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Summary. The N-mixture model is widely used to estimate the abundance of a population in the presence of unknown
detection probability from only a set of counts subject to spatial and temporal replication (Royle, 2004, Biometrics 60,
105–115). We explain and exploit the equivalence of N-mixture and multivariate Poisson and negative-binomial models, which
provides powerful new approaches for fitting these models. We show that particularly when detection probability and the
number of sampling occasions are small, infinite estimates of abundance can arise. We propose a sample covariance as a
diagnostic for this event, and demonstrate its good performance in the Poisson case. Infinite estimates may be missed in
practice, due to numerical optimization procedures terminating at arbitrarily large values. It is shown that the use of a
bound, K, for an infinite summation in the N-mixture likelihood can result in underestimation of abundance, so that default
values of K in computer packages should be avoided. Instead we propose a simple automatic way to choose K. The methods
are illustrated by analysis of data on Hermann’s tortoise Testudo hermanni.
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1. Introduction
Estimating the abundance of a population is an important
component of ecological research. N-mixture models can be
used to estimate animal abundance from counts with both
spatial and temporal replication whilst accounting for imper-
fect detection (Royle, 2004a). Whereas alternative sampling
methods for obtaining estimates of abundance exist, such as
capture–recapture, distance, removal and multiple-observer
sampling, these may be expensive in effort or cost, or impracti-
cal for some species and scenarios. A benefit of the N-mixture
model is the reasonably low comparative cost and effort re-
quired for data collection which does not require individuals
to be identified. This is especially true of many citizen-science
based monitoring programs.

Consequently, since development by Royle (2004a), many
applications and extensions of the N-mixture model have been
made. These include applications to various taxa, including
birds (Kéry, Royle, and Schmid, 2005), mammals (Zellweger-
Fischer, Kéry, and Pasinelli, 2011), and amphibians (Dodd
and Dorazio, 2004; McIntyre et al., 2012). In addition, co-
variates have often been used to examine spatial patterns in
abundance and detection (Kéry, 2008) and hence create maps
of spatial abundance (Royle, Nichols, and Kéry, 2005).

Despite the popularity of the N-mixture model, few studies
have made comparisons with estimates derived via alterna-
tive methods or undertaken simulation studies of performance
(Kéry et al., 2005; Hunt, Weckerly, and Ott, 2012; Couturier
et al., 2013). A potential issue for fitting the model using
classical inference is the need to specify an upper bound, K,
to approximate an infinite summation in the likelihood. We
found this matter was rarely mentioned in publications. For
example, McIntyre et al. (2012) used simulated data to sup-
port their amphibian study, highlighting the benefit of more

sampling occasions, particularly when detection probability
was low, however the value of K used was not provided. When
software such as unmarked (Fiske and Chandler, 2011) written
in R (R Core Team, 2014) and PRESENCE (Hines, 2011) is
used for model fitting, it is possible that only default values
of the bound are employed. Couturier et al. (2013) suggest
bias could be induced by the choice of K for low detection
probabilities.

In this article, we investigate computational aspects of fit-
ting N-mixture models, in particular via a simulation study
for scenarios where detection probability is low and/or the
number of sampling occasions is small. This may be impor-
tant for the study of cryptic species, and have implications
for sample design: many applications to date have made only
three visits, whereas in Royle (2004a) simulations were tested
for five visits and an application made to data with 10 vis-
its. When only one sampling visit is made, it is well known
that the N-mixture model reduces to a thinned Poisson dis-
tribution, with only one estimable parameter, the product of
mean abundance and detection probability, a feature which
underlies aspects of the work which follows.

The N-mixture model is described in Section 2. In Sec-
tion 3 we explain the equivalence of the Poisson N-mixture
model with a multivariate Poisson distribution. We use this
formulation to show that infinite estimates of abundance may
arise, and provide a simple diagnostic to identify such cases.
The multivariate Poisson formulation has the advantage of not
requiring a constant K to be set. Section 4 provides the proba-
bility function in the bivariate negative-binomial case. In Sec-
tion 5, we show how the choice of K in the N-mixture model
interacts with the occurrence of infinite estimates of abun-
dance, and how incorrect conclusions may arise. An automatic
method for choosing K is provided. Section 6 provides moment
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estimates and evaluates the use of two diagnostic tests for the
negative-binomial case for when infinite estimates of abun-
dance may arise. Section 7 provides an application to real data
and the article ends with discussion and recommendations.

2. The N-Mixture Model

Under the study design in Royle (2004a), a set of counts is
made during sampling visits t = 1, 2, . . . , T at i = 1, 2, . . . , R

locations (sites). The population is assumed to be closed dur-
ing the period of sampling and each individual is assumed to
have the same detection probability p. The counts nit at site
i and time t are assumed to be independent binomial random
variables,

nit ∼ Bin(Ni, p),

where Ni is the unknown population size at site i. To fit the
model using classical inference, we assume the Ni to be inde-
pendent random variables with probability function f (N; θ),
and then maximize the likelihood

L(p, θ; {nit})=
R∏

i=1

{ ∞∑
Ni=κi

(
T∏

t=1

Bin(nit ;Ni, p)

)
f (Ni; θ)

}
, (1)

where κi = maxtnit . As noted by Royle (2004a), numerical
maximization of (1) requires the replacement of the infinite
summation over Ni by a sum with upper limit K. The value
of K may be selected by fitting the model for a succession
of increasing values and selecting K when the parameter es-
timates appear to stabilize (Royle, 2004a). We shall consider
both Poisson and negative-binomial mixing distributions.

It is our experience that the N-mixture model can produce
unrealistically large estimates of abundance and we explain
this feature in the article.

3. Equivalence of the Poisson N-Mixture Model
With a Multivariate Poisson Model

The number of individuals observed at a site at time t can be
written as the convolution of independent random variables,
corresponding to those seen only once, those seen twice, etc.
This natural feature of the N-mixture model can be formalized
as we now show.

Let S denote the set of non-empty subsets of {1, . . . , T },
and let the random variable Xi,s (s ∈ S) denote the number
of individuals seen at site i only on occasion s. For example,
Xi,124 denotes the individuals seen at site i on occasions 1, 2,
and 4 only. Then, if we let St denote those elements of S that
include t, we can decompose nit as

nit =
∑
s∈St

Xi,s.

For example, with T = 3, we have

ni1 = Xi,1 + Xi,12 + Xi,13 + Xi,123

ni2 = Xi,2 + Xi,12 + Xi,23 + Xi,123

ni3 = Xi,3 + Xi,13 + Xi,23 + Xi,123.

Conditional on Ni, the joint distribution of the set of ran-
dom variables Xi,s (s ∈ S) is multinomial, with index Ni and
probabilities πi,s = p|s|(1 − p)T−|s|, where |s| denotes the num-
ber of elements in the set s. When Ni ∼ Pois(λ), the Xi,s (s ∈ S)
are independent Poisson random variables, with

E (Xi,s) = λp|s|(1 − p)T−|s|,

see Johnson, Kotz, and Balakrishnan (1997, p. 146). The
thinned Poisson is the case T = 1.

It follows that the joint distribution of (ni1, . . . , niT ) is mul-
tivariate Poisson (Johnson et al., 1997, Chapter 37), with

E(nij) =
∑
s∈Sj

E(Xi,s) =
∑
s∈Sj

λp|s|(1 − p)T−|s|.

There are
(

T−1
k−1

)
subsets s ∈ St such that |s| = k (k = 1, . . . , T ).

Hence

E(nij) =
T∑

k=1

(
T − 1

k − 1

)
λpk(1 − p)T−k = λp.

Similarly, if we let Stu denote the elements of S that include
both t and u then

cov(nit, niu) =
∑
s∈Stu

var(Xi,s) =
∑
s∈Stu

λp|s|(1 − p)T−|s|.

There are
(

T−2
k−2

)
subsets s ∈ Stu such that |s| = k (k = 2, . . . , T ).

Hence, for t �= u,

cov(nit, niu) =
T∑

k=2

(
T − 2

k − 2

)
λpk(1 − p)T−k = λp2,

and corr(nit, niu) = p (t �= u).
This result is a special case of Johnson et al. (1997,

equation 37.88), which is stated without proof.

Example: T=2, Poisson Case

Cormack (1989) mentions this case in closed-population
capture–recapture modeling of data from one site only.

Suppressing site dependence, we have

n1 = X1 + X12 and n2 = X2 + X12,

where X1, X2, X12 are independent with X1, X2 ∼ Pois(θ1),
where θ1 = λp(1 − p) and X12 ∼ Pois(θ0), where θ0 = λp2.
Note that small p would result typically in small values for
X12, and as p tends to zero n1 and n2 become independent,
so that the model reverts to a thinned Poisson.
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The counts (n1, n2) follow a bivariate Poisson distribution
with corr(n1, n2) = p, and the bivariate Poisson probability is

Pr(n1, n2; λ, p) =
min(n1,n2)∑

u=0

[
e−λp2

(λp2)ue−2λp(1−p)

u!(n1 − u)!(n2 − u)!

× {λp(1 − p)}n1+n2−2u

]
= {p(1 − p)}n1+n2

min(n1,n2)∑
u=0

e−λ(2p−p2)λn1+n2−u

(1 − p)2uu!(n1 − u)!(n2 − u)!
.

(2)

Including site dependence, the likelihood is

L(p, λ; {nit}) = e−(2θ1+θ0)

R∏
i=1{

θ
ni1+ni2
1

ni1!ni2!

min(ni1,ni2)∑
u=0

(
ni1

u

)(
ni2

u

)
u!

(
θ0

θ2
1

)u
}

.

(3)

For T = 2 the expressions of (1) and (3) are identical, but the
likelihood of (3) may be maximized without requiring selec-
tion of a value K.

3.1. Multivariate Poisson Distribution

For general T , let Xi denote the set of all possible values xi,s

of the random variables Xi,s, s ∈ S such that

nit =
∑
s∈St

xi,s, t = 1, . . . , T.

Because the random variables Xi,s are independent, the joint
probability function of (ni1, . . . , niT ) is

Pr(ni1, . . . , niT ) =
∑
Xi

∏
s∈S

Pr(Xi,s = xi,s),

and ∏
s∈S

Pr(Xi,s = xi,s)

=
∏
s∈S

exp
{−λp|s|(1 − p)T−|s|}{

λp|s|(1 − p)T−|s|}xi,s

xi,s!
.

There are
(

T

k

)
elements s ∈ S such that |s| = k, for k =

1, . . . , T . Hence

∏
s∈S

exp
{−λp|s|(1 − p)T−|s|} = exp

{
−λ

T∑
k=1

pk(1 − p)T−k

}
= exp

[−λ
{
1 − (1 − p)T

}]
.

Therefore, we can write

Pr(ni1, . . . , niT ; λ, p) =
∑
Xi

∏
s∈S

{
p|s|(1 − p)T−|s|}xi,s

xi,s!

× exp
[−λ

{
1 − (1− p)T

}]
λ�s∈Sxi,s .

(4)

The case T = 2 is given in (2). The associated R program
incorporates efficient construction of Xi.

3.2. Performance of the Multivariate Poisson Model

For illustration, we investigate performance of the multivari-
ate Poisson model via simulation from the fitted model. We
assess output for the cases T = 2, 3, 4 based upon 1000 simu-
lations where λ = 2, 5, 10, p = 0.1, 0.25 and R = 20. The cho-
sen parameter values were guided by those used in Royle
(2004a). The model was fitted using the optim function in
the R software package (R Core Team, 2014) using the default
Nelder–Mead algorithm and a tolerance value of 1 × 10−12.
The results were checked with those from using several other
optim algorithms, including simulated annealing and quasi-
Newton. We observe that estimates for λ were very large in
some cases (the maximum estimate from 1000 simulations was
1.36 × 1013 when λ = 5, p = 0.25, and T = 2). Figure 1 shows
that non-positive values of a covariance diagnostic,

cov∗(n1, n2) = n1n2 − {(n1 + n2)/2}2, (5)

can identify the high estimates of λ from fitting the bivari-
ate Poisson. Here n1n2 denotes the mean of the product n1n2

over S sites. Note that this (intraclass) estimate is appropri-
ate as E[n1] = E[n2]. A proof that a local maximum of the
likelihood occurs at p = 0 when cov∗(n1, n2) ≤ 0 is given in
the Appendix; we are working on a general proof for T > 2,
as well as a proof that there are no other maxima when the
diagnostic is satisfied. Hence, in these instances when p̂ = 0,
in order to have finite λ̂p, λ̂ is actually infinite and the large
range of high estimates of abundance obtained in practice, as
in Figure 1, is partly an artefact of the optimization routine
stopping prematurely when the likelihood is flat.

For more than two visits (T > 2), the appropriate covari-
ance diagnostic can be estimated as

cov∗(n1, . . . , nT ) = 2

T (T − 1)
(n1n2 + · · · + nT−1nT )

−
(

n1 + · · · + nT

T

)2

, (6)

where the first term consists of the average of the means of all
T (T − 1)/2 pairwise products. Our conjecture that the diag-
nostic extends for T > 2 is supported by Web Figure 4 which
compares the covariance diagnostic (6) with λ̂ from the mul-
tivariate Poisson model for T = 3, when λ = 2, 5, 10.

Performance of the covariance diagnostic is demonstrated
further in Table 1, which shows close correspondence between
the proportion of simulations where the diagnostic is negative
and the proportion where λ̂ is large (λ̂ > 500). Table 1 also
shows the prevalence of infinite estimates of λ̂, particularly as
λ, T , and p decrease. In fact for the case where λ = 2, p = 0.1,
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Figure 1. Log(λ̂) from the bivariate Poisson model plotted against the covariance diagnostic, cov∗(n1, n2) ≤ 0 from (5), based
upon 1000 simulated datasets for R = 20, λ = 2, 5, 10 and p = 0.25. Values at which the covariance diagnostic is negative are
shown by crosses. This figure appears in color in the electronic version of this article.

and T = 2, a finite value of λ̂ was not achievable in over half
of 1000 simulations.

4. Explicit Form for the Bivariate
Negative-Binomial Case

The Poisson distribution may be replaced by a mixed-Poisson
distribution, for which λ ∼ g(λ; θ), when the probability of (2)
becomes

Pr(n1, n2;p, θ)

= {p(1 − p)}n1+n2

min(n1,n2)∑
u=0

1

(1 − p)2uu!(n1 − u)!(n2 − u)!

×
∫ ∞

0

e−λ(2p−p2)λn1+n2−ug(λ; θ)dλ.

Table 1
Performance of the covariance diagnostic for the

multivariate Poisson model, based upon 1000 simulations for
various scenarios of λ, p, and T for R = 20 sites. EPN is the

proportion of simulations when the sample covariance
diagnostic was negative. EPD is the proportion of

simulations where the estimate of λ̂ > 500.

T = 2 T = 3 T = 4

λ p EPN EPD EPN EPD EPN EPD

2 0.10 0.505 0.505 0.351 0.351 0.276 0.276
2 0.25 0.225 0.224 0.090 0.089 0.033 0.033
5 0.10 0.427 0.427 0.362 0.361 0.219 0.222
5 0.25 0.167 0.167 0.084 0.084 0.017 0.020
10 0.10 0.398 0.398 0.317 0.318 0.251 0.256
10 0.25 0.180 0.181 0.066 0.066 0.038 0.038

For the negative-binomial distribution, the mixing distribu-
tion is gamma with parameters θ = (α, β) and

g(λ;α, β) = βα

	(α)
λα−1e−βλ, for λ ≥ 0, (7)

which results in the NB-2 form (Hilbe, 2011, p. 187). In this
case

∫ ∞

0

e−λ(2p−p2)λn1+n2−ug(λ;α, β)dλ

= βα

	(α)

∫ ∞

0

{
e−λ(2p−p2+β) × λn1+n2−u+α−1

}
dλ

= βα	(n1 + n2 − u + α)

	(α)(2p − p2 + β)n1+n2−u+α
.

Therefore the joint probability for the bivariate negative-
binomial model is given by

Pr(n1, n2;p, α, β) = βα{p(1 − p)}n1+n2

	(α)

min(n1,n2)∑
u=0

	(n1 + n2 − u + α)

u!(n1 − u)!(n2 − u)!(1 − p)2u(2p − p2 + β)n1+n2−u+α
.

(8)

In the parameterization of (7), the mean and variance of the
gamma distribution are α/β and α/β2, respectively. If we now
write λ = α/β for the expected value of the Poisson mean,
then the variance is λ2/α and the coefficient of variation of



Computational Aspects of N-Mixture Models 241

the Poisson mean is 1/
√

α. The Poisson model arises as the
limit α, β → ∞, maintaining λ = α/β.

In terms of the parameters α and λ, β = α/λ and we can
write (8) as

Pr(n1, n2; λ, p, α) = αα{p(1 − p)}n1+n2

λα	(α)

min(n1,n2)∑
u=0

	(n1 + n2 − u + α)

u!(n1 − u)!(n2 − u)!(1− p)2u

{
λ

λp(2− p)+ α

}n1+n2−u+α

.

(9)

The case for T > 2 follows in the same way, by integrating the
expression of (4), to give the multivariate negative-binomial
probability as

Pr(ni1, . . . , niT ; λ, p, α)

= αα

λα	(α)

∑
Xi

∏
s∈S

{
p|s|(1 − p)T−|s|}xi,s

	(�s∈Sxi,s + α)

xi,s!
{
1 − (1 − p)T + α

λ

}�s∈Sxi,s+α
.

The expression nit = ∑
s∈St

Xi,s also applies to the negative
binomial case, but the {Xi,s} are no longer independent.

5. The Effect of the Choice of K on Fitting the
N-Mixture Model: Poisson Case

5.1. Incorrect Estimates due to the Choice of K

We now consider how the choice of K for computing the Pois-
son N-mixture likelihood of (1) interacts with the occurrence
of infinite estimates of λ. Output is obtained for 1000 simu-
lations based on the parameter values used in Royle (2004a),
where λ = 5, p = 0.25 and R = 20, 50, but for number of sam-
pling occasions T = 2, 3, 4, 5. The models were again fitted
using optim in the R software package. The parameters p and
λ were constrained to be in range via logit and log link func-
tions, respectively. Each simulated dataset was fitted with
K = 100, 500, 1000.

We see that large finite estimates of abundance can arise, in
particular where the number of sampling occasions T is small
(Figure 2). Specifically, a proportion of simulations result in a
second peak in the sampling distribution for λ̂ and the value at
which this is found increases with the value of K. Fitting the
multivariate Poisson model to simulated data created under
comparable scenarios for T = 2, 3, 4 also produced a second
peak in the sampling distribution for λ, but as described in
Section 3.2, the estimates were substantially greater in the
absence of the limiting value K in the N-mixture model. An
increase in the number of sampling occasions reduces the inci-
dence of high estimates of λ, which become rare for T > 3, as
more information is available as T increases. For T = 5 very
few high estimates of λ occurred in the 1000 simulations. An

increase in the number of sites also reduces the proportion of
high values (Web Figure 5).

Thus when the N-mixture model is fitted by maximizing
the likelihood of (1), when λ̂ should be infinite, λ is estimated
as large as possible for a given value of K, and p̂ is restricted to
be as close to zero as possible. We discuss this matter further
in Web Appendix 1. The occurrence of large finite estimates
of λ is similar to analogous findings of Wang and Lindsay
(2005) in the context of species richness estimation.

5.2. Automatic Choice of K

For the Poisson case the covariance diagnostic identifies when
infinite values of λ̂ arise. When the diagnostic is not satisfied,
K may be selected automatically, for example by ensuring
that the Poisson upper tail probability is < 10−10, so that
the value of K will adapt for successive iterations according
to the estimate of λ. This approach was also suggested by
Guillera-Arroita et al. (2012). We have found this to be a
simple and preferable alternative to fitting the model for suc-
cessively larger values of K until estimates appear to stabilize.

6. Moment Estimation for a Mixed-Poisson
N-Mixture Model

Suppose we have an N-mixture model in which Ni follows a
mixed-Poisson distribution, as in Section 4, with

E(Ni) = λ and var(Ni) = σ2, with σ2 ≥ λ.

Conditional on Ni, the random variables ni1, . . . , niT are inde-
pendent binomial variables, with

nij|Ni ∼ Bin(Ni, p).

Therefore, conditional on Ni

E(nij|Ni) = Nip

E(n2
ij|Ni) = Nip(1 − p) + N2

i p2

E(nij, nik|Ni) = N2
i p2 (j �= k),

and the corresponding unconditional expectations are

E(nij) = λp (10)

E(n2
ij) = λp(1 − p) + (λ2 + σ2)p2 (11)

E(nij, nik) = (λ2 + σ2)p2 (j �= k). (12)

It follows that

cov(nij, nik) = σ2p2 and corr(nij, nik) = σ2p/λ.
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Figure 2. Kernel density estimates of λ̂ from the Poisson N-mixture model for R = 20 sites, λ = 5 and p = 0.25 based upon
1000 simulated datasets for T = 2, 3, 4, and K = 100, 500, 1000. This figure appears in color in the electronic version of this
article.

6.1. Moment Estimation

We have the following moment estimates for E(nij), E(n2
ij),

and E(nijnik), respectively:

m1 = 1

RT

T∑
t=1

R∑
i=1

nit

m2 = 1

RT

T∑
t=1

R∑
i=1

n2
it

m12 = 2

RT (T − 1)

T∑
t=1

T∑
s=t+1

R∑
i=1

nitnst .

Equating these to the expectations given by (10)–(12) yields
the following moment estimators of the parameters λ, p, and
σ2

p̃ = (m1 − m2 + m12)/m1

λ̃ = m1/p̃

σ̃2 = (m12 − m2
1)/p̃

2.

Because σ2 ≥ 0, we require

m12 − m2
1 ≥ 0, (13)
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for a valid set of moment estimates. This is the same diagnos-
tic as used previously in (6).

We also require 0 < p ≤ 1. The lower bound yields the new
diagnostic

m1 − m2 + m12 > 0, (14)

for a finite (moment) estimate of λ. The upper bound yields

m1 − m2 + m12 ≤ m1

or

m12 ≤ m2,

which is a consequence of the Cauchy–Schwarz inequality and
not a useful diagnostic. The bound m1 − m2 + m12 > 0 given
above to ensure p̃ > 0 and hence λ̃ finite, gives a new diag-
nostic.

If we adopt a method-of-moments (MOM) approach for the
bivariate Poisson distribution, p is estimated by the sample
correlation of the counts, as observed also by Royle (2004b),
and λ is estimated by dividing (n1 + n2)/2 by this estimate
of p. For more than two visits (T > 2), p can be estimated
by the mean of all sample correlations between counts for dif-
ferent sampling occasions. Then λ̃ is the sample mean of all
counts divided by this estimate of p. This generalizes Hol-
gate’s (1964) work, which considered T = 2 only. In Web Ap-
pendix 2 we assess the performance of MOM estimation as a
simple method for parameter estimation compared to maxi-
mum likelihood for the N-mixture model.

6.2. Performance of the Multivariate Negative-Binomial
Model

Given the proposed diagnostics for the mixed-Poisson case in
Section 6.1, here we assess the performance of the multivariate
negative-binomial model. Simulated data were fitted as in Sec-
tion 3.2 but for the negative binomial case, with λ = 2, 5, 10
and α = 1.25, 5. We again assume that λ̂ > 500 equates to in-
finite λ̂. If both (13) and (14) are negative, λ̂ is very likely
to be infinite and the mean proportion with λ̂ > 500 from 21
scenarios is 0.921 (Table 2). However performance of the diag-
nostics when one or more of the two diagnostics is negative is
less clear. Additionally, λ̂ may occasionally be infinite despite
both diagnostics being positive and on average λ̂ > 500 for
approximately 8.5% of simulations when both diagnostics are
positive. Performance for the bivariate cases where p = 0.25
and α = 5 is illustrated in Figure 3 and for the cases where
T = 3 and α = 1.25 in Web Figures 6–8. We see that neither
singly nor in combination do the diagnostics perform as well
as the single diagnostic for the Poisson case. We see fewer
instances of infinite λ̂ for large T and p.

7. Application to Hermann’s Tortoise Data

Here we analyze data from a study of the threatened Her-
mann’s tortoise Testudo hermanni in southeastern France.
One hundred and eighteen sites were each surveyed three
times during a period when the species is most active. Full
details are provided in Couturier et al. (2013), and we briefly

Table 2
Performance of the covariance diagnostic for the

multivariate negative-binomial model, based upon 1000
simulations for various scenarios of λ, p, α, and T for
R = 20 sites. EP1, EP3, and EP5 are the proportion of

simulations where both diagnostics are negative, one or more
diagnostic is negative, or both diagnostics are positive,
respectively. EP2, EP4, and EP6 are the corresponding

proportions of those where λ̂ > 500.

λ p α T EP1 EP2 EP3 EP4 EP5 EP6

2 0.10 1.25 2 0.192 0.938 0.3 0.853 0.388 0.072
2 0.10 1.25 3 0.093 0.925 0.271 0.841 0.426 0.131
2 0.10 5.00 2 0.199 0.92 0.296 0.804 0.274 0.113
2 0.10 5.00 3 0.104 0.904 0.264 0.822 0.293 0.126
2 0.25 1.25 2 0.046 0.913 0.229 0.777 0.571 0.07
2 0.25 1.25 3 0.002 1 0.138 0.681 0.71 0.048
2 0.25 5.00 2 0.064 0.953 0.184 0.826 0.411 0.097
2 0.25 5.00 3 0.011 1 0.103 0.748 0.473 0.047
5 0.10 1.25 2 0.088 0.966 0.347 0.813 0.472 0.121
5 0.10 1.25 3 0.023 1 0.333 0.757 0.52 0.113
5 0.10 5.00 2 0.139 0.935 0.305 0.803 0.282 0.128
5 0.10 5.00 3 0.064 0.906 0.252 0.829 0.343 0.143
5 0.25 1.25 2 0.006 1 0.217 0.71 0.746 0.068
5 0.25 1.25 3 0 – 0.137 0.533 0.843 0.047
5 0.25 5.00 2 0.038 0.763 0.193 0.741 0.555 0.05
5 0.25 5.00 3 0.002 0.5 0.108 0.694 0.678 0.028
10 0.10 1.25 2 0.032 0.969 0.342 0.813 0.596 0.139
10 0.10 1.25 3 0.005 1 0.325 0.775 0.65 0.097
10 0.10 5.00 2 0.116 0.931 0.322 0.835 0.378 0.108
10 0.10 5.00 3 0.027 0.926 0.302 0.844 0.437 0.105
10 0.25 1.25 2 0 – 0.193 0.674 0.806 0.069
10 0.25 1.25 3 0 – 0.125 0.472 0.87 0.029
10 0.25 5.00 2 0.01 0.9 0.156 0.756 0.726 0.054
10 0.25 5.00 3 0.001 1 0.09 0.656 0.817 0.026

reassess the conclusions drawn in their article and demon-
strate the effect of study design on results.

For the tortoise data, optimization of the negative-binomial
model confirms that λ̂ is infinite in the negative binomial
model for these data; after 500 iterations, the estimates had
reached

λ̂ = 39616973, p̂ = 3.322971 × 10−8, α̂ = 1.506465.

As noted in Couturier et al. (2013), the fit is much im-
proved compared to the Poisson case, with -maximum log-
likelihood 540.34 versus 576.27, but at the expense of λ̂ be-
coming infinite. Hence for this dataset a finite estimate of
mean abundance can be obtained for the Poisson but not for
the negative-binomial. Whilst the first diagnostic (13) is pos-
itive, m12 − m2

1 = 1.05, so that the Poisson estimate is finite,
the additional diagnostic (14) is negative, m1 − m2 + m12 =
−0.2655.

The zero-inflated Poisson is an intermediate model be-
tween the Poisson and negative-binomial, with -maximum
log-likelihood 562.13 for these data. The zero-inflated Poisson
therefore provides an improvement upon the Poisson case, but
still yields the finite parameter estimate λ̂ = 7.58.
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Figure 3. Diagnostic 1 (13) versus diagnostic 2 (14) from the bivariate negative binomial model, based upon 1000 simulated
datasets for R = 20, λ = 2, 5, 10, α = 5, and p = 0.25. Values at which λ̂ > 500 and λ̂ ≤ 500 are shown by circles and crosses,
respectively. This figure appears in color in the electronic version of this article.

To show the potential effect of study design on model per-
formance, we inspect the sample covariance diagnostic (13)
for this dataset for the Poisson case for a reduced number
of sites and/or visits. Taking two of the three visits made at
all sites, the diagnostic was always positive (0.97–1.17). The
diagnostic based upon all three visits but a random sample
of fewer sites, was negative for 1.7% and 0% of 1000 samples,
respectively for R = 20 and R = 50. However for only two vis-
its, the diagnostic was negative for 9.0% and 0.8% of 1000
samples, respectively for R = 20 and R = 50.

8. Discussion and Recommendations

We have shown that the N-mixture model can produce infi-
nite estimates of abundance, particularly when working with
a limited number of sampling occasions and low detection
probability. The equivalence of the N-mixture model with
the multivariate Poisson has been demonstrated, allowing us
to understand and diagnose poor behavior of the N-mixture
model.

We believe the equivalence of the Poisson N-mixture model
to the multivariate Poisson distribution to be previously
largely unknown, especially in statistical ecology. The multi-
variate Poisson model conveniently avoids the requirement to
select an upper bound K. We provide code for fitting the mul-
tivariate Poisson and negative-binomial models. Possible al-
ternative techniques for fitting the multivariate distributions
include using the EM algorithm (Karlis, 2003), a compos-
ite likelihood (Jost, Brcich, and Zoubir, 2006) or a symbolic
computation approach (Sontag and Zeilberger, 2010). Conse-
quently this equivalence could also have the alternative pur-
pose of using the N-mixture model to provide simple fitting
of the multivariate Poisson and negative-binomial models for
particular covariance structures.

A recent extension of the N-mixture model to open pop-
ulations by including population dynamics parameters offers
great potential but also requires an upper bound to be set
(Dail and Madsen, 2011). Further exploration of this model
via simulation to assess performance is in progress. Kéry et
al. (2009) extended the N-mixture model to allow for analy-
sis of data resulting from closed sampling periods connected
by open periods and the multivariate formulations also apply
in that case. Dorazio, Martin, and Edwards (2013) provide
an extension in which p is given a distribution at each visit.
The binomial distribution in (1) is then replaced by a beta-
binomial. This has also been considered in a Bayesian context
by Martin et al. (2011). For the multivariate Poisson case this
extension is dealt with by appropriate numerical integration
of the probability of (4). An increasing number of studies use
a Bayesian approach for parameter estimation (Kéry et al.,
2009; Graves et al., 2011). Further simulation study compar-
ing a Bayesian approach with maximum-likelihood estimation
could show whether this approach can also produce poor esti-
mates in some scenarios. Some comparisons have been made
by Toribio, Gray, and Liang (2012), based upon parameter
values from Royle (2004a).

In practice, covariates are frequently used to describe vari-
ation in abundance and detection. Further analysis could de-
termine how the inclusion of covariates might affect instances
where a finite abundance estimate cannot be obtained for a
model with constant abundance and detection, and in partic-
ular determine whether parameters may become identifiable.

Good experimental design is vital for occupancy studies;
see for example Guillera-Arroita, Ridout, and Morgan,
(2010, 2014). The same issues apply for N-mixture work,
though with the different perspective of avoiding poor
model-fitting behavior. If possible, study design effort should
be distributed to ensure more than two visits are made to
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each site (in addition to including a reasonable number of
sites). Alternatively a study design where more visits are
made to a subset of the sites is worth exploring.

For maximum-likelihood estimation, we recommend using
MOM estimates to start the iterative search for MLEs. In the
Poisson case the covariance diagnostic may be used to deter-
mine when infinite estimates of abundance may arise. Infinite
estimates of abundance may occur for some model choices but
not others, as for the Hermann’s Tortoise case study. Hence
we advise fitting the model for multiple distribution choices,
to identify which may provide finite estimates of abundance.
An R program is available in the Supplementary Materials
which allows for covariates in the detection and abundance
parameters.

9. Supplementary Materials

The Web Appendices referenced in Sections 3.2, 5.1, and 6.2,
together with R code, are available with this paper at the
Biometrics website on Wiley Online Library.
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Appendix

Proof that when T = 2 a local maximum of the likelihood
occurs at p = 0 when cov∗(n1, n2) ≤ 0.

It is convenient here to set θ0 = λp2, θ2 = λp. It is simple to

prove that θ̂2 =
∑

i
(n1i+n2i)

2R
, as noted in Holgate (1964). For

observation (n1i, n2i), we write

gi(θ0) =
ui∑

m=0

θm
0 (θ̂2 − θ0)n1i+n2i−2m

m!(n1i − m)!(n2i − m)!
, where ui = min(n1i, n2i).

The profile log-likelihood function for θ0 is then given by

�(θ0) = R(θ0 − 2θ̂2) +
R∑

i=1

log(gi(θ0)) and

d�

dθ0

= R +
R∑

i=1

g′
i(θ0)

gi(θ0)
.

We deduce that

g′
i(0)

gi(0)
= 1

θ̂2
2

{n1in2i − θ̂2(n1i + n2i)}.

Thus

d�

dθ0

∣∣∣∣
θ0=0

= R + 1

θ̂2
2

{
R∑

i=1

n1in2i − θ̂2

R∑
i=1

(n1i + n2i)

}
,

and

d�

dθ0

∣∣∣∣
θ0=0

≤ 0 ≡ 1

R

∑
i

n1in2i ≤ θ̂2
2

≡ cov∗(n1, n2) ≤ 0.


