H4F to formyl-H4F (Fig. 4).
Ultimately, the enzyme formate-tetrahydroformate ligase FtfL,
found in all verrucomicrobial methanotrophs, could convert
formyl-H4F to tetrahydrofolate and formate, while producing
one ATP molecule (Marx, Laukel and Vorholt 2003). If this path-
way oxidises formaldehyde instead of XoxF, fewer electrons are
donated to the cytochrome c protein XoxGJ, which is postu-
lated to donate its electrons to the terminal oxidase to fuel
respiration (Versantvoort et al. 2019). Nevertheless, the produc-
tion of formaldehyde instead of formate by XoxF seems logi-
cal since formaldehyde oxidation via the H4F pathway provides
valuable reducing equivalents in the form of NAD(P)H and ATP.
Finally, in the last step of aerobic methane oxidation in ver-
rucomicrobial methanotrophs, formate is oxidised to CO2 (Pol
et al. 2014). All verrucomicrobial methanotrophs possess one
complete fdsDABG operon, encoding a cytosolic formate dehy-
drogenase that is thought to oxidise formate, while producing
NADH needed for the generation of biomass (Op den Camp et al.
2018). CO2 can ultimately be assimilated via the CBB cycle. The
key enzyme RuBisCO found in verrucomicrobial methanotrophs
forms a novel cluster within the form I RuBisCO phylogenetic
tree and is most closely related to form IC RuBisCOs found in
various Proteobacteria (Khadem et al. 2011).

Coping with toxic nitrogen compounds from ammonia
oxidation

In the geothermal habitat where Methylacidiphilum fumariolicum
SolV was isolated from, high concentrations (1–28 mM) of
ammonium (NH4

+) are present (Khadem et al. 2010; Mohammadi
et al. 2017b). Methane and ammonia (NH3) are highly-reduced
molecules with structural similarities. Nitrifying microorgan-
isms make a living from the oxidation of ammonia, initiated
via the oxidation of ammonia to hydroxylamine (NH2OH), catal-
ysed by ammonia monooxygenase (AMO) (Klotz and Stein 2008).
AMO is a membrane-bound copper-dependent enzyme homol-
ogous to pMMO of methanotrophs (Tavormina et al. 2011).
Consequently, many nitrifiers can oxidise methane and many
methanotrophs can oxidise ammonia (Bédard and Knowles
1989). Methanotrophs use ammonium as nitrogen source; how-
ever, ammonia in the periplasm can also fortuitously be oxidised
by pMMO to hydroxylamine, which is a toxic compound (Nyerges
and Stein 2009). The affinity of pMMO for ammonia decreases
with increasing CH4 concentrations, which indicates competi-
tive substrate inhibition (Nyerges, Han and Stein 2010. Hydrox-
ylamine could impede various cellular processes by damaging
proteins or DNA and strongly inhibit MDHs (Kaplan and Ciotti
1953; Duine and Frank 1980; Versantvoort et al. 2020). There-
fore, verrucomicrobial and proteobacterial methanotrophs have
developed mechanisms to balance the assimilation of ammo-
nium and the detoxification of deleterious nitrogen compounds.

In order to detoxify hydroxylamine, many methanotrophs
possess a gene encoding a hydroxylamine oxidoreductase
(HAO), oxidising hydroxylamine to nitric oxide (NO) (Fig. 5)
(Caranto and Lancaster 2017; Versantvoort et al. 2020). All known
Methylacidiphilum strains carry a gene encoding an HAO (Fig. 3),
as do many proteobacterial methanotrophs (Campbell et al.

2011; Stein and Klotz 2011; Versantvoort et al. 2020). In contrast,
HAO is not found in any of the Methylacidimicrobium strains and
as such, these strains might be more sensitive to ammonium
(Stein 2018). Alternatively, Methylacidimicrobium strains could
have developed a different strategy to deal with ammonia that
does not require an HAO, analogous to the gammaproteobacte-
rial methanotroph Methylomonas methanica. This methanotroph
also lacks an HAO-like protein (Campbell et al. 2011) and was
unable to oxidise ammonia to nitrite, although its methane oxi-
dation rate was inhibited by ammonia (Nyerges and Stein 2009).
This could indicate that its pMMO is unable to oxidise ammonia
to hydroxylamine or the formed hydroxylamine is converted to
a product by an unknown enzyme other HAO. In either case, an
HAO-like protein is not necessary to deal with ammonia toxic-
ity. In nitrifiers, electrons yielded from the oxidation of hydroxy-
lamine are transferred to the quinone pool for energy conserva-
tion via the hydroxylamine:ubiquinone reductase module (Klotz
and Stein 2008). However, methanotrophs are thought to lack
this module. Still, per ammonia molecule oxidised, four elec-
trons are yielded when ammonia is oxidised to nitrite (Fig. 5).
Since two electrons are needed to activate O2 for the oxidation of
ammonia to hydroxylamine by pMMO, the remaining two elec-
trons might be used at the terminal oxidase for energy conser-
vation (Stein and Klotz 2011).

Nitric oxide produced by HAO is a toxic compound. How-
ever, when ammonia is oxidised by Methylacidiphilum fumari-
olicum SolV under aerobic conditions, nitrite is observed as the
main end product (Mohammadi et al. 2017b), similar to aer-
obic ammonia oxidisers and various proteobacterial methan-
otrophs (Nyerges, Han and Stein 2010; Campbell et al. 2011;
Lehtovirta-Morley 2018). These cases necessitate an additional
enzyme that oxidises the NO produced by HAO to nitrite. The
nature of this nitric oxide-oxidising enzyme in methanotrophs
and ammonia-oxidisers is unknown, although it is postulated
that the copper-dependent nitrite reductase NirK could function
in the opposite direction to oxidise NO to nitrite (Caranto and
Lancaster 2017). In addition, NO can rapidly react with oxygen
resulting in the formation of nitrite and nitrate in aqueous solu-
tions (Udert, Larsen and Gujer 2005; Hughes 2008) and therefore
the production of nitrite observed for Methylacidiphilum fumari-
olicum SolV could also be non-enzymatic (Fig. 5). Under anoxic
conditions, nitrite reduction rates in Methylacidiphilum fumari-
olicum SolV are higher compared with rates under oxic condi-
tions (Mohammadi et al. 2017b). As such, the alternative elec-
tron acceptor nitrite could be converted to NO by a nitrite reduc-
tase, of which one or two orthologues are present in most ver-
rucomicrobial methanotrophs (Fig. 3). Nitric oxide can subse-
quently be reduced to N2O, as was shown for the gammapro-
teobacterial methanotrophs Methylomicrobium album and Methy-
lomonas denitrificans and for Methylacidiphilum fumariolicum SolV
(Nyerges, Han and Stein 2010; Kits, Klotz and Stein 2015; Moham-
madi et al. 2017b). The membrane-bound nitric oxide reductase
NorCB reduces NO to N2O and is found in all known verrucomi-
crobial methanotrophs (Figs 3 and 5). It is therefore conceiv-
able that verrucomicrobial methanotrophs detoxify nitric oxide
to inert N2O under anoxic or oxygen-limited conditions (Acton
and Baggs 2011; Bodelier and Steenbergh 2014). In addition, sev-
eral proteobacterial methanotrophs were shown to produce N2O
without the initial formation of nitrite (Hoefman, van der Ha and
Boon 2014). Since N2O is strong greenhouse gas with a significant
role in global warming, methanotrophs might not only have a
mitigating effect on climate change by oxidising methane, but
also aggravate this change by producing N2O (Acton and Baggs
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Figure 5. Ammonia (NH3) oxidation by pMMO and fate of the reaction products. pMMO fortuitously oxidises ammonia to hydroxylamine. Subsequently, hydroxylamine

oxidoreductase (HAO) oxidises hydroxylamine to nitric oxide, donating electrons to an unknown cytochrome c protein (indicated by the red diamond). Nitric oxide
can be reduced to inert N2O by the nitric oxide reductase (NOR), using an unknown electron donor. Alternatively, nitric oxide is converted chemically to nitrite in the
presence of oxygen, or by an unknown enzyme (red arrow). Under anaerobic conditions, nitrite could be utilised as alternative electron acceptor. The nitrite reductase

(NIR) could then reduce nitrite to nitric oxide, which is subsequently reduced to N2O. P: periplasm; C: cytoplasm.

2011; Versantvoort et al. 2020). Altogether, the accidental oxida-
tion of ammonia by pMMO results in the formation of various
toxic compounds, for which Methylacidiphilum strains typically
appear to have multiple detoxification pathways.

Oxidation of hydrogen gas

Multiple proteobacterial methanotrophs carry hydrogenase
genes and were shown to consume H2 (De Bont 1976; Csáki
et al. 2001; Kelly, Anthony and Murrell 2005). These methan-
otrophs were proposed to use these hydrogenases to produce
reducing equivalents to drive the energy-demanding conver-
sion of methane to methanol by pMMO (Hanczár et al. 2002).
Besides, various proteobacterial methanotrophs possess genes
encoding both a hydrogenase and ribulose-1,5-biphosphate car-
boxylase/oxygenase (RuBisCO), suggesting autotrophic growth
on H2 is possible (Mohammadi et al. 2019). However, autotrophic
growth on H2 in liquid media without methane has never been
observed for proteobacterial methanotrophs (Taylor, Dalton and
Dow 1981; Baxter et al. 2002).

Hydrogen gas (H2) is typically emitted in geothermal habitats
in high concentrations (often > 1% v/v) and is a potential alter-
native energy source for various microorganisms (Aragno 1992;
Chiodini et al. 2001; Carere et al. 2017; Mohammadi et al. 2019).
Indeed, Methylacidiphilum fumariolicum SolV was experimentally
shown to make a living as autotrophic hydrogenotroph in the
absence of methane (Mohammadi et al. 2017a). Since methane
emissions can heavily fluctuate in geothermal habitats, the abil-
ity to grow on another emitted, energy-rich gas is highly advan-
tageous. Methylacidiphilum sp. RTK17.1 (an isolate almost identi-
cal to Methylacidiphilum infernorum V4) was shown to grow as a
mixotroph on H2 and CH4, a trait hypothesised to have driven
niche expansion, which could explain the dominance of ver-
rucomicrobial methanotrophs in geothermal habitats (Carere
et al. 2017; Mohammadi et al. 2019). Recently, this mixotrophic
lifestyle on H2 and CH4 was also demonstrated by the alphapro-
teobacterium Methylocystis sp. strain SC2 (Hakobyan, Zhu and
Glatter 2020).

Hydrogenases are a very diverse group of enzymes that con-
vert H2 into two protons and two electrons, or vice versa (Lub-
itz et al. 2014). Three different metal compositions are known in
the active site: [NiFe], [FeFe] and [Fe]. Genome comparisons of

several verrucomicrobial methanotrophs revealed that all these
microbes carry genes encoding one or more different [NiFe]
hydrogenases, except for Ca. ‘Methylacidithermus pantelleriae’
PQ17 (Fig. 3) (Mohammadi et al. 2019). It has to be noted that the
genome of strain PQ17 was retrieved from a metagenome, not
from an isolate. It might therefore still possess several genes
that are not directly found through genetic analyses, although
the genome is more than 98% complete and shows little con-
tamination (Picone 2020). All isolated Methylacidiphilum strains
carry genes encoding the group 1d [NiFe] hydrogenase, except
for Methylacidiphilum sp. Yel. This membrane-bound enzyme has
a relatively high O2 tolerance compared to other hydrogenases
and is involved in the aerobic respiration of H2 (Greening et al.
2015). Both Methylacidiphilum sp. RTK17.1 and Methylacidiphilum
fumariolicum SolV were experimentally shown to grow on H2

using this hydrogenase under various oxygen concentrations
(Carere et al. 2017; Mohammadi et al. 2017a).

All of the Methylacidimicrobium strains and none of the Methy-
lacidiphilum strains possess genes encoding the oxygen-sensitive
group 1b [NiFe] hydrogenase (Fig. 3) (Mohammadi et al. 2019).
Methylacidimicrobium tartarophylax 4AC was shown to grow as an
autotroph on H2 using this enzyme under microoxic conditions
(Mohammadi et al. 2019). The group 1b [NiFe] hydrogenase, typ-
ically found in Proteobacteria that perform anaerobic respira-
tion (Greening et al. 2015), therefore enables Methylacidimicrobium
strains to respire H2 aerobically. In addition, all Methylacidimicro-
bium and Methylacidiphilum strains, except for Methylacidimicro-
bium thermophilum AP8, carry genes encoding a group 3b [NiFe]
hydrogenase. This heterotetrameric cytosolic enzyme is known
to couple the oxidation of NADPH to the production of H2 during
fermentation (Berney et al. 2014). However, in the verrucomicro-
bial methanotrophs it is hypothesised to oxidise H2 and produce
NADH for CO2 fixation (Carere et al. 2017). This proposed catal-
ysis was demonstrated by the group 3b [NiFe] hydrogenase of
Hydrogenobacter thermophilus (Yoon et al. 1996).

Most hydrogen-oxidising microorganisms live in habitats
with relatively high H2 concentrations, such as animal guts
and leguminous soils (Conrad and Seiler 1979; Pester and Brune
2007). In addition, several soil-inhabiting Actinobacteria were
shown to consume H2 present in the atmosphere (Constant,
Poissant and Villemur 2008; Constant et al. 2010; Constant et al.
2011). Although the atmospheric H2 concentration is very low
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(0.53 ppmv H2), soil systems are the largest sink of atmo-
spheric H2, consuming 75 Tg H2 annually (Novelli et al. 1999).
These H2 scavengers possess genes encoding a putative high-
affinity [NiFe] hydrogenase, of which the oxygen-tolerant group
1h [NiFe] hydrogenase seems to be dominant. Remarkably, this
group 1h [NiFe] hydrogenase is also found in the genomes
of Methylacidiphilum fumariolicum SolV, Methylacidiphilum kam-
chatkense Kam1 and Methylacidiphilum sp. Phi (Fig. 3) (Moham-
madi et al. 2017a; Kruse et al. 2019). In the related Methy-
lacidiphilum infernorum V4, this gene may have been lost over
time due to the movement of transposable elements in the
genome (Kruse et al. 2019). Methylacidiphilum fumariolicum SolV
was shown to express both the group 1d and group 1h [NiFe]
hydrogenase to grow on H2 (Mohammadi et al. 2017a). At dis-
solved oxygen concentrations between 0.2 and 1.5%, only the
group 1h [NiFe] hydrogenase supported growth, up to a growth
rate of 0.03 h−1, which is almost 40% of the growth rate on
methane (Mohammadi et al. 2017a). The enzyme has a remark-
able tolerance towards O2, suggested to be the result of the
unique coordination of the proximal [4Fe4S] clusters by three
cysteines and an aspartate residue, instead of the usual coor-
dination by four cysteine residues (Schäfer, Friedrich and Lenz
2013; Schäfer et al. 2016). The group 1h [NiFe] hydrogenase was
purified from Methylacidiphilum fumariolicum SolV and kinetic
experiments revealed an unusually high affinity for H2, enabling
this methanotroph to oxidise atmospheric H2 (Schmitz et al.
2020a). It is hypothesised that this hydrogenase in particular
could aid verrucomicrobial methanotrophs to thrive in geother-
mal systems (Carere et al. 2017; Schmitz et al. 2020a).

Oxidation of sulfur compounds

A variety of inorganic sulfur compounds such as hydrogen sul-
fide (H2S) and sulfur dioxide (SO2) are present in or released
from geothermal systems (Spiro, Jacob and Logan 1992; Vasi-
lakos et al. 2005). Additionally, organic sulfur compounds such
as methanethiol (CH3SH) could be present, but data on its pres-
ence in terrestrial volcanic ecosystems are lacking. In seafloor
hydrothermal systems, methanethiol is formed abiotically from
CO2, H2S and H2, derived from organic matter below the ocean
floor (Rogers and Schulte 2012; Reeves et al. 2014). It is conceiv-
able that in terrestrial mud volcanoes with comparable condi-
tions, thermogenic production of methanethiol could occur as
well. This compound could then be used by methylotrophs such
as the verrucomicrobial methanotrophs as carbon and sulfur
source, or even as energy source, as observed in the methy-
lotrophic alphaproteobacterium Hyphomicrobium sp. VS (Pol et al.
1994). Studying (organic) sulfur compounds and how microor-
ganisms cope with these compounds is important, as several
of these compounds have profound effects on the environment,
causing acid precipitation and cloud formation (Lomans, Pol and
Op den Camp 2002).

Little is known about the utilisation of sulfur compounds as
energy sources in methanotrophs. Genomic comparison of ver-
rucomicrobial methanotrophs revealed that all known strains
carry a gene encoding methanethiol oxidase (annotated as
selenium-binding protein 56) (Eyice et al. 2018) (Fig. 3). This
enzyme oxidises methanethiol to form formaldehyde, hydro-
gen sulfide and hydrogen peroxide (H2O2) (Suylen et al. 1987).
The oxidation of methanethiol could render the verrucomicro-
bial methanotrophs with useful products. Formaldehyde could
be converted to formate via FolD and FtfL and to CO2 by the
formate dehydrogenase (Fig. 4). H2S can be used as a sulfur
source and could even be used as an energy source. In addition, a

gene encoding sulfide:quinone oxidoreductase (SQR) is found in
the genomes of all verrucomicrobial methanotrophs, and highly
expressed in Methylacidiphilum fumariolicum SolV (Mohammadi
et al. 2017a). More specifically, it contains a type III SQR of
which little is known, that could be involved in aerobic H2S
respiration (Marcia, Ermler and Peng 2010). The third prod-
uct of methanethiol oxidation, hydrogen peroxide, is toxic and
could be converted to water and oxygen by the enzyme cata-
lase (Zamocky, Furtmüller and Obinger 2008). A gene encoding
catalase is only found in Methylacidiphilum infernorum V4 and all
Methylacidimicrobium strains. However, several peroxidases have
been found in the genomes that might substitute the catalase
activity.

The effect of intracellular H2S and methanethiol in methan-
otrophs is currently not well understood. In some microorgan-
isms, methane oxidation seems to be enhanced or unaffected by
the presence of methanethiol or hydrogen sulfide (Lee, Kim and
Cho 2012), whereas in other strains methane oxidation is inhib-
ited by these compounds (Börjesson 2001; Lee et al. 2015). Since
all verrucomicrobial methanotrophs possess a gene encoding an
SQR and because H2S is generally emitted at high concentra-
tions from geothermal systems (Chiodini et al. 2001), it is con-
ceivable that also H2S could be an important energy source for
these microorganisms. Alternatively, sulfide-oxidising enzymes
could be present as a means of detoxification. Future experi-
ments have to resolve whether energy conservation from the
oxidation of H2S is indeed possible.

The electron transport chain and energy conservation

The main location for energy conservation in prokaryotic cells
is the cytoplasmic membrane. Quinones inside the cytoplas-
mic membrane are essential parts of the electron transport
chain and therefore essential to energy conservation (Kurosu
and Begari 2010). Verrucomicrobial methanotrophs seem to syn-
thesise menaquinones (MK) via an alternative pathway that
involves the intermediate futalosine (Hiratsuka et al. 2008). How-
ever, the gene mqnB involved in menaquinone biosynthesis was
not detected in any of the genomes of verrucomicrobial methan-
otrophs (Kruse et al. 2019), but pathway variations are known to
exist (Arakawa et al. 2010).

All verrucomicrobial methanotrophs described in this review
possess five different complexes involved in energy conserva-
tion (Fig. 6). The NADH:quinone oxidoreductase (Complex I) is a
membrane-bound protein complex that oxidises NADH, trans-
fers the freed electrons to the quinone pool, and couples this
reaction to the translocation of protons across the membrane,
contributing to a proton motive force (Friedrich and Scheide
2000). The bacterial enzyme typically consists of 14 subunits,
which are all encoded by the verrucomicrobial methanotrophs
(Berrisford, Baradaran and Sazanov 2016). Complex II, or suc-
cinate dehydrogenase, is involved in both the electron trans-
port chain and the tricarboxylic acid (TCA) cycle (Cecchini et al.
2002). In this cycle, Complex II couples the oxidation of suc-
cinate to the reduction of quinone (Fig. 6). Whereas Complex
I is also involved in the translocation of protons across the
membrane, Complex II is only involved in electron transfer. The
quinols produced from the reduction of quinones by both com-
plexes are typically oxidised by the bc1 complex (Complex III)
(Trumpower 1990). In that case, electrons yielded from the oxi-
dation of quinols are subsequently transferred via an additional
cytochrome c protein to a cytochrome c oxidase (complex IV
or terminal oxidase). However, the verrucomicrobial methan-
otrophs do not carry genes encoding Complex III. Instead, these
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Figure 6. Schematic overview of the typical electron transport chain of verrucomicrobial methanotrophs. NADH generated through catabolic processes is oxidised
by the NADH:quinone oxidoreductase (Complex I), transferring electrons to menaquinone (MQ) to form menaquinol (MQH2) while translocating protons across the
membrane to generate a proton motive force. The succinate dehydrogenase (Complex II) oxidises succinate to fumarate as a part of the tricarboxylic acid cycle and

transfers electrons to MQ to form MQH2. Alternative complex III oxidises MQH2 back to MQ, transferring electrons to a cytochrome c oxidase (Complex IV), either via
an external periplasmic cytochrome c protein (cyt c) or directly. Whether protons are translocated during this electron transfer is unknown. Ultimately, electrons are
used to reduce O2 to water, while protons are translocated over the membrane, contributing to the proton motive force that is used by an ATP synthase (Complex V)
to synthesise ATP. Dashed lines indicate electron flow. Inset: transfer of oxidized and reduced quinones inside the bilayer (the quinone pool). C: cytoplasmic side of

the membrane; P: periplasmic side of the membrane.

microorganisms possess genes encoding a structurally differ-
ent protein complex with similar function: the Alternative Com-
plex III (ACIII; Fig. 6) (Pereira et al. 2007; Refojo et al. 2010). The
classical Complex III contributes to the proton motive force by
translocating protons over the membrane via the quinone cycle.
Whether ACIII also translocates protons across the membrane
for energy conservation is under debate (Refojo, Teixeira and
Pereira 2012; Sun et al. 2018). Ultimately, Complex IV reduces the
terminal electron acceptor O2 to water, with electrons retrieved
from a c-type haem (Sun et al. 2018). All isolated verrucomicro-
bial methanotrophs, except for Ca. ‘Methylacidithermus pantel-
leriae’ PQ17, possess genes encoding three distinct Complexes
IV: a cbb3-type, an aa3-type and a ba3-type. These cytochrome
c oxidases are classified based on the type of haems they con-
tain and are known to have different affinities for O2 and can
be differentially used for various substrates (Garcı́a-Horsman
et al. 1994). In addition, Methylacidiphilum fumariolicum SolV and
Methylacidiphilum sp. Phi possess a second ba3-type cytochrome
c oxidase. Interestingly, ACIII of Flavobacterium johnsoniae can
form a supercomplex with Complex IV, in which an additional
cytochrome c protein for electron transfer is not needed (Sun
et al. 2018). With this in mind, it is interesting to note that in
verrucomicrobial methanotrophs the genes encoding the dif-
ferent subunits composing ACIII are found directly adjacent to
the genes encoding the cbb3-type cytochrome c oxidase. Like-
wise, in other microorganisms the genes encoding ACIII are
often found directly adjacent to genes encoding a cytochrome
c oxidase (Refojo et al. 2010). However, only in verrucomicro-
bial methanotrophs and Opitutaceae a C-type cytochrome c oxi-
dase is found together with ACIII, whereas typically these are
A-type or B-type cytochrome c oxidases (Refojo et al. 2010). The
different cytochrome c oxidases encoded by Methylacidiphilum
fumariolicum SolV are differentially expressed, underscoring the
metabolic versatility of verrucomicrobial methanotrophs (Kha-
dem et al. 2012; Mohammadi et al. 2017a). Interestingly, the
ba3-type cytochrome c oxidase of Aquifex aeolicus is able to use
ubiquinol as electron donor, reduced by electrons yielded from
sulfide oxidation by the sulfide:quinone oxidoreductase (SQR)

(Gao et al. 2012). Since the verrucomicrobial methanotrophs
encode for both a ba3-type cytochrome c oxidase and SQR, these
bacteria might utilise a specific system to conserve energy from
H2S oxidation, but this needs experimental validation. The pro-
ton motive force created by the transfer of electrons through
the different membrane complexes is used for the synthesis
of ATP via the ATP synthase (Complex V). The verrucomicro-
bial methanotrophs, except for Ca. ‘Methylacidithermus pantel-
leriae’ PQ17, carry genes encoding two ATP synthases (ATPases).
One ATPase is related to ATPases of other Verrucomicrobia,
while the other is related to the gammaproteobacterial ATPase
(Hou et al. 2008; Kruse et al. 2019).

VERRUCOMICROBIAL METHANOTROPHS IN
THE ENVIRONMENT

Verrucomicrobial methanotrophs are generally found in acidic
volcanic ecosystems. Interestingly, global biogeographic distri-
butions of closely related strains of verrucomicrobial methan-
otrophs suggest allopatric evolution over time (Erikstad et al.
2019). Additionally, evolutionary genomic analyses of verru-
comicrobial methanotrophs revealed multiple horizontal gene
transfer events (Sharp et al. 2013). Many genes have a rela-
tively high similarity to those of the phylum Proteobacteria, but
also to genes of Aquificae, Thermus/Deinococcus and archaea
(Sharp et al. 2013; Schmitz et al. 2020b). Over the past 13 years,
physiological and biochemical experiments have rendered valu-
able information that allows us to predict in which habitats we
could encounter verrucomicrobial methanotrophs. Ecophysio-
logical experiments could shed light on how verrucomicrobial
methanotrophs interact with other microorganisms in the nat-
ural environment.

Acidic volcanic ecosystems are characterised by various mor-
phological features. In general, these features are formed in
places where mud, gas and water are expelled due to high fluid
pressure from the subsurface, creating hot springs, mud pools
and fumaroles (Cioni, Corazza and Marini 1984; Feyzullayev and
Movsumova 2010; Benson et al. 2011). Where reduced sulfur
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compounds are present, often sulfuric acid (H2SO4) is produced
by (thermo)acidophilic microorganisms. The microbial produc-
tion of sulfuric acid is environmentally important because it cre-
ates a low pH, which is characteristic for the Solfatara, several
parts of Yellowstone National Park and various other geothermal
ecosystems (Schoen and Rye 1970; Quatrini and Johnson 2018).
A low pH seems to be a key determinant of verrucomicrobial
methanotrophs to be present in geothermal habitats (Sharp et al.
2014). 16S rRNA and pmoA gene sequences of verrucomicrobial
methanotrophs have so far not been detected in habitats with a
pH > 5.0 and all isolates have a pH optimum around 3. Physic-
ochemical parameters within geothermal habitats such as tem-
perature and the oxygen concentration can differ locally within
a few meters. Many of the thermophilic Methylacidiphilum strains
were isolated from hot geothermal areas in close proximity to
the moderate temperature geothermal areas where the Methy-
lacidimicrobium strains were isolated from (Sharp et al. 2014).
Although bogs and fens are also characterised by a high acidity
(pH 3.3 to 4.9), no 16S rRNA or pmoA gene sequences of verru-
comicrobial methanotrophs have been detected in these habi-
tats, which may be explained by the relatively low concentra-
tion of lanthanides in peat bogs (Vodyanitskii et al. 2012; Sharp
et al. 2014). Based on environmental sequencing and activity
studies, the methanotrophic activity can be attributed to Pro-
teobacteria, at a pH as low as 3.5 (Dunfield and Dedysh 2010).
Proteobacteria such as strains of the genus Acidithiobacillus have
been found at lower pH, but this does not include proteobacterial
methanotrophs (Crognale et al. 2018). With current knowledge,
methane-rich habitats below pH 3.5, including the aforemen-
tioned crown of rusted sewer pipes, seem to be better suited for
verrucomicrobial methanotrophs than proteobacterial methan-
otrophs.

Methane and hydrogen gas are often emitted from geother-
mal habitats and these two compounds seem to be the major
energy sources for verrucomicrobial methanotrophs. All verru-
comicrobial methanotrophs were isolated on methane and sev-
eral strains were shown to grow as autotrophs on H2 (Carere
et al. 2017; Mohammadi et al. 2017a; Mohammadi et al. 2019).
Multiple verrucomicrobial methanotrophs possess more than
one particulate methane monooxygenase. The three pmo oper-
ons within the Methylacidiphilum strains differ significantly in
amino acid sequences, suggesting selection pressure for differ-
ent functions and adaptation to changing environmental condi-
tions (Op den Camp et al. 2009). In addition, short chain alkenes
could be oxidised by one or more of the pMMOs found in Methy-
lacidiphilum strains (Picone et al. 2020b). For methane oxidation to
occur, a sufficient concentration of lanthanides must be present
in the environment, because the verrucomicrobial methan-
otrophs only carry genes encoding the lanthanide-dependent
XoxF-type methanol dehydrogenase. This does not necessarily
mean that verrucomicrobial methanotrophs are only present in
lanthanide-rich environments. If H2 and oxygen are present at
suitable concentrations, they could grow as Knallgas bacteria
without the need for lanthanides (Carere et al. 2017; Moham-
madi et al. 2017a; Mohammadi et al. 2019). The concentration of
H2 and O2 in the environment could partially determine which
strains of verrucomicrobial methanotrophs are present in the
environment, because the different kinds of [NiFe] hydroge-
nases found in their genomes may have very different toler-
ances towards oxygen and possess different affinities for H2.

As example, Methylacidimicrobium tartarophylax 4AC only respires
H2 at microoxic conditions with the group 1b [NiFe] hydroge-
nase (Mohammadi et al. 2019), whereas Methylacidiphilum fumar-
iolicum SolV can respire H2 at wide range of oxygen concentra-
tions catalysed by the group 1d and group 1h [NiFe] hydroge-
nases (Mohammadi et al. 2017a). In addition, all isolates carry
a gene encoding a sulfide:quinone oxidoreductase (SQR), indi-
cating that verrucomicrobial methanotrophs might even grow
in acidic ecosystems where H2S is present and CH4 and H2 are
absent.

The main difference between Methylacidiphilum and Methy-
lacidimicrobium strains seems to be their growth tempera-
ture, with the former being thermophiles and the being latter
mesophiles. However, the isolation of Methylacidimicrobium ther-
mophilum AP8 with an optimum growth temperature of 50◦C
muddles this clear division (Picone 2020). Still, Methylacidiphilum
and Methylacidimicrobium strains are often found within a few
meters of each other, but at different temperatures (Sharp et al.
2014). In the environment, the concentration of ammonium
could be a key factor in determining which verrucomicrobial
methanotrophs are present. In general, ammonia is a compet-
itive inhibitor of pMMO, potentially reducing methane oxida-
tion rates. Additionally, high ammonium concentrations can
reduce the methane oxidation rate of microorganisms that are
unable to detoxify the oxidised products of ammonia oxidation
(D’Alessandro et al. 2009; Nyerges, Han and Stein 2010). Since
only Methylacidiphilum strains possess a gene encoding a hydrox-
ylamine oxidoreductase, they are well-equipped to detoxify
hydroxylamine, intracellularly produced through ammonia oxi-
dation by pMMO. Consequently, Methylacidimicrobium strains are
expected to be primarily found at moderate temperatures and
habitats with relatively low ammonium concentrations. How-
ever, different pMMOs could have different affinities for ammo-
nia, or could not be able to oxidise ammonia at all (Nyerges and
Stein 2009).

Little is known about the interaction of verrucomicrobial
methanotrophs with other microorganisms in their natural
geothermal habitat. Trough δ13C analysis of CH4, the origin of
this gas in geothermal systems can be deduced, since CH4

produced by archaea is relatively light compared to thermo-
genic or abiotic methane (Op den Camp et al. 2009). Typi-
cally, methane emitted from geothermal ecosystems is from a
non-microbial source, produced through a chemical reaction of
H2 and CO or by the non-microbial decomposition of buried
organic matter (Giggenbach 1995; Etiope and Klusman 2002;
Fiebig et al. 2007). However, methanogenic archaea have been
found in anoxic parts of several geothermal ecosystems, but
mostly at a pH of 5 or higher (Zeikus, Ben-Bassat and Hegge 1980;
Berghuis et al. 2019). Remarkably, a metagenome-assembled
genome (MAG) closely related to the methanogen Methanocella
conradii was abundantly present in the metagenome of the hot,
acidic, and methane-rich geothermal soil on the island Pan-
telleria, Italy (Picone et al. 2020a). This finding suggests that a
larger part of methane emitted from hot and acidic geothermal
ecosystems could be of microbial origin than initially thought
(D’Alessandro et al. 2009). In contrast, H2 utilised by verrucomi-
crobial methanotrophs does not seem to be produced by other
microorganisms in their habitat, but rather through abiotic or
thermogenic processes in the Earth’s crust (Aragno 1992; Lindsay
et al. 2019).
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CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

Since the isolation of verrucomicrobial methanotrophs from
hot and acidic geothermal ecosystems 13 years ago, signifi-
cant progress had been made in our understanding of these
microorganisms living in extreme environments. Verrucomi-
crobial methanotrophs are much more than their name sug-
gests: these extremophiles are actually metabolically versa-
tile microorganisms. In fact, the same could be true for their
proteobacterial counterparts. Whereas several verrucomicrobial
methanotrophs were shown to grow as Knallgas bacteria, hydro-
gen consumption by proteobacterial methanotrophs has only
been demonstrated as part of a mixotrophic lifestyle. However,
proteobacterial methanotrophs that possess the CBB cycle and
an uptake hydrogenase could be Knallgas bacteria as well. In
recent years, scientists have mainly focused on the metabolism
of inorganic compounds by verrucomicrobial methanotrophs,
not of organic compounds, as was done for several proteobacte-
rial methanotrophs. Originally thought to be obligate methan-
otrophs, a large variety of multi-carbon compounds such as
acetate, succinate and ethanol were shown to be consumed
by alphaproteobacterial methanotrophs (Dunfield and Dedysh
2014). The first attempts to grow verrucomicrobial methan-
otrophs on several organic compounds such as glucose, citrate
and malate were unsuccessful, but later Methylacidiphilum fumar-
iolicum SolV was shown to grown on ethane and butane (Op den
Camp et al. 2009; Picone et al. 2020b). The major questions for
future research regarding metabolism are whether proteobacte-
rial methanotrophs can grow as Knallgas bacteria and whether
verrucomicrobial methanotrophs can incorporate organic com-
pounds into their diet.

Since multiple verrucomicrobial methanotrophs were shown
to be excellent hydrogen-oxidisers, it would be worthwhile to
see if new enrichment strategies using hydrogen gas, carbon
dioxide and low oxygen would result in novel verrucomicro-
bial isolates. The exciting discovery of 16S rRNA genes related
to verrucomicrobial methanotrophs outside of terrestrial vol-
canic ecosystems suggests a distribution outside of geothermal
habitats. Several factors such as pH and temperature, but also
the oxygen and ammonium concentration and the presence
of methane, hydrogen gas, hydrogen sulfide and lanthanides
could be used as parameters to predict the presence of ver-
rucomicrobial methanotrophs in nature. Methane and hydro-
gen gas seem to be the main energy sources for verrucomi-
crobial methanotrophs. In addition, hydrogen sulfide could be
a potent energy source, but additional physiological and bio-
chemical experiments are needed to clarify this. From soil it is
known that up to 90% of methane produced in these systems
is consumed before it reaches the atmosphere, thereby con-
tributing significantly to the mitigation of greenhouse gas emis-
sions from the biosphere (Oremland and Culbertson 1992; Singh
et al. 2010). To what extent verrucomicrobial methanotrophs
alleviate methane emissions from geothermal environments is
unknown. With the annual seepage of 40 to 60 Tg methane
from mud volcanoes, fumaroles and hydrothermal vents (Etiope
2009), it would be interesting to investigate verrucomicrobial
methanotrophy in the environment, especially if the use alter-
native energy sources such as hydrogen gas and hydrogen sul-
fide could enhance this process.
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Dean JF, Middelburg JJ, Röckmann T et al. Methane feedbacks to
the global climate system in a warmer world. Rev Geophys
2018;56:207–50.

De Bont JAM. Nitrogen fixation by methane-utilizing bacteria.
Antonie Van Leeuwenhoek 1976;42:245–53.

Dedysh SN, Panikov NS, Liesack W et al. Isolation of acidophilic
methane-oxidizing bacteria from northern peat wetlands.
Science 1998;282:281–4.

Deng YW, Ro SY, Rosenzweig AC. Structure and function of the
lanthanide-dependent methanol dehydrogenase XoxF from
the methanotroph Methylomicrobium buryatense 5GB1C. J Biol
Inorg Chem 2018;23:1037–47.

Dixon R, Kahn D. Genetic regulation of biological nitrogen fixa-
tion. Nat Rev Microbiol 2004;2:621–31.

Duine JA, Frank J, Jr. Studies on methanol dehydrogenase from
Hyphomicrobium X. Isolation of an oxidized form of the
enzyme. Biochem J 1980;187:213–9.

Dunfield PF, Dedysh SN. Acidic environments. In: Timmis KN
(ed). Handbook of Hydrocarbon and Lipid Microbiology, Berlin,
Heidelberg: Springer, 2010, 2181–92.

Dunfield PF, Dedysh SN. Methylocella: a gourmand among
methanotrophs. Trends Microbiol 2014;22:368–9.

Dunfield PF, Yuryev A, Senin P et al. Methane oxidation by an
extremely acidophilic bacterium of the phylum Verrucomi-
crobia. Nature 2007;450:879–82.

Eadsforth TC, Maluf FV, Hunter WN. Acinetobacter baumannii FolD
ligand complexes - potent inhibitors of folate metabolism
and a re-evaluation of the structure of LY374571. FEBS J
2012;279:4350–60.

Edgar RC. Search and clustering orders of magnitude faster than
BLAST. Bioinformatics 2010;26:2460–1.

Erikstad H-A, Ceballos RM, Smestad NB et al. Global bio-
geographic distribution patterns of thermoacidophilic Ver-
rucomicrobia methanotrophs suggest allopatric evolution.
Front Microbiol 2019;10:1129.

Etheridge DM, Steele LP, Francey RJ et al. Atmospheric methane
between 1000 A.D. and present: Evidence of anthro-
pogenic emissions and climatic variability. J Geophys Res
1998;103:15979–93.

Etiope G, Klusman RW. Geologic emissions of methane to the
atmosphere. Chemosphere 2002;49:777–89.

Etiope G. Natural emissions of methane from geological seepage
in Europe. Atmos Environ 2009;43:1430–43.

Etminan M, Myhre G, Highwood EJ et al. Radiative forcing of
carbon dioxide, methane, and nitrous oxide: A significant
revision of the methane radiative forcing. Geophys Res Lett
2016;43:12614–23.

Ettwig KF, Butler MK, Le Paslier D et al. Nitrite-driven
anaerobic methane oxidation by oxygenic bacteria. Nature
2010;464:543–8.

Ettwig KF, Shima S, van de Pas-Schoonen KT et al. Denitrify-
ing bacteria anaerobically oxidize methane in the absence
of Archaea. Environ Microbiol 2008;10:3164–73.

Ettwig KF, Speth DR, Reimann J et al. Bacterial oxygen production
in the dark. Front Microbiol 2012;3:273.

Ettwig KF, Zhu B, Speth D et al. Archaea catalyze iron-dependent
anaerobic oxidation of methane. Proc Natl Acad Sci USA
2016;113:12792–96.

Evans PN, Boyd JA, Leu AO et al. An evolving view of methane
metabolism in the Archaea. Nat Rev Microbiol 2019;17:219–32.
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Kox MAR, Aalto SL, Penttilä T et al. The influence of oxygen and
methane on nitrogen fixation in subarctic Sphagnum mosses.
AMB Express 2018;8:76.

Kruse T, Ratnadevi CM, Erikstad H-A et al. Complete genome
sequence analysis of the thermoacidophilic verrucomi-
crobial methanotroph “Candidatus Methylacidiphilum kam-
chatkense” strain Kam1 and comparison with its closest rela-
tives. BMC Genomics 2019;20:642.

Kurosu M, Begari E. Vitamine K2 in electron transport system:
Are enzymes involved in vitamin K2 biosynthesis promising
drug targets? Molecules 2010;15:1531–53.

Kvenvolden KA, Rogers BW. Gaia’s breath—global methane
exhalations. Mar Pet Geol 2005;22:579–90.

La H, Hettiaratchi JPA, Achari G et al. Biofiltration of methane.
Bioresour Technol 2018;268:759–72.

Lee E-H, Moon K-E, Kim TG et al. Inhibitory effects of sulfur com-
pounds on methane oxidation by a methane-oxidizing con-
sortium. J Biosci Bioeng 2015;120:670–6.

Lee J-H, Kim TG, Cho K-S. Isolation and characterization of a fac-
ultative methanotroph degrading malodor-causing volatile
sulfur compounds. J Hazard Mater 2012;235-236:224–9.



18 FEMS Microbiology Reviews, 2021, Vol. 45, No. 5

Lees V, Owens NP, Murrell JC. Nitrogen metabolism in marine
methanotrophs. Arch Microbiol 1991;157:60–5.

Lehtovirta-Morley LE. Ammonia oxidation: Ecology, physiology,
biochemistry and why they must all come together. FEMS
Microbiol Lett 2018;365:fny058.

Letunic I, Bork P. Interactive Tree Of Life (iTOL): an online tool
for phylogenetic tree display and annotation. Bioinformatics
2007;23:127–8.

Leu AO, Cai C, McIlroy SJ et al. Anaerobic methane oxidation cou-
pled to manganese reduction by members of the Methanop-
eredenaceae. ISME J 2020;14:1030–41.

Levicán G, Ugalde JA, Ehrenfeld N et al. Comparative genomic
analysis of carbon and nitrogen assimilation mechanisms in
three indigenous bioleaching bacteria: predictions and vali-
dations. BMC Genomics 2008;9:581.

Lieberman RL, Rosenzweig AC. Crystal structure of a membrane-
bound metalloenzyme that catalyses the biological oxidation
of methane. Nature 2005;434:177–82.

Lim S, Franklin SJ. Lanthanide-binding peptides and the
enzymes that Might Have Been. Cell Mol Life Sci 2004;61:
2184–8.

Lindsay MR, Colman DR, Amenabar MJ et al. Probing the geologi-
cal source and biological fate of hydrogen in Yellowstone hot
springs. Environ Microbiol 2019;21:3816–30.

Lomans BP, Pol A, Op den Camp HJM. Microbial cycling of volatile
organic sulfur compounds. Cell Mol Life Sci 2002;59:575–88.
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