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Abstract

Burkitt lymphoma (BL) is a rare and highly aggressive type of non-Hodgkin lymphoma. The

mortality rate of BL patients is very high due to the rapid growth rate and frequent systemic

spread of the disease. A better understanding of the pathogenesis, more sensitive diagnos-

tic tools and effective treatment methods for BL are essential. Metabolomics, an important

aspect of systems biology, allows the comprehensive analysis of global, dynamic and

endogenous biological metabolites based on their nuclear magnetic resonance (NMR) and

mass spectrometry (MS). It has already been used to investigate the pathogenesis and dis-

cover new biomarkers for disease diagnosis and prognosis. In this study, we analyzed differ-

ences of serum metabolites in BL mice and normal mice by NMR-based metabolomics. We

found that metabolites associated with energy metabolism, amino acid metabolism, fatty

acid metabolism and choline phospholipid metabolism were altered in BL mice. The diag-

nostic potential of the metabolite differences was investigated in this study. Glutamate, glyc-

erol and choline had a high diagnostic accuracy; in contrast, isoleucine, leucine, pyruvate,

lysine, α-ketoglutarate, betaine, glycine, creatine, serine, lactate, tyrosine, phenylalanine,

histidine and formate enabled the accurate differentiation of BL mice from normal mice. The

discovery of abnormal metabolism and relevant differential metabolites may provide useful

clues for developing novel, noninvasive approaches for the diagnosis and prognosis of BL

based on these potential biomarkers.

Introduction

BL is a rare and highly aggressive type of non-Hodgkin lymphoma, mainly from B lympho-

cytes, that was first discovered by British surgeon Dennis Burkitt [1]. Currently, BL is divided

into three subtypes: endemic, sporadic and HIV-associated. It is induced by Epstein-Barr (EB)

virus infection and c-myc gene overexpression [2–4]. In malaria-prevalent regions of equato-

rial Africa, children aged 4–7 years are very susceptible to BL, often involving the mandible
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and kidney. It can also affect the ileum, cecum, ovaries and breast [5]. In Western countries,

approximately 1% to 2% of adult lymphoma patients have BL [6], and approximately 30% to

50% of childhood lymphoma patients also have BL [7]. Although rare, BL exhibits a rapid

growth rate and frequent systemic spread, which accounts for 70% to 80% of patients present-

ing at advanced stages of disease at the time of diagnosis. Surgery and chemotherapy are less

effective in adult BL. The mortality rate of BL is very high for these reasons. Hence, a better

understanding of the pathogenesis, more sensitive diagnostic tools and effective treatment

methods for BL are essential.

Metabolomics is an important aspect of systems biology that can comprehensively analyze

global, dynamic and endogenous biological metabolites based on NMR or MS [8]. Metabolo-

mics has already been used to investigate the pathogenesis and discover new biomarkers for

disease diagnosis and prognosis. Brindle et al. demonstrated that metabolomics can accurately,

noninvasively and rapidly diagnose coronary heart disease by NMR [9]. Using metabolomics,

Sreekurnar et al. found that sarcosine is an important biomarker in prostate cancer [10]. Den-

kert found that many metabolites were different between normal colon and colorectal cancer

tissues [11]. Huang et al. discovered that the combination of betaine and propionylcarnitine

may be used as a diagnostic biomarker for hepatocellular carcinoma, using nontargeted tissue

metabolomics [12]. Therefore, metabolomics can be used not only to discover new biomarkers

but also to develop noninvasive, potentially diagnostic and prognostic tools.

Metabolomics research using clinical serum samples faces many challenges because the

concentrations of metabolites vary frequently due to various genetic and environmental fac-

tors. In addition, serum samples from newly diagnosed BL patients may not be readily avail-

able. Li Zhang [13] and Tobias Weber [14] both established BL mouse disease models by

implanting human Raji cells into mice to study the therapeutic effect and mechanism of tar-

geted delivery against BL. Wen Lian Chen [15] investigated the activity of fructose utilization

and the therapeutic potential of inhibitors of related metabolic pathways using an AML mouse

model. François Jouret [16] established a mouse model of ischemia/reperfusion and carried

out metabolomics using urine, serum and kidney samples. Leila Pirhaji [17] established a

Huntington disease mouse model and demonstrated a new network-based approach by study-

ing the metabolomics of the model. Therefore, many similarities exist between mouse metabo-

lism and human metabolism. The serum metabolomics of BL mouse models implanted with

human Raji cells could provide important insight into the clinical diagnosis and treatment of

BL.

Currently, little is known about the metabolomics of BL. The comprehensive pathogenesis

of BL is expected to be revealed by metabolomics, which is very important for the diagnosis

and treatment of BL. In this study, we analyzed serum metabolomics of BL mouse models,

based on NMR techniques. The concentration of some serum metabolites such as glucose,

glutamate, and unsaturated lipids was significantly different between BL mice and wild-type

mice. Abnormality of metabolism and the relevant different metabolites of BL were discov-

ered. These results may provide useful clues for developing novel noninvasive methods for the

diagnosis and prognosis of BL based on these potential biomarkers.

Materials and Methods

Animals and sample collections

Twenty non-obese diabetic-severe combined immune-deficiency (NOD-SCID) mice (20 to 26

g) aged seven to nine weeks were housed in cages under a regular light cycle (12 h) and fed a

sterilized mouse diet and water. Ten mice served as controls, and the others were tumor-bear-

ing. Raji cells (2 × 106 cells / mouse) were injected subcutaneously into the right front axilla of
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the mice. The samples were collected when the tumor volume had reached approximately 500

to 1000 mm3. This study was performed in strict accordance with the recommendations of the

Guidelines for the Care and Use of Laboratory Animals of the National Science Center of

China. The protocol was approved by the Committee on the Ethics of Animal Experiments of

China. The animals were housed and cared for in accordance with the guidelines established

by the National Science Center of China.

All blood samples without anticoagulants were placed at room temperature for 45 minutes

and centrifuged at 8,000 g for 10 min at 4˚C. The serum samples were collected and stored at

-80˚C until analysis.

Sample preparation

The serum samples were thawed at room temperature and centrifuged at 12,000 g for 10 min

at 4˚C. Each serum sample (100 μL) was mixed with phosphate buffer (100 μL) (1:1 v/v, mix-

ture of 1 M K2HPO4 and 0.25 M NaH2PO4; pH 7.4, 100% D2O) by vortexing for 1 min and

centrifuged at 12,000 g for 10 min at 4˚C. Next, 150 μL of the supernatant was transferred to

the 3 mm NMR tube.

1H NMR spectroscopy of serum samples

The serum samples were analyzed by 1H NMR spectroscopy at 600.13 MHz in a Bruker

AVANCE 600 spectrometer equipped with a TBO probe. To detect the low molecular weight

components of serum, the 1H NMR spectra of all serum samples were acquired at 300 K using

standard Carr-Purcell-Meiboom-Gill (CPMG) plus sequence ((RD-90˚-(ô-180˚-ô) n -acquire))

with a total spin—spin relaxation delay of 40 ms [18]. The water signal was eliminated with the

presaturation sequence, and the relaxation delay was 2 s. Data points were adjusted to 64 K

with a spectral width of 30 ppm. The number of scans was set to 256. The free induction delays

were multiplied by an exponential line-broadening factor of 1.0 Hz before Fourier transforma-

tion. 1H chemical shifts were referenced internally to the proton signal of lactate at chemical

shift (δ) 1.34. Furthermore, diffusion-edited experiments were also carried out with bipolar

pulse pair-longitudinal eddy current delay pulse sequence (BPP-LED) (RD-90˚-G1-180˚-G1-

90˚-G2-D-90˚-G1-180˚-G1-90˚-G2-t-90˚-acquire) to detect the lipids of serum [19]. The gra-

dient amplitude was set at 50.0 G/cm, with a diffusion delay of 50 ms. Data points were col-

lected with a spectral width of 30 ppm. A line-broadening factor of 1.0 Hz was applied to the

free induction delays prior to Fourier transformation. 1H chemical shifts were referenced

internally to the proton signal of phosphatidylcholine at chemical shift (δ) 3.22.

To identify the metabolites, two-dimensional NMR spectra were acquired, including 1H-1H

correlation spectroscopy (COSY), total correlation spectroscopy (TCOSY), 1H-13C heteronuc-

lear single quantum correlation (HSQC) and 1H-13C heteronuclear multiple bond correlation

(HMBC) spectra.

NMR data processing and multivariate analysis

All serum 1H NMR spectra were corrected for phase and baseline using MestReNova (6.1.1-

6384-Win). The spectra over the range of δ 0.5–9.5 for CPMG were divided into buckets with

equal width of 0.005 ppm, and the regions at δ 4.200–5.200 were excluded for eliminating the

interference of the water signals. The spectra over the range of δ 0.5–9.5 for BPP-LED were

divided into buckets with equal width of 0.005 ppm, and the regions at δ 4.385–5.075 were

excluded for eliminating the interference of the water signals. Buckets were normalized to a

constant sum (100) of all spectra intensity to reduce the differences of the concentration

between the serum samples [20].
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The data were imported into SIMCA 14 Umetrics for multivariate analysis. The principal

component analysis (PCA) was used to discern the presence of inherent similarities of spectral

profiles. The partial least squares-discriminant analysis (PLS-DA) or the orthogonal partial

least squares-discriminant analysis (OPLS-DA) was used to find the metabolite differences

between the control and tumor-bearing mice [21]. The PCA and PLS-DA of CPMG data were

only pareto-scaled, while the PCA and OPLS-DA of BPP-LED data were mean-centered and

pareto-scaled scaled before analysis, respectively. The quality of each model was determined

by the goodness of fit parameter (R2) and a goodness of prediction parameter (Q2) [22]. Two

components were reserved to calculate the score contribution weights to determine the vari-

ables which were responsible for the separation between groups. To validate the model, CV-A-

NOVA method [23,24] and permutation testing (n = 200) were implemented. p-values less

than 0.05 were considered to indicate statistically significant differences using the non-

parametric Mann-Whitney test. To test the clustering and diagnostic potential of metabolite

differences, the hierarchical cluster analysis (HCA, Ri386 3.2.1) and the receiver operating

characteristic curve (ROC, SPSS 17.0) were conducted.

Results
1H NMR spectra of serum samples

Serum comprises both low molecular weight metabolites and high molecular weight proteins

and lipoproteins. To amplify the low weight metabolites in serum samples, the CPMG plus

sequence was employed to acquire the spectra. Typical CPMG spectra of serum samples for

controls and tumor-bearing mice are shown in Fig 1. Based on the literature [25–28], the soft-

ware AMIX (v 3.9.12, Bruker BioSpin) and the Human Metabolome Database [29], major

metabolites in serum were identified. The results were further confirmed with two-dimen-

sional NMR data. The spectra of BPP-LED plus sequence is shown in Fig 2, presenting only

broad peaks from the lipids and glycoproteins. 1H MNR data and assignments for the metabo-

lites in serum are shown in supplementary (S1 Table).

Multivariate analysis and cross validation

Multivariate analysis of 1H NMR spectra was used to screen the different metabolites between

the controls and tumor-bearing mice. At first, unsupervised PCA was used to analyze the 1H

NMR CPMG spectra. The score scatter plot of PCA followed by examination of the first two

principal components failed to reveal any clear separation between controls and tumor-bear-

ing mice (Fig 3A). The score scatter plot of PLS-DA followed by examination of the first two

principal components showed clear separation between controls and tumor-bearing mice

along with R2X (cum) = 53.9%, R2Y (cum) = 82.2% and Q2 (cum) = 69.6% (Fig 3B). The

results from CV-ANOVA (p = 0.0027) and permutation tests (Fig 3C) showed high quality

for the PLS-DA model of the CPMG spectra. The VIP > 1 plots of the PLS—DA were consid-

ered a greater contribution to the clustering of groups, including statistically significant differ-

ence (Mann-Whitney test, p< 0.05) as the main research objective. The loading scatter plot

corresponding to PLS-DA score plot (Fig 3D) showed higher levels of isoleucine, leucine, glu-

tamate, citrate, lysine, α-ketoglutarate, glycerol, betaine, glycine, creatine, serine, choline, lac-

tate, tyrosine, phenylalanine, histidine and formate and lower levels of VLDL, unsaturated

lipids, glucose, pyruvate and phosphocholine (PC) / glycerophosphocholine (GPC) in the

serum samples of tumor-bearing mice than in controls (Table 1).

The models of PCA and PLS-DA for BPP-LED spectra of serum could not commendably

separate controls and tumor-bearing mice (Fig 4A and 4B). Therefore, OPLS-DA was used to

analyze the 1H NMR BPP-LED spectra. The score scatter plot of OPLS-DA showed clear
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separation between controls and tumor-bearing mice along with R2X (cum) = 67.5%, R2Y

(cum) = 66.7% and Q2 (cum) = 43.0% (Fig 4C). The results from CV-ANOVA (p = 0.05760)

and permutation tests (Fig 4D) showed high quality for the OPLS-DA model of the BPP-LED

spectra. The VIP > 1 plots of the OPLS-DA were considered a greater contribution to the clus-

tering of groups, including statistically significant difference (Mann-Whitney test, p< 0.05) as

the main research objective. The loading scatter plot corresponding to OPLS-DA score plot

(Fig 4E) showed a lower level of unsaturated lipids in the serum samples of tumor-bearing

mice than in controls (Table 1).

Hierarchical cluster analysis

To fully and intuitively display the relationships and differences between different samples,

HCA (Fig 5) was conducted. The raw data of the heatmap is shown in supplementary (S2

Fig 1. Typical 600 MHz 1H CPMG spectra of serum samples. (A) controls (B) tumor-bearing mice. Keys for metabolites: 1, Lipids (mainly LDL); 2, Lipids

(mainly VLDL); 3, Isoleucine; 4, Leucine; 5, Valine; 6, 3-Hydroxybutyrate; 7, Unknown; 8, Lactate; 9, Alanine; 10, Citrulline; 11, Arginine; 12, Acetate; 13,

Proline; 14, Glutamate; 15, Glutamine; 16, Methionine; 17, Lipid; 18, Pyruvate; 19, Citrate; 20, Polyunsaturated fatty acid; 21, Asparagine; 22, Lysine; 23, α-

Ketoglutarate; 24, Creatine; 25, Creatinine; 26, Choline; 27, Phosphocholine (PC) / Glycerophosphocholine (GPC); 28, Glucose; 29, TMAO (Trimethylamine-

N-oxide); 30, Betaine; 31, Glycine; 32, Myo-inositol; 33, Glycerol; 34, Serine; 35, β-glucose; 36, α-glucose; 37, Urea; 38, Tyrosine; 39, Histidine; 40,

Phenylalanine; 41, Formate.

doi:10.1371/journal.pone.0170896.g001
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Table). The sample and metabolite differences were simultaneously hierarchically clustered.

The horizontal axis of the figure shows a dendrogram of the samples. The samples of the

tumor-bearing mice and controls were clustered together. The concentrations of different

metabolites varied significantly between tumor-bearing mice and controls. The vertical axis of

the figure shows a dendrogram of the metabolite differences. Obvious clustering and relevance

of the metabolite differences is shown in the HCA. The metabolites in the same or similar met-

abolic pathways were clustered together first. For instance, VLDL and unsaturated lipids

belonging to the fatty acid metabolism pathway were first clustered together; phenylalanine,

tyrosine and glutamate used in anaplerosis in the TCA cycle were also first clustered together.

Heatmap which was centered and scaled to the data in the sample direction is shown in supple-

mentary (S1 Fig).

Investigation of the diagnostic potential of metabolite differences

The ROC curves based on the result of area under the curve (AUC) can be conducted to inves-

tigate the clinical diagnostic potentials of these significantly different metabolites. The

Fig 2. Typical 600 MHz 1H BPP-LED spectra of serum samples. (A) controls (B) tumor-bearing mice. Keys for metabolites: 42, Cholesterol; 43, Lipids

(mainly HDL); 44, Lipids (triglycerides and fatty acids); 45, O-acetyl glycoproteins; 46, Glycerolipids; 47, Phosphatidylcholine; 48, Triglyceride; 49,

Unsaturated lipid.

doi:10.1371/journal.pone.0170896.g002
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diagnostic accuracy is higher when the value of the AUC is closer to 1. As shown in Fig 6, the

AUC of isoleucine (0.84), leucine (0.78), pyruvate (0.78), lysine (0.77), α-ketoglutarate (0.79),

betaine (0.87), glycine (0.85), creatine (0.79), serine (0.82), lactate (0.80), tyrosine (0.84), phe-

nylalanine (0.82), histidine (0.88) and formate (0.82) were in the range of 0.7 to 0.9, indicating

diagnostic accuracy. Glutamate (0.99), glycerol (0.96) and choline (0.92) had a higher diagnos-

tic accuracy owing to their AUC greater than 0.9. VLDL (0.23), unsaturated lipids (0.17), PC/

GPC (0.17), glucose (0.18), and α-glucose (0.13) did not demonstrate diagnostic accuracy

because the values of the AUC were less than 0.5.

Discussion

Serum metabolomics are thought to be a collective "snapshot" of changes throughout the

body’s metabolism. The alterations of serum metabolomics may be induced by many factors,

such as disease, behavior, gender, drug intake, and environmental factors. However, when

these factors are similar, the differences of serum metabolomics between the tumor patients

and the healthy controls may be derived from the presence of tumor cells. For instance, DA

MacIntyre et al. found that the serum pyruvate and glutamate levels may be a good indicator

of chronic lymphocytic leukemia (CLL) patients [18]. These authors hypothesized that in-

creased serum levels of pyruvate and glutamate may result from the metabolic changes of the

Fig 3. Multivariate analysis of CPMG spectra of serum samples of control and tumor—bearing mice. (A) The score scatter plot of PCA for controls

(black triangle) and tumor-bearing mice (red box). (B) PLS-DA showed a clear separation between controls (black triangle) and tumor-bearing mice (red box)

in the score scatter plot. (C) Permutation test results for PLS-DA models (R2 = (0.0, 0.482), Q2 = (0.0, -0.214)). (D) Loading plot corresponding to PLS-DA

score scatter plot.

doi:10.1371/journal.pone.0170896.g003
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pyruvate kinase type M2 in tumor cells [18]. In a study of hepatocellular carcinoma (HCC)

patients by serum metabolomics, Zeng et al. found that the alteration of cancer cell metabolism

may be the source of the differences in serum metabolites between healthy controls and HCC

patients [30].

In this study, we analyzed the differences of serum metabolite levels in BL mice and wild-

type mice based on NMR-based metabolomics. Although the changes of serum metabolites

may be associated with many factors such as behavior, gender and environment, these factors

were almost identical in our tumor-bearing mice and control mice. The only difference be-

tween the tumor-bearing mice and the controls was the presence of tumor cells. Therefore, we

infer that the changes of metabolite levels in serum may be derived from multiple tumor-

related metabolic pathways, involving energy metabolism, amino acid metabolism, fatty acid

metabolism and choline phospholipid metabolism.

Energy metabolism

Different levels of serum metabolites between tumor-bearing BL mice and the control wild-

type mice can reflect the changes in energy metabolism. Glucose is a starting material of glycol-

ysis and lactate is an end product of glycolysis. In our study, lower serum glucose levels and

higher serum lactate levels in tumor-bearing mice suggested that blood glucose may be rapidly

consumed by glycolysis for tumor cell proliferation and growth. This phenomenon is consis-

tent with the “Warburg effect” [31] that tumor cells rely preferentially on glycolysis, which

Table 1. Metabolites responsible for the differences between tumor-bearing mice and controls.

Metabolites δ1H (ppm) Multiplicity p-value Changes in tumor-bearing mice compared to

controls

Isoleucine 0.94 t 0.0089 "

Leucine 0.95 d 0.0355 "

VLDL 1.26 m 0.0433 #

Glutamine 2.08 m <0.0001 "

Pyruvate 2.41 s 0.0355 #

Citrate 2.54 d 0.0355 "

Lysine 3.01 m 0.0433 "

α-Ketoglutarate 3.02 m 0.0288 "

Glucose 3.46, 3.47, 3.48 m 0.0147 #

Glycerol 3.87 m 0.0001 "

Phosphocholine (PC)/Glycerophosphocholine

(GPC)

3.23 s 0.0115 #

Betaine 3.28 s 0.0232 "

Glycine 3.56 s 0.0068 "

Creatine 3.93 s 0.0288 "

Serine 3.945, 3.95,

3.97

m 0.0147 "

Choline 3.66 m 0.0007 "

Lactate 4.12 q 0.0232 "

α-Glucose 5.24 d 0.0039 #

Tyrosine 6.9 d 0.0089 "

Phenylalanine 7.33 m 0.0147 "

Histidine 7.75 t 0.0029 "

Formate 8.46 s 0.0147 "

Unsaturated lipids 5.29 m 0.0115 #

doi:10.1371/journal.pone.0170896.t001
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increases glucose consumption and lactate production. This phenomenon has been reported

in many tumors, such as human breast tumors [32] and hepatic carcinoma [33]. Thus, we

believe that increased lactate and decreased glucose may be explained by the aerobic glycolysis

of tumor cells in the blood.

Creatine is a nitrogen-containing organic acid, which can provide substrates for energy and

protein synthesis to meet the requirements for cancer cell proliferation [34]. The creatine level

was elevated in the serum of tumor-bearing mice in our study. This is presumably because BL

requires substantial substrate to support its rapid growth rate, and is consistent with observa-

tions in other types of tumor, such as oral squamous cell carcinoma [35] and head and neck

squamous cell carcinoma [36].

Fig 4. Multivariate analysis of BPP-LED spectra of serum samples in control and tumor-bearing mice. (A) The score scatter plot of PCA for controls

(black triangle) and tumor-bearing mice (red box). (B) The score scatter plot of PLS-DA for controls (black triangle) and tumor-bearing mice (red box). (C)

OPLS-DA showed clear separation between controls (black triangle) and tumor-bearing mice (red box) in the score scatter plot. (D) Permutation test results

for PLS-DA models (R2 = (0.0, 0.56), Q2 = (0.0, -0.404)). (E) Loading plot corresponding to PLS-DA score scatter plot.

doi:10.1371/journal.pone.0170896.g004
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Amino acid metabolism

Amino acid metabolism is the basis of life activities. The amino acids in serum can be used to

not only feed tricarboxylic acid cycle (TCA cycle) but also provide amino acids for tumor

proliferation and growth [37]. The host’s amino acid metabolism is disordered because the

dynamics of tumor cells are changed. Studies have shown that the amino acid metabolism is

specific to tumor cells [38].

In our study, pyruvate was lower in the serum of tumor-bearing mice. Pyruvate is not only

an important product of glycolysis but also a starting material of the TCA cycle. Citrate and α-

ketoglutarate are intermediate products of the TCA cycle. In our research, lower pyruvate and

higher citrate and α-ketoglutarate levels in BL tumor-bearing mice than in controls suggested

that the TCA cycle may be altered to cause the accumulation of intermediate products of the

TCA cycle.

We observed increased levels of glutamine in our study. Glutamine is a nitrogen carrier and

a major fuel substrate for the proliferation of tumor cells. It can enter the TCA cycle after

catabolism as the preferred amino acid to provide ATP for tumor cells and it can also be used in

the biosynthesis of nucleotides for the tumor cell proliferation [39]. Oxidative damage is the

main cause for cells apoptosis, in response to which tumor cells may increase the concentration

Fig 5. Heat map of the 23 significantly changed serum metabolites in the control and tumor—bearing mice.

doi:10.1371/journal.pone.0170896.g005
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of the antioxidant metabolites. Glutamate, a metabolic product of glutamine, is the precursor of

glutathione (GSH), a critical antioxidant and free radical scavenger for cell survival in tumors

Fig 6. ROC curves for distinguishing controls from tumor-bearing mice according to metabolite differences.

doi:10.1371/journal.pone.0170896.g006
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[40]. The increased serum levels of glutamine can provide sufficient raw material for the synthe-

sis of glutathione to protect tumor cells from oxidative damage and apoptosis. Moreover, tumor

cells can take advantage of glutaminolysis, which provides sufficient anaplerotic flux and pro-

duces glutamate and α-ketoglutarate to support TCA cycle. The finding of increased glutamine

in serum of tumor-bearing mice is agreement with reports in hepatocellular carcinoma and

renal cell carcinoma [12,41]. Similarly, glycine, a precursor of GSH, is also increased, which can

increase the synthesis of GSH and provide adequate carbon source for the biosynthesis of

purine and pyrimidine in tumor cells. Glycine and methyl-THF, which are important interme-

diates of the purine and pyrimidine nucleotides for the proliferation of tumor cells, can be

obtained through the conversion of serine, which is synthesized from glycolytic intermediate

3-phosphoglycerate [42,43]. Elevated serum serine ensures the supply of glycine and methyl–

THF, as first demonstrated in human colorectal cancer [44].

The serum levels for isoleucine, leucine, phenylalanine, tyrosine and histidine, which are

essential amino acids, were higher in tumor-bearing BL mice than in the control wild-type

mice. Among these amino acids, isoleucine and leucine belong to the branched chain amino

acids, which are increased because of the interaction between different amino acid pools in the

tumor host [45]. The branched chain amino acids are used for anaplerosis in the TCA cycle in

tumor proliferation and growth. Similarly, the conversion of phenylalanine, tyrosine and histi-

dine into fumarate is also used for anaplerosis. Essential amino acids that can only be obtained

from outside sources are necessary for the tumor cell growth and metabolism. If the levels of

essential amino acids are insufficient, the rapid proliferation of tumor cells will be hampered.

Lipid metabolism

The levels of VLDL and unsaturated lipids are lower in the serum of tumor-bearing mice.

According to this result, the fatty acid metabolism is also increased in tumor cells and the oxi-

dation of fatty acids can deliver bioenergy for tumor cell proliferation and tumor growth [46].

Elevated membrane biosynthesis of tumor cells is likely to utilize a large amount of lipids,

resulting in a decrease in serum lipids. The increased triglyceride metabolism results in the ele-

vated levels of glycerol and fatty acids, which can be converted to acetyl-CoA feeding TCA

cycle by β-oxidation. Similar observations have been made in renal cell carcinoma [41] and

lymphoblastic leukemia [47].

Choline phospholipid metabolism

Choline plays important roles in choline-mediated one-carbon metabolism and signaling

functions of cell membranes [48]. Choline and its derivatives are key metabolites for choline

phospholipid metabolism, and abnormal choline phospholipid metabolism in tumors had

been reported [49]. In this study, higher levels of choline and lower levels of PC/GPC were

observed in the serum of tumor-bearing mice. It is probably because the rapid proliferation of

the tumor cells accelerates the demand for choline, and the host may gain more free choline

through a variety of sources to meet this demand. The levels of choline and its derivatives are

increased in tumor cells and solid tumors [49–51]. Although this conclusion is different from

our result, it is not surprising because different tumor cells have different metabolic behavior.

Higher GPC and lower PC were reported in breast and ovarian cancers, and the lower GPC

and high PC can occur with malignant transformation [52,53]. Choline dehydrogenase cata-

lyzes the oxidation of choline to betaine, which is a key step in choline-mediated one-carbon

metabolism [54]. Elevated levels of betaine in the serum of tumor-bearing mice are likely to be

caused by changes in choline metabolism.
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Diagnostic potential of metabolite differences

We further tested the diagnostic potential of metabolite differences for diagnosing BL using

ROC curves (Fig 6). The result indicated that glutamate, glycerol and choline with AUC values

of the ROC curve greater than 0.90 can effectively distinguish tumor-bearing mice from con-

trols. Isoleucine, leucine, pyruvate, lysine, α-ketoglutarate, betaine, glycine, creatine, serine,

lactate, tyrosine, phenylalanine, histidine and formate with AUC value of the ROC curve in the

range of 0.7 to 0.9 offer diagnostic accuracy in distinguishing tumor-bearing mice from con-

trols. We believe that all of the metabolite differences between the tumor-bearing mice and

controls can potentially be used as noninvasive diagnostic biomarkers for BL in the future.

Conclusions

In summary, the results of this study offer evidence for changes in serum metabolite profiles in

a BL mouse model utilizing NMR-based serum metabolomics. Energy metabolism, amino

acid metabolism, fatty acid metabolism and choline phospholipid metabolism are altered in

BL mice. The diagnostic potential of the metabolite differences was investigated using ROC

curves. The results show that glutamate, glycerol and choline had the highest diagnostic accu-

racy and isoleucine, leucine, pyruvate, lysine, α-ketoglutarate, betaine, glycine, creatine, serine,

lactate, tyrosine, phenylalanine, histidine and formate also offered diagnostic accuracy in dis-

tinguishing BL mice from wild-type mice. Abnormal metabolism and relevant metabolite dif-

ferences provide useful clues for developing novel noninvasive methods for the diagnosis and

prognosis of BL based on these potential biomarkers.
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