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Abstract 
 
Cellular senescence is a phenotypic state that contributes to the progression of age-related disease through 
secretion of pro-inflammatory factors known as the senescence associated secretory phenotype (SASP). 
Understanding the process by which healthy cells become senescent and develop SASP factors is critical for 
improving the identification of senescent cells and, ultimately, understanding tissue dysfunction. Here, we 
reveal how the duration of cellular stress modulates the SASP in distinct subpopulations of senescent cells. 
We used multiplex, single-cell imaging to build a proteomic map of senescence induction in human epithelial 
cells induced to senescence over the course of 31 days. We map how the expression of SASP proteins 
increases alongside other known senescence markers such as p53, p21, and p16INK4a. The aggregated 
population of cells responded to etoposide with an accumulation of stress response factors over the first 11 
days, followed by a plateau in most proteins. At the single-cell level, however, we identified two distinct 
senescence cell populations, one defined primarily by larger nuclear area and the second by higher protein 
concentrations. Trajectory inference suggested that cells took one of two discrete molecular paths from 
unperturbed healthy cells, through a common transitional subpopulation, and ending at the discrete terminal 
senescence phenotypes. Our results underscore the importance of using single-cell proteomics to identify the 
mechanistic pathways governing the transition from senescence induction to a mature state of senescence 
characterized by the SASP. 

Keywords: Cellular senescence, Senescence-associated secretory phenotype (SASP), Senescence 
Induction, DNA Damage 
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Introduction 
 
Aging drives an ever-increasing load on healthcare systems, with more than half of the global disease burden 
resulting from age-related diseases[1]. This burden can be expected to rise as the average age of the global 
population continues to increase. Cellular senescence is a phenotypic state associated with diseases that 
emerge at high rates with aging, such as osteoarthritis[2–4], neurodegenerative disorders[5,6], and macular 
degeneration[7]. Through the production and secretion of pro-inflammatory factors known as the Senescence 
Associated Secretory Phenotype (SASP), even a small number of senescent cells can have an outsized effect 
on the tissue environment[8]. Thus, identifying and eliminating senescent cells is an appealing target for 
therapeutics aimed at reducing the burden of age-related disease[9,10]. Senescence can be induced both in 
vivo and in vitro by subjecting healthy cells to long-term stresses such as oxidative stress[3] and DNA 
damage[11,12]. However, it is unclear how long cells must be exposed to each stress to induce senescence 
and SASP factors, or what sequence of molecular states they undergo en route from health to senescence[13].  
 
There is tremendous value in understanding how cells respond to stress, succumb to it, and what happens 
after cells succumb to that stress. A major challenge  is that senescence is a highly heterogeneous 
phenomenon[14] and one clear source of heterogeneity is temporal.  There is strong evidence that key 
features of senescence are dynamic[13,15,16], but many studies focus on a single timepoint and thus the 
conclusions reflect only a snapshot of the senescence phenotype. Thus, it is currently unknown to what degree 
the observed heterogeneity in the field can be explained by differences in timepoint selection between 
experiments. By combining a granular time course experiment with the multidimensional proteomics analysis, 
we hope to expand on the role of temporal heterogeneity as a contributing factor to the overall heterogeneity of 
senescence. 
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Subpopulation heterogeneity is another source of complexity when trying to interpret data from aggregate 
analysis. The process of senescence induction is unlikely to be uniform across the individual cells within a 
culture, but   single-cell analysis provides the capacity to identify subpopulations of senescent cells with distinct 
molecular features. Further, approaches to define the trajectories of cells over pseudotime can give insight into 
cells that are at different points along the path towards these various senescence subpopulations within a 
given experiment. Other systems, such as studies of apoptosis, have successfully mapped both the temporal 
and subpopulation heterogeneity of those processes[17].  A better understanding of the contributions of 
temporal and subpopulation heterogeneity in senescence will provide a more accurate and useful framework 
for understanding the role of senescence in age-related disease. 
 
 
Here, we reveal the temporal dynamics of senescence induction in a cell type with well-characterized cell cycle 
dynamics, retinal pigment epithelial (RPE) cells[18,19]. We use a novel proteomics technique, iterative indirect 
immunofluorescence imaging[20] (4i), to profile induced senescent cells across a month of continuous 
senescence induction. We find that much of the observed heterogeneity of cellular senescence can be 
explained by the gradual, long-term changes in senescence phenotype as well as the emergence of discrete 
populations of senescent cells with different molecular signatures over those longer timeframes. Age-related 
disease is the result of a lifetime of accumulated damage; thus, we anticipate that the senescence phenotype 
“matures” in response to this damage over long timeframes. By understanding how the senescence phenotype 
alters with increasing depths and durations of senescence, we will be better equipped to identify potential 
targets for intervention.  
 
 

Materials and Methods 
 
Cell lines and culture conditions and treatments 
Retinal pigment epithelial cells (hTERT RPE-1, ATCC, CRL-4000) were used for all experiments. RPE cells 
were cultured at 37 °C and 5% CO2 in DMEM (Glibco, 11995-065) with 10% fetal bovine serum (FBS; Sigma, 
TMS-013-B), GlutaMAX (Glibco, 35050-061), and penicillin/streptomycin (P/S; ThermoFisher Scientific 
15140148). To induce senescence, 1 µM of etoposide (MedChem, HY-13629/CS-1774) was included at each 
feed (MWF) and left on the cells between feeds. 
 
Antibodies 
Antibodies used in this study (Supplemental Table 1) were either previously selected using BenchSci and 
tested in prior work[18,19] or selected for relevance to senescence and tested prior to inclusion. Testing of 
antibodies was performed to ensure correct staining above background and that antibodies could be eluted 
using the established 4i protocols. Hoechst (Sigma-Aldrich 33258) was used as a nuclear stain. The following 
secondary antibodies were used as appropriate – Alexa Fluor 647 Donkey anti-goat (Invitrogen A21447), Alexa 
Fluor 568 Donkey anti-mouse (Invitrogen A10037), Alexa Fluor 568 Donkey anti-rabbit (Invitrogen A10042), 
Alexa Fluor 488 Donkey anti-rabbit (Invitrogen A32790). 
 
Iterative Indirect Immunofluorescence Imaging (4i) 
Samples were prepared as previously described[18–20].  Stitched 5x5 images were collected using a Nikon 
Ti2 Eclipse inverted microscope using a Plan Apo LambdaD 20x objective lens (NA=0.8) with a Teledyne 
Photometrics Kinetix sCMOS camera. Image acquisition performed using the following filer cubes: DAPI 
(Semrock DAPI-3060A), AF488 (Semrock GFP-4050B), AF568 (Semrock mCherry-C), AF647 (Semrock LED-
Cy5-5070A). Image acquisition and stitching was performed using NIS-Elements HCA JOBS software to 
enable the automated imaging of the entire well and plate. Images from each round of 4i were aligned in 
Python 3.7 using the StackReg library and manually checked for accurate alignment. Segmentation was 
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performed in Python 3.7 using the CellPose library and feature quantification and extraction was performed 
using the region properties library of Scikit-image.  
 
Data visualization and trajectory inference 
Data were visualized in Python 3.7 using Potential of Heat-diffusion for Affinity-based Transition Embedding[21] 
(PHATE) in three dimensions. PHATE was performed on z-normalized data that had been subsampled to 1200 
cells per timepoint using Sketch[22]. Trajectory inference was performed in R using the Slingshot package with 
PHATE coordinates and anchored on the ground truth population of cells not treated with etoposide. 
Trajectories from Slingshot were overlaid on PHATE plots in Python 3.7. 
All other visualizations were performed using Python 3.7 and Jupyter Notebooks using the environments and 
notebooks hosted at (https://github.com/PurvisLabTeam/publication_code_repo) under the papers title in the 
folder labeled analysis_code. 
 
Data availability and code availability 
Single cell datasets are available here (https://github.com/PurvisLabTeam/publication_code_repo) under the 
papers title in the folder labeled source_data. Code used for processing 4i datasets is available here 
(https://github.com/PurvisLabTeam/4i_pipeline). 
 
 

Results 
 
Long-term senescence induction 
 
We used a well-established model of the human cell cycle[18,19], retinal pigment epithelial (RPE) cells, to 
investigate the temporal dynamics of senescence induction. RPE cells were continuously exposed to 1 µM 
etoposide, a Topoisomerase II inhibitor that induces DNA damage, for up to 31 days (Fig 1A). We profiled cells 
by 4i for 16 markers of senescence, SASP, and cell cycle signaling (Supp Table 1) at 12 time intervals over 31 
days after initiating induction with etoposide plus an untreated control condition. The collected images were 
processed, screened for artifacts, and quantified to produce a tabular dataset (Fig 1B). As cells were subjected 
to increasing durations of etoposide treatment, they began to take on visual markers of senescence such as 
increased size and disrupted morphology (Supp Fig 1). 
 
Aggregate population analysis 
 
To gain an overview of senescence induction over the 31-day time course, we first visualized aggregate 
changes in total nuclear (total), mean nuclear (mean), and mean cytoplasmic (cytoplasmic) protein for the 
entire population of cells (Fig 1B). This analysis revealed two major phases of changes in senescence 
associated factors: an induction phase ranging from the day 0 control until day 11; and a steady state phase 
ranging from day 11 until the final timepoint at day 31. This trend was observed most strikingly when 
calculating the overall increase in nuclear area (Fig 2A). The consistent increase in size until day 11 and 
maintenance of that size until day 31 can be observed in representative images as (Fig 2B). Across all 16 
proteins analyzed in this study, total protein levels closely mirrored the temporal pattern established for nuclear 
area (Fig 2A), suggesting that the increase in nuclear area is a critical event that facilitates increased total 
protein abundance (Supp Fig 2). Total protein dynamics for 6 key proteins are shown in Fig 2C. Established 
senescence markers such as p53, p21, and p16 followed previously reported dynamical trends[2,23–25] at the 
bulk total protein level. For example, persistent DNA damage provoked through continuous application of 
etoposide drove an early upregulation of total p53 protein. Similarly, total levels of p21 and p16 increased at 
each time point from day 2 through day 11 before reaching a plateau phase. In addition to these DNA damage 
and cell cycle regulators, we observed temporal changes in proteins involved in inflammatory signaling. For 
example, total phosphorylated p65 (p-p65), a key component of the NF-KB pathway, was upregulated in 
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lockstep with total p53. Finally, at the end of the induction phase at day 11, the transition to a steady state 
phase was accompanied by switch-like increases in the total abundances of GATA4 and PARP1 (Supp Fig 3). 
 
Unlike the total protein levels, mean protein concentration decreased rapidly in critical senescence proteins, 
with some recovery towards control levels over time. Mean levels of p53, p16, p-p65, PARP1, and GATA4 
declined from control to day 2 then began to increase in concentration until the 11-day timepoint. None of these 
proteins except p53 returned to the mean levels observed in the control cells. Mean levels of p21 declined 
rapidly and did not meaningfully increase at any subsequent timepoint (Fig 2D). These dynamics are due in 
part to the rapid increase in nuclear area upon etoposide treatment, which dilutes all mean protein 
concentrations. 
 
In summary, time series of aggregate single-cell distributions shows an initial response phase over the first 11 
days characterized by accumulation multiple stress and inflammatory signaling proteins, followed by a stable 
period of response with apparently fewer changes in protein levels. We next sought to fully utilize the single-
cell measurements to detect the presence of potential subpopulations of healthy and senescent cells in this 
aggregated cell population. 
 
 
Identifying subpopulations of healthy and senescence cells 
 
We next explored whether cells clustered into different subpopulations and what transitions they underwent 
while progressing from an unperturbed, healthy state to these discrete subpopulations. To visualize all cells in 
their various molecular states, which are defined by their unique combinations of protein levels, we used the 
nonlinear dimensionality reduction method PHATE[21] (Potential of Heat-diffusion for Affinity-based Transition 
Embedding) to embed the high dimensional data into three dimensions. In parallel, we performed k-means 
clustering on the entire dataset to identify distinct subpopulations. To choose the number of clusters in a 
principled way, we chose the number of clusters that maximized the percentage of unperturbed cells in a single 
cluster, which we referred to as the healthy cells. This strategy produced 10 clusters that could be sorted into 
six cell-type subpopulations that included the healthy cells, three “terminal” clusters, and two transitional 
populations (Fig. 3A). Here, terminal clusters represent groups of cells with a large molecular distance from 
the healthy cells. Two of the terminal clusters expressed high levels of known senescence markers but differed 
in terms of nuclear area and the concentration of senescence associated and SASP proteins. The third 
terminal cluster responded to etoposide that made them distinct from the healthy cells, but this cluster did not 
express high total levels or high concentrations of senescence markers. In addition, one of the transitional 
populations mapped onto the PHATE structure in between the healthy cells and the two senescence clusters, 
whereas the second transitional population occupied the space between the healthy cells and the non-
senescent terminal cluster. Because we are specifically focused on the transition to senescence, in the 
subsequent analysis we primarily focused on the healthy cells, the two senescent terminal clusters, and the 
single senescence transitional cluster that presumably gave rise to the two senescence subpopulations. 
 
To understand how these subpopulations arise in response to etoposide, we first quantified the contribution of 
each subpopulation at individual time points. This analysis shows that the transitional subpopulation arises 
immediately, with the senescence transitional cluster accounting for nearly 17% of the cells at day 2 (Fig 3B). 
By contrast, the three terminal clusters did not accumulate to a significant extent until much later in the time 
course, with the large nuclear senescence cluster arising strongly at day 11 and the high concentration 
senescent cell population not arising strongly until day 17. Thus, what appeared in the aggregate data to be a 
single stable phase is revealed to be a composition of multiple subpopulations which accumulate cells at 
different rates. The transitional cluster identified through k-means clustering is superficially similar to the high 
concentration senescent cell cluster by nuclear area and total nuclear protein levels of key senescence 
proteins (Fig 3C). However, the transitional cluster lacks the increased protein concentrations of the high 
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concentration senescence cluster, indicating that it is less active for core senescence functions (Fig 3D). 
Additionally, the transitional cluster lacks cytoplasmic concentrations of IL-6 pathway proteins observed in the 
high concentration senescence cluster (Fig 3E).  
 
Inferring the temporal pathway from healthy to senescent cells 
 
The PHATE plots and time point representation for each cluster provide some indication of the temporal order 
in which the identified populations emerge during the response to etoposide. To gain additional understanding 
of the dynamics of senescence induction, we used Slingshot[26] to infer the temporal trajectory of molecular 
states that cells pass through en route from healthy to senescence (Fig 4A). In this analysis we identified three 
lineage paths, each originating in the healthy cell cluster and ending in one of three distinct terminal clusters: 
non-senescent terminal, large nuclear senescence, and high-concentration senescence. These trajectories 
produce a pseudotime axis which describes how a hypothetical cell may pass through the molecular states 
captured by the trajectory. We next asked how individual molecular features changed as cells moved along 
each individual trajectory. We used locally estimated scatterplot smoothing (Loess) curves to calculate the 
mean and variation of each feature along the trendline. For example, Fig 4B shows how nuclear area—a key 
senescence feature—varies among individual cells in the entire population, and Fig 4C shows how nuclear 
area changes along each lineage trajectory. Only one lineage, the large nuclear senescence lineage, showed 
substantial changes in nuclear size along its trajectory. In contrast, the high-concentration senescence lineage 
showed a slight increase in nuclear size that eventually leveled off. The non-senescent terminal lineage results 
in distinctly altered cells that also showed a transient increase in nuclear area, but which are distinct from the 
two senescence lineages in that it lacks expression of common senescence markers such as p53, p21, and 
p16. 
 
 
Protein dynamics in lower dimensional embedding 
 
To gain a more detailed view of how healthy cells transition toward each of the three terminal clusters—large 
nuclear senescence, high-concentration senescence, and non-senescent terminal—we examined total protein 
levels for 6 key senescence features within each subpopulation (Fig 5A) and then traced the temporal 
dynamics of these features along each lineage trajectory (Fig 5B). We found that p53, p-p65, PARP1, and 
GATA4 levels increased uniformly across pseudotime in the large nuclear senescence lineage. p16 underwent 
a transient decline like that seen in the aggregate analysis before increasing. p21 declined in total protein 
abundance until the cell exited the transitional cluster and entered the terminal large nuclear senescence 
cluster, at which point the abundance of p21 rapidly increased. Total levels of all six of the key proteins was 
strongly correlated with nuclear area, with the large nuclear senescent cell lineage having statistically 
significantly higher total protein levels in the final 10% of the pseudotime when compared to the high 
concentration senescent cell lineage (Fig 5C). Comparison of changes in mean protein levels also suggested 
that the switch-like behavior observed in the aggregate timepoint analysis of GATA4 and PARP1 (Fig 2C) is 
largely driven by the increased total nuclear protein of the large nuclear senescent cells. In contrast to total 
protein levels, the mean nuclear protein levels of key senescence proteins accumulated in different regions of 
the PHATE structure and showed a greater variety of trends (Fig 5D). Regardless of the lineage, the early 
pseudotime is characterized by a decline in mean protein concentration. However, once the high concentration 
senescence population exited the transitional cluster and entered the high concentration terminal cluster, we 
observe that mean protein levels rose beyond initial levels in the cases of p53, p-p65, and GATA4 (Fig 5E,F). 
Notably, the high concentration senescent cells showed sharp increases in mean levels of GATA4 and PARP1 
while these factors decreased in concentration in the large nuclear senescent cells (Fig 5E,F). Taken together, 
these results suggest rapid accumulation of protein concentration in distinct subpopulations of senescent cells 
that are masked by aggregate cell analysis. 
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Differential regulation of the SASP in distinct subpopulations of senescent cells 
 
We next examined the potential functional consequences of the molecular differences observed between the 
large nuclear and high concentration senescent cell populations. Examination of IL-6 pathway proteins in the 
cytoplasm showed that the high concentration senescent cells are the primary producers of IL-6, a common 
SASP factor. JAK2 protein levels also accumulate strongly along the high concentration lineage (Fig 6A). This 
trend was further supported by the Loess curves plotted using the Slingshot-derived pseudotime axis for JAK2 
(Fig 6B). Notably, this trend was not obvious from analysis of the aggregate data of all cells at each timepoint 
(Fig 6C).  pSTAT3, another key component of the IL-6 pathway, was similarly regulated, and again the trends 
shown by trajectory analysis were not observable in the aggregate data (Fig 6D-F). The differences in IL-6 
expression itself were similarly striking, with the large nuclear senescent cells showing no meaningful changes 
from controls and the high concentration senescent cells showing a drastic increase in cytoplasmic IL-6 (Fig 
6G-I). These three components of the IL-6 pathway co-occur in individual cells and are upregulated in lockstep 
with each other. This lockstep regulation is evidence for autocrine reinforcement of the high concentration 
phenotype.  
 

Discussion 
 
How senescence-associated proteins are regulated over time, and among individual cells, is a complex 
process. This work highlights the critical need for comprehensive analysis of relevant proteins and pathways 
across time and at the single-cell level when attempting to understand how senescence arises in healthy cell 
populations. We found two discrete pathways of senescence induction: one present in cells with large nuclei 
and high total protein levels of canonical senescence markers that support cell cycle arrest, and one present in 
cells with a high concentration of senescence proteins that appears to support SASP production with an 
emphasis on the IL-6 pathway (Fig 7). Crosstalk between these two systems could be reinforced by switch-like 
behavior in transcriptional regulators like GATA4 and PARP1, which reinforce cell cycle arrest and SASP 
production through orthogonal pathways. 
 
Cells under etoposide stress rapidly exit the set of molecular states associated with healthy cells and begin to 
accumulate in either the transitional cluster or, after a time delay, one of the three terminal clusters. Once 
etoposide stress has been applied, the transitional cluster is always occupied by some fraction of the total cell 
population. This indicates that cells may be continually entering or exiting this transitional molecular state. 
Given that all three trajectories pass through this cluster, we infer that it represents a transitional state in which 
cells have not yet entered a molecular state that will push them towards one of the three terminal clusters. 
Molecular markers indicate that these cells have not mounted a DNA damage response and have no 
detectable SASP component (Fig 3). 
 
From this senescence transitional cluster, three discrete terminal populations emerge, two of which have 
hallmarks of senescence. Nuclear morphology and size as well as overall cell size[27–29] are often one of the 
initial indicators of senescence. Indeed, one of the three lineages/populations derived from the multiplexed 
dataset is defined in part by very large nuclei. These large nuclear senescent cells have increased total nuclear 
protein levels for most measured features. However, the mean protein levels of these cells tend to stay stable 
or reduce in concentration. It is possible that the increased protein levels seen in these cells, which would have 
a large effect on non-single cell, aggregate analyses, is driven by the increasing cell size as a compensatory 
mechanism to maintain a stable protein concentration.  
 
In contrast, there is a second lineage/population of senescent cells that arises which is not defined by 
increased nuclear area, but by increased concentration of senescence-associated proteins. These cells still 
have larger nuclei than unperturbed control cells, but their primary defining features appear to be increased 
concentrations of proteins such as p53, phospho-p65, and other markers of senescence and the SASP. 
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Trajectory analysis shows that this population arises later than the large nuclear senescence population (Fig 5) 
and may be responsible for the bulk of the SASP features measured in this work. Beyond the difference in 
nuclear protein concentration, the large nuclear and high concentration senescent cell populations exhibit key 
differences in their ability to support SASP secretion, inferred here by the cytoplasmic concentration of IL-6 
pathway proteins. High concentration senescent cells appear to be upregulating protein synthesis in response 
to the DNA damage stress, increasing the concentration of key senescence proteins to active downstream 
responses like the IL-6 pathway. DNA damage has been previously shown to induce pro-inflammatory 
SASP[30,31], making this pathway an ideal target for study. The cytoplasmic concentration of JAK2, phospho-
STAT3 and IL-6 are all greatly increased in the high concentration senescent cells. We infer from this that the 
rate of secretion of IL-6 out of the cell is higher as well. Future work will determine to what extent the SASP 
factors in this subpopulation may affect other cells through paracrine mechanisms. 
 
The third population of cells appears to represent a heterogeneous mix of non-senescent cells that express 
higher levels of damage than the unperturbed populations. This population emerges from the senescent 
transitional cluster and passes into the non-senescent transitional cluster before ending in the non-senescent 
terminal cluster. This population is ill-defined by the panel of markers used in this work, as those markers were 
chosen to identify senescent cells and to understand the SASP. As a result, we cannot speak at length to 
specific features of this population, other than to say that these cells occupy a distinct molecular state, different 
from both healthy cells and from both populations of senescent cells. It is possible that these cells are 
dysfunctional in meaningful ways that are the result of paracrine influences by etoposide-induced senescent 
cells. It is also possible that they are cells that have resolved the stress of etoposide treatment in a way that 
does not result in senescence. 
 
In conclusion, our single-cell analysis revealed that the temporal dynamics of senescence induction is a key 
contributor to the observed heterogeneity of cellular senescence. That is, cells reach different states at different 
rates such that any instantaneous measurement of aggregate cells will reveal a different mix of distinct 
subpopulations. The two key populations explored here—the large nuclear senescent and the high 
concentration senescent—do not arise in great number until day 11 or day 17 respectively (Fig 3), although a 
small number of cells exhibiting these characteristic molecular states can be detected at even the very first 
timepoint. In this study, the analysis of IL-6 pathway components highlights the weaknesses of only measuring 
senescence features as an aggregate of many cells. The majority of the IL-6 pathway proteins were expressed 
at meaningful levels only in the high concentration senescence population (Fig 6B,E,H), which comprised just 
7.8% of all cells in the day 31 timepoint (Fig 3B). The aggregate analysis missed the contribution of this 
population entirely, showing only the steady stabilization of IL-6 pathway proteins after day 11 (Fig 6C,F,I). 
Thus, had we only measured the aggregate data, averaging out many cells into a single measurement and 
combining a range of distinct molecular states, we would have masked a key temporal event and the discrete 
populations that arise in response to a continuous direct DNA damage challenge. By combining a highly 
multiplexed set of single cell protein measures and a detailed, granular time course experiment, our work 
suggests that senescent cells undergo a series of time-dependent interactions between previously described 
senescence markers. Importantly, our work reveals large differences in SASP potential between discrete 
molecular states of senescent cells that could be easily missed when combined with sizable populations of 
non-senescent cells that persist and even increases after a full month of etoposide treatment. 
 
From a therapeutic perspective, the removal or modulation of senescent cells by drug treatment is an 
appealing target for addressing the rising incidence of age-related disease. The senescence transitional state 
represents an appealing target for future work, as there may be molecular switches or other mechanisms 
present at this stage that could allow for the prediction of which terminal state the cell will ultimately enter. 
Resolving these mechanisms in detail could provide novel molecular targets for therapeutics. For example, 
GATA4 may be a potential target for reducing the entry of transitional cells into a SASP-producing program 
exhibited by the high concentration senescent cells. The emergence of GATA4 and PARP1 as transcriptional 
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regulators that potentially stabilize the senescence phenotype highlights promising targets for potential 
therapeutics. In particular, the concentration of GATA4 is markedly increased in the high concentration 
senescent cells. There are several roles for GATA4 in senescence indicated in the literature, but the most 
interesting in regard to these findings is its role in the reinforcement of cell cycle arrest and the NFκB 
pathway[32]. Future work targeting the inhibition of GATA4 could produce a potential senomorphic target, 
valuable for its reduction of the SASP. The earlier these changes can be detected in individual cells, the less 
time the tissue environment will be exposed to harmful SASP. 
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