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Abstract

Background: Several studies have investigated white matter with diffusion tensor imaging (DTI) in those suffering
from headache, but so far only in clinic based samples and with conflicting results.

Methods: In the present study, 1006 individuals (50–66 years) from the general population (Nord-Trøndelag
Health Study) participated in an imaging study of the head at 1.5 T (HUNT-MRI). Hundred and ninety-six
individuals were excluded because of errors in the data acquisition or brain pathology. Two hundred and
forty-six of the remaining participants reported suffering from headache (69 from migraine and 76 from
tension-type headache) the year prior to the scanning. DTI data were analysed with Tract-Based Spatial
Statistics and automated tractography. Type of headache, frequency of attacks and evolution of headache
were investigated for an association with white matter fractional anisotropy (FA), mean diffusivity (MD), axonal
diffusivity (AD), radial diffusivity (RD) and tract volume. Correction for various demographical and clinical
variables were performed.

Results: Headache sufferers had widespread higher white matter MD, AD and RD compared to headache free
individuals (n = 277). The effect sizes were mostly small with the largest seen in those with middle-age onset
headache, who also had lower white matter FA. There were no associations between white matter
microstructure and attack frequency or type of headache.

Conclusion: Middle-age onset headache may be related to a widespread process in the white matter leading
to altered microstructure.

Background
Neuroimaging studies have demonstrated that primary
headache disorders, e.g. migraine and tension-type head-
ache (TTH), are not just paroxysmal conditions with no
structural abnormalities of the brain. Ischemic strokes
and white matter hyperintensities (WMH) have been re-
ported to be more prevalent in those with migraine, in
particular with aura, than in healthy controls [1, 2]. A

previous study in the present population could not cor-
roborate this, but found that those with TTH had more
WMH than those without headache [3]. Quantitative
brain measures have also been investigated. Several
clinic-based studies have reported differences in cortical
volume or thickness between those with and without
headache, albeit not confirmed in the general population
[4]. The relationship between headache and white matter
(WM) microstructure has been examined with diffusion
tensor imaging (DTI) but so far only in small clinic-
based samples and with inconclusive results [5].
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Several measures can be obtained from DTI that pro-
vide information on the white matter microstructure [6].
Fractional anisotropy (FA) is a scalar (range 0–1) that
describes to which degree the diffusion is anisotropic.
An FA value of 0 is present when the diffusion is iso-
tropic (i.e. equal in all directions), which is the case for
cerebrospinal fluid. An FA value of 1 on the other hand,
is present when the diffusion occurs along one axis.
Mean diffusivity (MD) is the total non-directional diffu-
sion, axonal diffusivity (AD) is the diffusion along WM
tracts and radial diffusivity (RD) is the diffusion perpen-
dicular to AD, i.e. across WM tracts.
Three previous studies reported no differences in DTI

indices between migraine patients and controls using
Tract-Based Spatial Statistics (TBSS) [7, 8] or a region-
of-interest approach (in the internal capsule and subcor-
tical WM) [9]. The participants were in early adulthood
or middle-aged, and WMH were corrected for. Similar,
Liu et al. [10] followed 36 individuals newly diagnosed
with migraine without aura and found no changes in
WM FA, MD, AD or RD after 1 year.
Several other studies have found differences in WM

microstructure between headache patients and controls.
Three studies reported higher MD or RD in migraine
patients compared to controls in early adulthood using
TBSS [11] or DTI tract-average values [12, 13]. In con-
trast, other studies using TBSS reported migraineurs in
their teens or early adulthood to have lower MD or RD
in several WM regions compared to controls [14–17]
and one study [14] also reported decreased AD in sev-
eral WM regions in migraineurs. In contrast to the con-
flicting MD, AD and RD results, lower FA has
consistently been reported in migraine patients [11, 13,
16–20]. No study has investigated the relationship be-
tween WM microstructure and TTH.
Common to all previous studies is the use of clinical

samples making them vulnerable to selection bias. This
may explain the conflicting results. Furthermore, the
samples were relatively small (typically 20 cases and 20
controls) increasing the likelihood of the samples not be-
ing representative and rendering them unable to detect
potentially small but actual differences [21]. Most of the
studies reporting differences in WM microstructure did
not correct their analyses for WMH [11, 14, 15, 18–20,
22, 23], which is known to influence DTI measures [24].
The present study aimed to investigate WM micro-

structure in those suffering from headache in a large
sample from the general population where correction
for several demographical and clinical variables were
available. Type of headache (migraine or TTH),
frequency of headache attacks, and evolution of head-
ache complaints were investigated for a relationship
with regional WM microstructure with TBSS. To
examine if potential regional differences in white

matter microstructure could be reflected at the level
of WM tracts, tract volumes and tract-average values
of DTI indices were obtained with automated tracto-
graphy and compared between groups.

Methods
Cohort
The Nord-Trøndelag Health Study (Norwegian acronym
HUNT) is an on-going large population-based study
across several waves: 1984–1986 (HUNT1), 1995–1997
(HUNT2), 2006–2008 (HUNT3) and presently
(HUNT4) in the county of Trøndelag (formerly Nord-
Trøndelag), Norway. In a neuroimaging sub-study of
HUNT3 (HUNT-MRI), 1006 individuals (530 women)
between 50 and 66 years who had previously participated
in HUNT1, HUNT2 and HUNT3, and lived within 45
min of the location of the scanning, underwent brain
imaging with a standardized MRI protocol. Exclusion
criteria were restricted to standard safety contraindica-
tion to MRI, i.e. pacemaker, severe claustrophobia or
body weight above 150 kg. The scanning took place be-
tween the 21st of July 2007 and the 10th of December
2009. The mean time from answering the questionnaire
in HUNT3 and being scanned was 1.2 years. Details
about the imaging procedure and the recruitment of par-
ticipants to the HUNT-MRI study have been published
previously [25]. Compared to the general population, the
participants of the HUNT-MRI study had possibly some-
what reduced risk of cardiovascular disease [25].

Headache diagnoses
Based on their answers (“yes/no”) to the initial screening
question of a headache questionnaire (“have you suffered
from headache during the last 12 months?”), HUNT3
participants were classified as either headache sufferers
or headache nonsufferers. Suffering from any headache
had a sensitivity of 88% and a specificity of 86% [26].
Headache sufferers were further asked to answer 13
headache questions designed to determine whether the
person suffered from migraine or TTH. The migraine
and TTH diagnoses were based on the criteria of the
2nd edition of the International Classification of Head-
ache Disorders (ICHD-II). However, since the infrequent
TTH diagnosis had a low specificity, only those with
headache ≥1 day per month were given the TTH diagno-
sis [26]. For migraine, the sensitivity was 51% and the
specificity was 95% and for TTH the sensitivity was 96%
and the specificity was 69% [26]. Headache sufferers not
fulfilling the criteria of either migraine or TTH were cate-
gorized as having unclassified headache. In the present
study no analyses were performed on this group separately.
Headache sufferers in HUNT3 were also categorized into
four separate groups based on the frequency of headache
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attacks (< 1 day/month; 1–6 days/month; 7–14 days days/
month; > 14 days/month).
Information on evolution of headache status was based

on identical headache screening questions in HUNT2
and HUNT3. Participants who had answered both ques-
tionnaires were categorized into four mutually exclusive
categories: previous headache (headache in HUNT2 but
not in HUNT3), new onset headache (no headache in
HUNT2 but headache in HUNT3), persistent headache
(headache in both HUNT2 and HUNT3) and headache
free (headache in neither HUNT2 nor HUNT3).

Demographical and clinical variables
As part of the HUNT surveys demographics and health
related data were collected with questionnaires and vari-
ous supplementary investigations. In the present study a
selection of variables was used to highlight similarities
and differences between the various headache groups
and the headache free and between the four headache
attack frequency groups. Information on age (continu-
ous), sex (dichotomous), body mass index (BMI, con-
tinuous), blood pressure (continuous), non-fasting
glucose (continuous), cholesterol (continuous), smoking
(dichotomous), Hospital Anxiety and Depression Scale
(HADS, continuous), chronic pain (body pain for more
than 6 months, dichotomous) and consumption of alco-
hol (ordinal from 1 [never] to 8 [4–7 times/week] but di-
chotomized at ≥1/week for these analyses) and over-the-
counter painkillers (dichotomous) was collected from
the HUNT3 survey. Information on education (dichot-
omous) was collected from the HUNT2 survey. Differ-
ences in age were evaluated with independent t-tests
and differences in sex were evaluated with χ2 tests. Ana-
lysis of Covariance or binary logistic regression, cor-
rected for age and sex, was used to investigate for
differences in the other variables. The analyses were car-
ried out in SPSS version 25 and thresholded at P < 0.05
(two-tailed).

MRI scanning
All MRI examinations were performed on the same 1.5
T General Electric Signa HDx scanner equipped with an
eight-channel head coil and software version pre-14.0M
(GE Healthcare). All participants underwent the same
scan protocol and no scanner updates were performed
during the HUNT-MRI study. In the present study, data
from the T1-weighted volume, transverse T2, FLAIR and
DTI sequences, were used. Scan parameters for the T1,
T2 and FLAIR sequences are listed in Additional file
1: Table S1. The DTI sequence was a single-shot
balanced-echo EPI acquired in 40 non-colinear direc-
tions with b = 1000 s/mm3 and 5 b = 0 images using
the following parameters: TR = 13,500ms, TE = 104ms,
FOV 240 × 240mm, slice thickness 2.5 mm, acquisitions

matrix 96 × 96. The images were automatically zero-
padded in k-space from 96 × 96 to 256 × 256 and recon-
structed giving a resolution of 0.9275 × 0.9275 × 2.5mm3.
60 transversal slices with no gaps were acquired giving full
brain coverage.

White matter hyperintensities and intracranial volume
Using the FLAIR images, the load of hemispheric WMH
was evaluated by an experienced neuroradiologist,
blinded to headache status, using the Fazekas scale (0–3)
[3]. Intracranial volume (ICV) was estimated in Statis-
tical Parametric Mapping 8 with an automated version
of the reverse brain mask method using the T1 and T2
images [27].

DTI analysis
DTI analysis was performed with two methods: TBSS
(FMRIB Software Library (FSL), The Oxford Centre for
functional MRI of the Brain (FMRIB), Oxford, UK; www.
fmrib.ox.ac.uk/fsl) and an automated tractography
method [28]. Common to both methods, image artefacts
due to motion and current distortions were minimized
by registration of the DTI acquisition to the b = 0 image
using affine registration.

TBSS analyses
The brain was extracted using the Brain Extraction Tool
(BET, part of FSL). The FMRIBs Diffusion Toolbox
(FDT) was used to fit a diffusion tensor to the raw diffu-
sion data. Voxel-wise maps of the FA, MD, AD and RD
were calculated for the headache and control groups.
Voxel-wise statistical analysis of the diffusion data was
performed using TBSS [29, 30]. Briefly, all subjects’ FA
data were aligned into a common space using the non-
linear registration tool FNIRT [31, 32] (which uses a b-
spline representation of the registration warp field [33]).
A mean FA image was created from all the FA images
and thinned to create a skeletonized mean FA represent-
ing the centers of all tracts common to all the subjects
in the analysis. The mean FA skeleton was thresholded
to FA ≥ 0.2 to include major WM tracts but exclude per-
ipheral tracts and grey matter. Each subject’s aligned FA
data were then projected onto this skeleton. The skeleto-
nization process was also applied to MD, AD and RD,
and the statistical comparisons of these data were then
restricted to voxels in the WM skeleton. The resulting
skeletonized data were consequently fed into voxel-wise
cross-subject statistics in Randomise as described below.

Automated tractography
The automated tractography segmentation procedure
applied in the present study have been described previ-
ously [34]. Briefly, q-ball reconstruction was used to
parameterize voxel diffusion profiles, and up to three
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principal diffusion directions were determined for each
voxel [35]. The Camino package was used to generate
streamlines using the interpolated deterministic stream-
lining method, with an FA threshold of 0.15. All voxels
with an FA value > 0.25 were used as seed values.
The mean b = 0 volumes were registered to the

MNI152 template using FLIRT. A custom group tem-
plate was created by averaging the registered volumes.
The b = 0 volumes were then nonlinearly registered to
the template with FNIRT and the deformation fields pro-
duced by FNIRT was used to warp the streamlines from
each subject to the group template.
To find consistent bundles of streamlines across sub-

jects an approach previously described by Visser et al.
was used [28]. Before clustering, all streamlines were
linearly resampled to 25 points, and the streamlines
from all subjects were concatenated. Clustering was per-
formed on the merged data set consisting of streamlines
from all subjects. The multisubject data set was ran-
domly partitioned into subsets of 10,000 streamlines,
and in each of these subsets 250 clusters were identified
by using hierarchical clustering. The clustering step was
repeated 100 times with different random partitions to
obtain a stable segmentation by selecting the cluster as-
signments that occurred most often for each streamline
to find statistics indicating the consistency of these as-
signments between repetitions. Based on anatomical
knowledge, WM tracts were identified in 10 randomly
selected individuals by manually assigning the sets of
labels (from the 250 labels) that corresponded to the
following WM tracts: corpus callosum (CC), cingulate
(CING), corticospinal tract (CST), inferior fronto-
occipital fasciculus (IFOF), inferior longitudinal fascic-
ulus (ILF), optic radiation (OR), superior longitudinal
fasciculus (SLF), and uncinate fasciculus. For each sub-
ject, the clusters were extracted with pruning (threshold-
ing). Regions of interests (ROIs) were made for the fiber
tracts and converted into subject diffusion space to ex-
tract mean FA, MD, AD and RD for each tract. Tract
volume was calculated for each WM tract by adding the
number of voxels containing at least one streamline and
multiplying by voxel volume. It is important to note that
this value reflects the number of voxels within the tract
that exceeded the tracking FA threshold and might devi-
ate from the actual volume. The diffusivity indices and
volumes for the tracts in the left and right hemispheres
were merged and imported into SPSS version 25.

Statistical approach to DTI measures
In the present study, several group comparisons were
performed. First, those suffering from any headache (in
HUNT3) were compared to the headache free group.
Second, the following five headache subcategories were
compared to the headache free group: migraine, TTH,

previous headache, new onset headache and persistent
headache. Third, those with migraine were compared to
those with TTH. Fourth, correlation analyses between
the frequency of headache attacks and the DTI indices
were performed. All these analyses were initially cor-
rected for age and sex (and ICV in the volume analyses)
(Model 1) but rerun three times to correct for variables
that were thought to possibly affect the results. First,
since WMH affects the integrity of WM [24], the Faze-
kas score was added as a covariate (Model 2). Second,
the Fazekas score was excluded as a covariate and clin-
ical variables that were found to be significantly different
between the headache sufferers and the headache free
(HADS score, presence of chronic pain and consump-
tion of alcohol [the ordinal variable] and over-the-
counter painkillers) were added (Model 3). Third, both
the Fazekas score and the clinical variables were added
as covariates (Model 4).
The Randomise tool in FSL was used to conduct

permutation-based non-parametric tests to investigate
spatial differences in DTI indices in WM obtained with
TBSS [36]. Threshold-free cluster enhancement (TFCE),
corrected for multiple comparisons with family-wise
error rate (FWE) and thresholded at P < 0.05 (two-
tailed), was used to investigate group differences in WM
FA, MD, AD and RD. Tract-average values and tract-
volumes obtained with automated tractography were
analysed with ANCOVA in SPSS version 25. P-values
were considered significant at a 0.05 level (two-tailed).
In total 1280 comparisons were performed in the auto-
mated tractography analyses. The volume analyses were
corrected for ICV. Effect sizes (Cohen’s d) were calcu-
lated from the TBSS and automated tractography
analyses.

Results
Basic characteristics of the present population
Of the 1006 MRI examinations, 97 had missing DTI
(due to empty folders, no DTI acquisition or abrupted
DTI acquisition) and 32 were excluded due to DTI arte-
facts (ghosting, signal void or deformation). Of the 877
successful DTI scans, 2 individuals with multiple
sclerosis were excluded and another 65 individuals were
excluded due to pathology [37]. Some of the included
individuals had minor intracranial abnormalities
(Additional file 2: Table S2 and Additional file 3: Table S3).
In total, 810 participants had successful DTI scans and
were eligible for inclusion in the present study. However,
since some of these participants did not fulfil the criteria
for inclusion in one of the headache categories because of
lacking data in either HUNT2 or HUNT3, the total num-
ber of included participants was 640.
Tables 1 and 2 shows the basic characteristics of the

present headache groups. Except for the new onset
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headache group, all headache groups had a significantly
higher percentage of women than the headache free
group. The any headache, migraine and persistent
headache groups also included individuals that were
significantly younger and had a lower consumption of
alcohol than the headache free group. Except for the
previous and new onset headache groups, all headache
groups had a higher HADS score than the headache
free group. Headache sufferers used significantly more
over-the-counter painkillers than the headache free,
whereas no significant differences were found with re-
gard to BMI, blood pressure, non-fasting glucose, chol-
esterol, daily smoking or level of education. HADS
scores, the presence of chronic pain and consumption
of over-the-counter painkillers showed a significant
positive association with frequency of headache attacks.
The WMH load was similar in the different headache

groups and the headache free group and was not correlated
with the frequency of headache attacks (Additional file 4:
Table S4). The frequency of headache attacks was quite
similar across the headache groups. Still, headache < 1 day/
month seemed to be slightly more common for those with
new onset headache. Note that owing to the diagnostic cri-
teria, none of those with TTH had headache < 1 day/month
(Additional file 5: Table S5).

TBSS analyses corrected for age and sex (model 1, Fig. 1)
The any headache group had significantly higher MD,
AD and RD compared to the headache free group. The
higher MD and AD were present in all major WM
tracts, whereas higher RD was present in most major
WM tracts. Those with migraine or TTH had higher AD
than headache free in several areas of the TBSS skeleton,
most prominent in CC, CST, IFOF, ILF and left SLF.
Individuals with previous headache had widespread
higher MD and AD in all major WM tracts compared to
the headache free, whereas those with persistent headache
had higher AD than the headache free, mostly in the left
hemisphere in CST, IFOF, ILF and SLF. Those suffering
from new onset headache had significantly higher MD,
AD and RD and significantly reduced FA in all major WM
tracts compared to the headache free. There were no dif-
ferences in any of the DTI indices between migraine and
TTH and no correlation between any of the DTI indices
and frequency of headache attacks.

TBSS analyses corrected for age, sex and WMH (model 2,
Fig. 2)
Adding the Fazekas score as a covariate decreased the
number of voxels with higher MD and AD in the any
headache group compared to the headache free group,
and the RD differences became insignificant. Similarly,
the extent of higher AD in migraineurs compared to the
headache free decreased (now present mostly in CST)

and higher AD in those with TTH was present in a small
area in SLF. Correction for WMH had negligible impact
on the comparisons between those with previous head-
ache and the headache free but rendered the differences
in AD between those with persistent headache and the
headache free insignificant. The extent of differences in
FA, MD, AD and RD between those with new onset
headache and the headache free was slightly reduced but
still present in all major WM tracts. As in statistical
Model 1, there were no differences in any of the DTI in-
dices between migraine and TTH and no correlation be-
tween any of the DTI indices and frequency of headache
attacks.

TBSS analyses corrected for age, sex, HADS score, chronic
pain and consumption of alcohol and over-the-counter
painkillers (model 3, Additional file 7: Figure S1)
When correcting for age, sex, and the four clinical vari-
ables, those suffering from any headache still had higher
MD and AD compared to the headache free. The extent
of the MD differences was decreased and included CST,
IFOF, ILF and SLF in the left hemisphere. The differ-
ences in AD were still present in virtually all WM tracts.
For migraine, higher AD was present in the same WM
tracts as when correcting only for age and sex, and
higher MD emerged in an area of the right CST. Those
with TTH had higher AD than the headache free in left
CST and left SLF. The number of voxels with higher AD
in those with previous headache compared to the head-
ache free were markedly reduced, whereas the differ-
ences in MD were barely affected. Furthermore, some
scattered areas with significantly higher RD in those with
previous headache appeared. There were no differences
in any of the DTI indices between those with persistent
headache and the headache free. The new onset head-
ache group had higher MD, AD and RD compared to
the headache free group. The number of voxels that
were significantly different between the two groups de-
creased but was still present in all WM tracts. No sig-
nificant differences in FA were found. There were no
differences in any of the DTI indices between migraine
and TTH and no correlation between any of the DTI in-
dices and frequency of headache attacks (as in Model 1
and 2).

TBSS analyses corrected for age, sex, HADS score, chronic
pain, consumption of alcohol and over-the-counter
painkillers and WMH (model 4, Additional file 8: Figure S2)
Including all covariates in the statistical model made the
difference in MD between the any headache group and
the headache free group insignificant and markedly re-
duced the extent of higher AD to mostly include left
CST and left SLF. Although considerably reduced, the
higher AD in migraineurs compared to the headache
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Fig. 1 (See legend on next page.)
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free was still present in CC, right IFOF, right ILF and
right CST. No differences were found between those
with TTH and the headache free. Those with previous
headache had higher MD in all areas of the TBSS skel-
eton and some areas of higher AD and RD in virtually
all major WM tracts compared to the headache free.
There were no differences in any of the DTI indices be-
tween those with persistent headache and the headache
free. The new onset headache group had considerably
higher MD, AD and RD compared to the headache free
group in virtually all major WM tracts. There were no
differences in any of the DTI indices between migraine
and TTH and no correlation between any of the DTI in-
dices and frequency of headache attacks (as in Model 1,
2 and 3).

Effect sizes in the TBSS analyses
Table 3 shows the mean and peak (absolute numbers)
Cohen’s d values of the TBSS analyses (except for the
correlation analyses on attack frequency) corrected for
age and sex as well as the mean Cohen’s d values of only
the significant voxels in each comparison. The mean ef-
fect sizes were very small to small (range = 0.07–0.17)
and relatively similar across the different comparisons.
The peak Cohen’s d values were mostly medium to large
(range = 0.12–0.88) with the largest values present in the
comparisons between the new onset headache and the
headache free groups and in the direct comparison of
migraine and TTH. Considering only the voxels that
were significant in each comparison, the mean Cohen’s d
values were small (range = 0.15–0.29).

Tract-average DTI indices
Additional file 6: Table S6 shows the results of the com-
parisons of WM tract average DTI indices between the
headache groups and the headache free group obtained
with automated tractography (only significant differences
are shown). When correcting for age and sex (Model 1)
the results showed that those suffering from headache
had higher MD and AD in ILF compared to the head-
ache free. Higher MD and AD were particularly notable
in those with TTH or new onset headache. In addition,
those with previous headache had higher AD in CST
compared to the headache free.
Adding the Fazekas score as a covariate (Model 2) re-

sulted in fewer significant results and had in particular an
impact on IFOF when comparing TTH with the headache
free. In addition, those with persistent headache had lower

RD of the CING compared to the headache free. The dif-
ference in FA of the CING between those with persistent
headache and the headache free was not affected by cor-
rection for WMH.
When age, sex, HADS score, chronic pain and con-

sumption of alcohol and over-the-counter painkillers
were included as covariates (Model 3) almost all previ-
ous significant results were eliminated. In contrast, those
with migraine and previous headache now had lower FA
of the CST compared to the headache free.
When all covariates were included in the statistical

model (Model 4) only one comparison showed signifi-
cance, i.e. those with previous headache had lower FA in
CST compared to the headache free. As the Cohen’s d
values in Additional file 6: Table S6 shows, there were
relatively small differences in tract-average DTI indices
between the headache groups and the headache free
group (mean = 0.25, median = 0.25, std. deviation = 0.10
and range [0.03–0.41]).

Tract volumes
Table 4 summarizes the results of the comparisons of
tract volumes between the headache groups and the
headache free group obtained with automated tractogra-
phy (only significant differences are shown). Those with
new onset headache had lower volume of the CC and
the IFOF than the headache free in all statistical models.
Similar, those with TTH had a lower volume of the CC
than the headache free in all statistical models. Individ-
uals with previous headache had lower volume of the
IFOF compared to the headache free in Model 3 and
Model 4. The Cohen’s d values in Table 5 shows that
there were relatively small differences in tract volumes
between the headache groups and the headache free
group (mean = 0.26, median = 0.27, std. deviation = 0.10
and range [0.07–0.39]).

Discussion
The present TBSS analyses showed that those suffering
from headache had widespread higher WM MD, AD
and RD compared to headache free individuals. The
largest effects were seen in those with new onset head-
ache, who also had a decrease in WM FA compared to
the headache free in some of the statistical models.
Interestingly, the WM microstructure of individuals with
persistent headache was quite similar to the WM micro-
structure of the headache free and there were no corre-
lations between frequency of headache attacks and DTI

(See figure on previous page.)
Fig. 1 Between group differences in white matter FA, MD, AD and RD in the TBSS analyses. Significance level was P < 0.05 (two-tailed) corrected
for age and sex and multiple comparisons with Threshold Free Cluster Enhancement and Family-Wise Error rate as implemented in Randomise.
To improve visualization, the group differences were “thickened” using the tbss_fill script in FSL. The FSL 1 mm mean FA template was used as
background image
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indices. No significant difference in WM microstructure
between migraine and TTH was detected. Several ana-
lyses with different covariates were performed and the
relevance of these will be further discussed.
The higher WM AD in those with TTH and/or per-

sistent headache compared to the headache free could
be explained by WMH. For migraine on the other hand,
a combination of WMH, HADS score, chronic pain and
the consumption of alcohol and over-the-counter pain-
killers almost completely explained the higher WM AD.
In contrast, the differences in WM microstructure be-
tween those with previous or new onset headache and
the headache free were to a far lesser degree explained
by these variables. Correction for WMH had virtually no
impact on the WM microstructure of those with pre-
vious headache and only slightly decreased the differ-
ence in WM microstructure between the new onset
headache group and the headache free. Correcting for
HADS, chronic pain, alcohol and over-the-counter
painkillers made the FA comparison between the new
onset headache group and the headache free insignifi-
cant, but did not eliminate the significant differences
in MD, AD and RD.
It is of interest that the differences in WM microstruc-

ture between those with and without headache were
widespread and not confined to certain WM tracts. This
suggests a widespread process in the white matter lead-
ing to altered microstructure. Furthermore, this putative
process led to higher diffusivity both parallel (AD) and
perpendicular (RD) to the axons. According to the litera-
ture, AD is positively associated with axonal integrity
and RD negatively associated with myelination [38]. AD
and RD (and thus MD) seem to be more sensitive mea-
sures of WM microstructure with regard to headache
status than FA. Presumably, a high degree of overlap of

location of voxels with higher AD and RD led to min-
imal change in FA.
It is hard to find a pathophysiological plausible explan-

ation for the fact that those with previous or new onset
headache had a microstructure of the WM far more dif-
ferent to the headache free’s than those with persistent
headache had. The presence of intracranial abnormalities
did probably not explain the results as they were uncom-
mon since most participants with intracranial abnormal-
ities were excluded from the DTI analysis, and in the
remaining sample the frequency and type of findings
were quite similar across the different headache groups.
Interestingly, those with previous or new onset headache
were more similar to the headache free in terms of de-
mographical and clinical characteristics than those with
persistent headache. One might hypothesize that for in-
stance a high consumption of painkillers or a low con-
sumption of alcohol, both of which were present in
those with persistent headache, protect the brain from
damage caused by headache. Since old ischemic lesions
lead to increased MD and decreased FA, and several
painkillers share characteristics with antiplatelet drugs
used to prevent ischemic events, the usage of painkillers
could conceivably affect the microstructure of the white
matter [6, 39]. Alcohol has previously been shown to in-
crease MD and decrease FA [40]. However, correction
for these variables showed that the present level of alco-
hol and painkiller consumption could not explain the
results.
Primary headaches are usually developed in the teens

or early adulthood whereas secondary headaches more
often start later in life [41, 42]. Considering that the par-
ticipants in the present study were aged 50–66 years this
may be of importance. Since individuals reporting new
onset headache in HUNT3 actually had a middle-age

(See figure on previous page.)
Fig. 2 WMH-corrected differences in white matter FA, MD, AD and RD in the TBSS analyses. In addition, there was correction for age, sex and
multiple comparisons with Threshold Free Cluster Enhancement and Family-Wise Error rate as implemented in Randomise. Significance level was
P < 0.05 (two-tailed). To improve visualization, the group differences were “thickened” using the tbss_fill script in FSL. The FSL 1 mm mean FA
template was used as background image

Table 3 Mean Cohen’s d values of the TBSS analyses corrected for age and sex. In parenthesis are peak Cohen’s d values and in
brackets are mean Cohen’s d values when considering only the significant voxels

FA MD AD RD

Any headache in HUNT3 vs headache free 0.07 (0.41) 0.08 (0.46) [0.15] 0.08 (0.42) [0.15] 0.08 (0.41) [0.16]

Migraine in HUNT3 vs headache free 0.04 (0.36) 0.11 (0.58) 0.11 (0.63) [0.23] 0.11 (0.58)

TTH in HUNT3 vs headache free 0.10 (0.12) 0.11 (0.63) 0.11 (0.62) [0.29] 0.11 (0.63)

Previous headache vs headache free 0.09 (0.45) 0.10 (0.52) [0.18] 0.10 (0.53) [0.17] 0.09 (0.53)

Persistent headache vs headache free 0.08 (0.44) 0.08 (0.43) 0.08 (0.48) [0.18] 0.08 (0.40)

New onset headache vs headache free 0.14 (0.77) [0.26] 0.17 (0.88) [0.27] 0.14 (0.83) [0.25] 0.16 (0.86) [0.27]

Migraine vs TTH 0.14 (0.32) 0.13 (0.71) 0.14 (0.82) 0.13 (0.71)
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onset headache, one may speculate that some of them
suffered from some sort of secondary headache, and fur-
thermore, that the widespread higher WM diffusion in
these individuals is reflective of a brain process leading
to headache.
The differences in WM microstructure between those

with and without headache were not associated with
type of headache. Both migraine and TTH had a slightly
higher WM AD when compared to the headache free.
Furthermore, there was no differences in DTI indices
when comparing migraine directly with TTH. However,
the lack of an association between WM microstructure
and headache type must be viewed in the light of effect
sizes and sample sizes. Most of the comparisons involv-
ing migraine and TTH actually had larger Cohen’s d
values than many of the comparisons with significant
findings but included fewer individuals. Hence, despite
its size, this study was probably underpowered to detect
if type of headache was associated with differences in
WM microstructure.
It is not known why some studies report migraineurs

to have higher WM diffusion compared to headache free
individuals [11–13] whereas others report the opposite
[14–17]. One explanation may be differences in basic
participant characteristics due to differences in the mode
of recruitment. In this regard the present authors believe
it is of great importance that this study was based on the

general population with no group differences in cardio-
vascular risk factors or socioeconomic status. Differences
in demographical and clinical variables were also cor-
rected for. Furthermore, the present migraine group was
larger than the ones in previous studies which further
strengthens the confidence in the present results.
The analyses on tract-average DTI indices confirmed

the TBSS results of widespread WM microstructural dif-
ferences between the headache free and those suffering
from headache, more precisely TTH and/or new onset
headache. The difference in tract-average values were al-
most completely explained by WMH, HADS, chronic
pain and consumption of alcohol and over-the-counter
painkillers. Comparisons of the tract volumes showed
that, compared to the headache free, those with TTH
had lower volume of CC and those with new onset head-
ache had lower volume of CC and IFOF. This could not
be explained by any of the covariates. It is important to
note that a large number of analyses were performed
and that the automated tractography analyses were not
corrected for multiple comparisons. Hence, any signifi-
cant findings should be interpreted with caution.
There are several strengths of the present study. First,

compared to previous studies it was large with more
power to detect group differences and less vulnerable to
random errors. Second, the participants were randomly
drawn among individuals attending a large longitudinal

Table 4 Volumes (mean values with standard deviations in parenthesis) of white matter tracts with significant differences between
various headache groups obtained via automated tractography. Only significant comparisons are shown

White matter tract Diffusivity index Headache status Cohen’s d P-values

Headache free TTH in HUNT3

CC Model 1 133,199.55 (27,111.58) 128,233.64 (26,728.43) 0.18 0.015

Model 2 133,199.55 (27,111.58) 128,233.64 (26,728.43) 0.18 0.027

Model 3 133,333.22 (27,393.97) 128,279.36 (26,905.43) 0.19 0.013

Model 4 133,333.22 (27,393.97) 128,279.36 (26,905.43) 0.19 0.021

Headache free Previous headache

IFOF Model 3 55,877.84 (12,506.42) 52,031.05 (11,029.22) 0.33 0.044

Model 4 55,877.84 (12,506.42) 52,031.05 (11,029.22) 0.33 0.044

Headache free New onset headache

CC Model 1 133,199.55 (27,111.58) 123,362.10 (23,524.54) 0.39 0.001

Model 2 133,199.55 (27,111.58) 123,362.10 (23,524.54) 0.39 0.002

Model 3 133,333.22 (27,393.97) 123,476.03 (24,022.37) 0.38 0.003

Model 4 133,333.22 (27,393.97) 123,476.03 (24,022.37) 0.38 0.004

IFOF Model 1 55,849.15 (12,415.01) 52,573.81 (12,236.59) 0.27 0.013

Model 2 55,849.15 (12,415.01) 52,573.81 (12,236.59) 0.27 0.017

Model 3 55,877.84 (12,506.42) 52,797.27 (12,271.63) 0.25 0.014

Model 4 55,877.84 (12,506.42) 52,797.27 (12,271.63) 0.25 0.017

Model 1 = Corrected for age, sex and ICV
Model 2 = Corrected for age, sex, ICV and WMH
Model 3 = Corrected for age, sex, ICV, HADS, chronic pain and consumption of alcohol and over-the-counter painkillers
Model 4 = Corrected for age, sex, ICV, WMH, HADS, chronic pain and consumption of alcohol and over-the-counter painkillers
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epidemiological study (HUNT) minimizing selection bias
of clinic-based studies. Third, differences in diffusivity
indices were investigated with regard to type of head-
ache, frequency of headache attacks and evolution of
headache. Fourth, all scans were performed on the same
scanner. Fifth, both TBSS and automated tractography
were applied in the analyses of the DTI data. The
present study also has some limitations. First, there was
a relatively long time interval from the participants
answered the headache questionnaire (2006–2008 in
HUNT 3) to when they were scanned (2007–2009).
Morphological changes of the brain have been reported
to both arise and recede within a year, although this has
not been shown for DTI [10, 43]. Furthermore, it seems
unlikely that the headache had improved dramatically in
the majority during the time between the HUNT3 ques-
tionnaire and the MRI scanning (mean 1.2 years).
Second, headache status was estimated using a question-
naire which is inferior to a clinical interview. However,
the headache diagnoses in HUNT3 were validated show-
ing acceptable accuracy [26]. The migraine diagnosis
was highly specific but had lower sensitivity whereas this
was opposite for the TTH diagnosis. Some true migrai-
neurs were therefore probably incorrectly classified with
TTH, which potentially diminished the differences
between these groups. The headache categories regard-
ing frequency of attacks and evolution of headache were
not validated. Hence, caution must be taken when inter-
preting these specific analyses. Third, the evolution of
the participant’s headache was based on data from only
two time points with no information on headache his-
tory in between, which further warrants caution regard-
ing these analyses. Fourth, we had no information on
use of prophylactic medication. Fifth, we had no infor-
mation on whether participants were scanned during or
between attacks. Sixth, overadjustment may have oc-
curred in some of the statistical models, as for instance
headache and chronic pain are associated with each
other and may have common causes linking them to
WM microstructure.
In light of the present findings, future studies should

investigate WM morphology related to the age of head-
ache sufferers and the age of onset of the headache. Fur-
thermore, to ensure sufficient statistical power to detect
potential small differences, studies should be based on
large samples and samples from the general population
should be preferred over samples from clinics to avoid
selection bias. Future studies should also not restrict
their analyses to FA and MD but also investigate AD
and RD.
In conclusion the present study found widespread

higher WM diffusion in those suffering from headache
compared to headache free individuals in the general
population. The largest effects were seen in those with

headache developed in middle-age. Overall, the effects
were small and there was no dose-response relationship
between headache frequency and WM microstructure.
WMH, HADS score, chronic pain and consumption of
alcohol and over-the-counter painkillers largely ex-
plained the findings in those with migraine, TTH or per-
sistent headache, but to a far lesser degree in those with
previous or new onset headache.
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