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ABSTRACT: Engineered biomedical nanoparticles (NPs) administered via
intravenous routes are prone to associate to serum proteins. The protein
corona can mask the NP surface functionalization and hamper the delivery
of the NP to its biological target. The design of corona-free NPs relies on
our understanding of the chemical-physical features of the NP surface
driving the interaction with serum proteins. Here, we address, by
computational means, the interaction between human serum albumin
(HSA) and a prototypical monolayer-protected Au nanoparticle. We show
that both the chemical composition (charge, hydrophobicity) and the
conformational preferences of the ligands decorating the NP surface affect
the NP propensity to bind HSA.

■ INTRODUCTION

Nanoparticles (NPs) designed to be administered via intra-
venous routes are prone to interact with serum proteins, which
can stably cluster around the nanoparticle forming a protein
corona.1−4 The nonspecific adsorption of proteins on NPs
alters their designed function and influences their fate in the
body.5−7 The control of protein adsorption8−10 and the
minimization of early clearance from the bloodstream are
crucial to the clinical integration of synthetic nanoparticles.6

Most often, inorganic NPs designed for diagnostic or
therapeutic applications do not expose their bare surface to
the biological environment but are functionalized by organic
ligands that provide better solubility and specific targeting
properties. The density, length, charge, and hydrophobicity of
the NP ligands determine the amount and type of proteins that
bind to the NP,8,11,12 as well as the reversibility of
binding.13−16

One possible route to act on the NP−protein interaction, in
the direction of reducing nonspecific adsorption, involves the
functionalization of the NPs with proper antifouling functional
groups. Poly(ethylene glycol) (PEG) is known to be a good
antifouling material,17 and a consistent body of literature has
shed light on its action as a stealth agent. Protein-repellent
properties of PEG grafted on surfaces are influenced by PEG
chain length,18 density, and environment temperature,19,20

although the amount of adsorbed proteins is not always a
monotonic function of these parameters.21 The use of PEG as
a stealth agent also has some drawbacks, such as its non-
biodegradability, immunogenicity,22 and its accumulation in
membrane-bound organelles.23 An alternative to PEG is
represented by ligands terminated by zwitterionic moieties,
which further reduce nonspecific protein adsorption.13,22,24

Zwitterionic groups can thus extend the circulation time of the

NPs and increase their ability to effectively penetrate cell
membranes.5

The many physical and chemical parameters that character-
ize the NP−protein interface, on both sides, make it difficult to
identify clear correlations between the composition of the NP
surface and the composition and stability of the protein
corona. The computational approach can contribute to shed
light on which factors, on the molecular scale, determine the
formation of stable coronas. Molecular simulations face
important limitations, although as the corona formation is a
process that spans timescales of seconds, the relevant NP sizes
for biomedical applications range from a few to hundreds of
nanometer, whereas the thickness of the protein corona on
metal or metal oxide NPs varies from 20 to 40 nm.8 The
simulation, at atomistic or molecularly detailed coarse-grained
(CG) resolution and with explicit solvent, of a whole NP +
corona complex is still out of reach for current computational
resources. The use of implicit solvent schemes has allowed for
the simulation of the corona formation on top of model
spherical NPs.25,26 Several attempts have been made at the
simulation of the interaction of a single NP with a single
protein. This has most often required to give away significant
details of the NP−protein interface. NPs are often modeled as
flat surfaces27 or smooth spherical objects, offering a generic
hydrophobic, hydrophilic, or charged surface to the pro-
tein.28−30 Proteins, as well, may be treated as rigid bodies29 or
polymers with no secondary structure.30

Here, we use molecular dynamics (MD), at coarse-grained
(CG) resolution, to investigate the interplay of electrostatics,
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hydrophobicity, and ligand conformation at shaping NP−
protein interactions. Our model combines an atomistic
description of the Au core31 to a coarse-grained, explicit
solvent model of the rest of the system. The coarse-grained
description has submolecular resolution, and it takes into
account explicitly the composition of the NP ligand shell, its
flexibility, and protein flexibility. We simulate the interaction
between human serum albumin (HSA) and monolayer-
protected Au NPs. HSA accounts for more than half of the
serum proteins in human blood plasma,32 and it is one of the
most abundant components of the corona formed around
nanoparticles11,12 and specifically ligand-protected Au NPs.14

The Au NPs we consider have the same composition and size
as those of NPs synthesized by Moyano et al.13 The Au core
has a small diameter of 2 nm (4 nm in the experiments by
Moyano et al.13). The Au surface is covalently functionalized
by ligands that are terminated by a zwitterionic group and, at
the same time, have tunable hydrophobicity. This ligand
composition offers the opportunity to monitor the influence of
electrostatic and hydrophobic interactions at shaping the NP−
protein interaction.

■ METHODS

As a first step, we developed a coarse-grained model of HSA in
the framework of the polarizable-water Martini coarse-grained
model, which allows realistic large-scale simulations of
proteins33−35 and nanoparticles.36,37 The Martini force field
does not allow for changes of the protein secondary structure,
which is imposed by means of an elastic network connecting
the CG beads that are placed on top of the Cα atoms.38 This
description of HSA is compatible with the indication that the
secondary structure of HSA does not change upon binding to
Au surfaces27 and nanoparticles such as fullerenes39 and Au
nanoparticles in the 4−40 nm range.14,40 The development of
the CG model was based on structural and dynamic
parameters obtained from atomistic simulations carried out

with the Amberff99SB-ILDN force field.41 Several CG models
were tested, with different parameters defining the elastic
network. We considered two structural parameters (the root-
mean-square deviation (RMSD) of α carbon atoms and the
per-residue root-mean-square fluctuation (RMSF)). We also
performed principal component analysis (PCA) to quantify the
superposition of principal components (PCs) in atomistic and
CG simulations. Finally, we selected the CG model most
similar to the all-atom model in terms of RMSD and RMSF,
with the highest overlap in PCA. All details about the model
development are reported in the Supporting Information.
To test the influence of hydrophobicity on the interaction

between zwitterionic NPs and HSA, we tested two different
NP models. The two NPs have an identical core of 144 Au
atoms and differ only for the composition of their 60 ligands
(Figure 1). The least hydrophobic NP, referred to as Z, has
ligands composed by a short hydrophobic stretch, a sequence
of four monomers of PEG, and a zwitterionic sulfobetaine
terminal. The most hydrophobic NP, referred to as ZH, has
identical ligands except for two additional hydrophobic
branches stemming from the zwitterionic terminal group.
The details of ligand parameterization are reported in the
Supporting Information.

■ RESULTS AND DISCUSSION

We characterized the NP−HSA interaction by means of
unbiased MD runs in which a single NP was allowed to
interact with a single HSA protein. We performed 20 runs at
physiological conditions (310 K, atmospheric pressure) with a
time step of 20 ns for a total simulated time of 60 μs for each
NP type. All simulations were run with the GROMACS 5
package. More details on the MD settings can be found in the
Supporting Information. Both NPs are found to establish
transient contacts with the protein. To quantify the number
and temporal stability of NP−protein contacts, we consider the
NP and the protein to be in contact when at least two of their

Figure 1. (a) HSA. On the left, the secondary structure of the protein; on the right, the protein surface colored according to hydrophobicity
(hydrophobic residues in blue and charged or polar residues in green); (b) the ligand-protected NP, with gray Au core and S atoms, and Z ligands.
(c) Chemical composition of the Z and ZH ligands of the NP. (d) The Z and ZH ligands as represented by the CG model; C1, Q0, and Qda refer
to nonbonded types of the Martini force field;42 poly(ethylene oxide) is the Martini type defined in Lee et al.43
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CG beads are closer than a threshold distance of 0.8 nm. The
ZH NP resides on HSA surface for longer stretches of time
(see Figure 2) compared with the Z NP. For the ZH NP, the
total time spent in the bound state is tZH

b = 23.8 μs over the
simulated trun = 60 μs whereas for the Z NP, tZ

b = 4.9 μs over
the same trun. The free-energy difference between the bound
and unbound s ta te can be thus es t imated as

G RT ln( ) 1.1t
t tZH

ZH
b

run ZH
bΔ = − =

−
kJ/mol (0.43kBT), and

( )G RT ln 6.2t
t tZ

Z
b

run Z
bΔ = − =

−
kJ/mol (2.4kBT). We remark

that these energy differences do not refer to the binding of the
NP to a specific site but take effectively into account all
binding mechanisms observed during the simulations.
As both NPs undergo many binding and unbinding events

during the simulation time, it is also possible to extract
information about the effective free-energy barriers for binding
and unbinding. We define the average residence time as the
average time duration of a binding event. The average
residence time of the ZH NP is ⟨tZH⟩ = 34.2 ± 0.3 ns,
whereas for the Z NP, it is ⟨tZ⟩ = 3.91 ± 0.01 ns. On the basis
of the mean residence time, we can estimate the difference,
Δu‡, between the effective unbinding free-energy barriers for
the two NP types

t
t

e G G k TZ

ZH

( )/ZH
u

Z
u

B
⟨ ⟩

⟨ ⟩
= − Δ −Δ‡ ‡

G G k T t tln( / )u
ZH
u

Z
u

B Z ZHΔ = Δ − Δ = − ⟨ ⟩ ⟨ ⟩‡ ‡ ‡

where we have indicated with ΔGi
u‡ the height of the

unbinding barrier for the NP of type i. Δu‡ results to be
equal to 2.25kBT. As for binding, the average time spent by the
two NPs in the unbound state, that is in the water phase, ⟨tw⟩,
is similar: ⟨tZH

w ⟩ = 51.6 ± 0.2 ns and ⟨tZ
w⟩ = 42.9 ± 0.1 ns,

corresponding to a difference of 0.19kBT between the binding
free-energy barriers. Figure 2 shows, in the bottom panel, a
sketch of the free energy of the bound, unbound, and transition
states for the two NPs.

Figure 2. Top: distribution of NP−protein residence times for Z and
ZH NPs. Center: maximum residence time during each of the 20
unbiased MD runs, for each NP type. Bottom: sketch of the free-
energy barriers for binding and unbinding of ZH and Z NPs (same
color code as above).

Figure 3. (a) Protein surface colored on the basis of the average number of contacts with the ZH NP. (b) Same colormap, for the Z NP. (c)
Protein surface colored on the basis of residue polarity (hydrophobic residues in red, charged in white, and polar in blue). (d) Histogram of
protein−NP contacts involving hydrophobic, charged, and polar residues of HSA.
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To further probe the scarce propensity of the zwitterionic
NPs to stably bind HSA, we also performed a comparison with
a NP functionalized by PEG ligands, with the same density and
length as those of the Z and ZH ligands. With PEG ligands, we
found that the NP−HSA binding is irreversible on the
simulation timescale (3 μs); the result is robust against the
use of different PEG parameterizations43,44 (see Figure S1 and
the Supporting Information for a detailed description of these

simulations). These results are in excellent agreement with the
experimental findings by Moyano et al.,13 suggesting that no
hard corona is formed on the surface of 4 nm Au NPs with a
zwitterionic ligand shell whereas it is formed on NPs
functionalized by neutral PEG ligands.13 Moreover, the small
difference in the energy barrier for the unbinding of the Z and
ZH NPs is consistent with the small, reversible precipitation
observed in the experiments for the most hydrophobic NPs.13

The different residence times of the Z and ZH NPs suggest
that the increased binding of ZH is due to the contribution of
the additional hydrophobic groups on the ZH surface. To
verify this hypothesis, we analyzed in more detail the nature of
the contacts between the protein and the two NPs. Figure 3
shows that the binding of the Z NP to HSA is quite uniform on
the protein surface, whereas two preferential binding sites
emerge from the interaction between ZH and HSA. These
binding sites have different shapes (one has the form of a
protrusion, and the other one, of a pocket) and contain both
hydrophobic and charged residues. We classified the contacts
between HSA and the NPs as hydrophobic, charged, or polar,
depending on the character of the amino acid involved (details
on the classification can be found in the Supporting
Information). Surprisingly, hydrophobic contacts are roughly
the same for Z-HSA and ZH-HSA binding (Figure 3c).
Even more surprising is the picture emerging from the

classification of the NP−HSA contacts on the basis of the type
of group of the NP ligand bound to the protein, as shown in
Figure 4. The main difference between the two NP types is
represented by the number of contacts established by the PEG
segment of the ligand, significantly higher for the ZH NP.
Unexpectedly, the number of hydrophobic contacts is lower for
the ZH NP. Why do more hydrophobic ligands make less
hydrophobic contacts with the protein? The answer is
provided by the radial distribution functions of the different
groups composing the NP ligands, as shown in the bottom
panel of Figure 4. The terminal groups of the Z NP ligands
reach out for the water phase, indicating that the ligands
mainly have an extended conformation. On the contrary, the
(more hydrophobic) terminal groups of the ZH ligands are
found closer to the Au surface, well screened from interactions
with water, indicating that the ligands mainly have a folded
conformation. Such folding brings the central PEG segment of
the ligand chains to the water interface, promoting PEG−HSA
contacts. These data highlight that another important physical
parameter affects NP−protein interaction: ligand conforma-
tion.
The slight difference between the free-energy barriers for

binding observed for the Z and ZH NPs can also be
interpreted as a consequence of the different ligand
conformations. Indeed, the conformational change induced
by the presence of the C1T groups also affects the hydration of
the NP. The bottom panel of Figure 4 shows the radial
distribution function of water beads (PW) for Z and ZH NPs.

Figure 4. Top: percentage of NP−protein contacts involving different
segments of the NP ligands: C1 refers to the hydrophobic groups next
to the S atom, PEG refers to the four PEG monomers, Q refers to the
charged groups of the zwitterion, and C1T refers to the hydrophobic
groups bound to the zwitterionic terminal. The inset shows the
difference between the contact percentages of ZH and Z NPs,
highlighting the increase of PEG−HSA contacts in the ZH case.
Bottom: radial distribution function of the different chemical groups
composing the NP ligands. PW stands for polarizable water.

Table 1. Number of Contacts between NP Beads and Water Beads and between the Charged Beads of the Zwitterionic Groups
and Water Beadsa

NP
NP−water no NP−protein

contact
NP−water during NP−protein

contact
zwitterionic group−water no NP−protein

contact
zwitterionic group−water during

NP−protein contact

Z 4909 ± 1 4889 ± 5 (−20) 1542 ± 1 1533 ± 2 (−9)
ZH 3950 ± 1 3821 ± 14 (−129) 1015 ± 1 985 ± 4 (−30)

aIn parentheses, the difference between the number of contacts in the bound and unbound state.
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ZH NPs, in water, are less hydrated than Z NPs45 (the time-
averaged NP−water contacts of the ZH NP amount to 80% of
the Z NP−water contacts). Water contacts are further reduced
for the charged beads of the zwitterionic groups of ZH
nanoparticles, as shown in Table 1, as a consequence of the
ligand conformational change. Upon binding, it is the ZH NP
that loses the largest number of water contacts, as shown in
Table 1, coherently with the presence of a larger free-energy
barrier for binding (see also Figure 2).

■ CONCLUSIONS
In this work, we used coarse-grained molecular dynamics
simulations with submolecular resolution to study the
interaction of a monolayer-protected Au NP with the most
abundant serum protein, HSA. We considered two types of
NPs, functionalized by zwitterionic ligands with different
degrees of hydrophobicity. Our simulations show that
zwitterionic NPs have scarce propensity to form stable
complexes with HSA, whereas more hydrophobic ligands
interact more strongly with the protein, as measured in
experiments by Moyano et al.13 The excellent agreement with
the experimental data allows us to interpret the experiments at
the molecular level. The ligands terminated by hydrophobic
groups interact more stably with the protein not by virtue of
hydrophobic interactions but because the hydrophobic
moieties are folded toward the center of the NP and the
PEG moieties are more exposed to the environment. NP−
protein interactions, in this case, are determined by an increase
of PEG−protein interactions, compatible with the formation of
stable NP−protein complexes such as a hard protein corona.
Our data show that ligand conformation is as relevant as

chemical affinity in determining protein−NP interactions. As a
result, we propose that the design of protein-repellent NP
functionalization should consider carefully the importance of
both ligand conformation and ligand chemical composition.
Computational models, also at coarse-grained level, are
paramount for the prediction of ligand conformations relevant
to the NP−protein interface, and we envision that they will
contribute more in the future to quantify the relative weight of
structural and chemical factors influencing NP−protein
interactions.
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