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Abstract

Multiple myeloma (MM) is a common hematologic malignancy for which the underlying

molecular mechanisms remain largely unclear. This study aimed to elucidate key

candidate genes and pathways in MM by integrated bioinformatics analysis. Expression

profiles GSE6477 and GSE47552 were obtained from the Gene Expression Omnibus

database, and differentially expressed genes (DEGs) with p < .05 and [logFC] > 1 were

identified. Functional enrichment, protein–protein interaction network construction and

survival analyses were then performed. First, 51 upregulated and 78 downregulated

DEGs shared between the two GSE datasets were identified. Second, functional

enrichment analysis showed that these DEGs are mainly involved in the B cell receptor

signaling pathway, hematopoietic cell lineage, and NF‐kappa B pathway. Moreover,

interrelation analysis of immune system processes showed enrichment of the down-

regulated DEGs mainly in B cell differentiation, positive regulation of monocyte

chemotaxis and positive regulation of T cell proliferation. Finally, the correlation between

DEG expression and survival in MM was evaluated using the PrognoScan database. In

conclusion, we identified key candidate genes that affect the outcomes of patients with

MM, and these genes might serve as potential therapeutic targets.
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1 | INTRODUCTION

Multiple myeloma (MM) is an incurable cancer of B cells caused by an

aberrant accumulation of malignant plasma cells in the bone marrow

(Palumbo & Anderson, 2011). MM comprises 10% of all hematolo-

gical cancers and is characterized by hypercalcemia, renal failure,

anemia, and bone lesions, leading to fatal outcomes(Pawlyn &

Morgan, 2017). Although the development of new drugs has

improved patient outcomes, the response to treatment and survival

of newly diagnosed patients with MM varies, and the median survival

time ranges from 2 to >10 years (Sonneveld et al., 2016). Thus,

identifying molecular biomarkers is critically important for early

diagnosis, prevention, and personalized therapy.

Gene chips have been widely applied as a gene detection

technology, and the corresponding data have been deposited in public

databases (Vogelstein et al., 2013). Integrating and reanalyzing these

genomic data offer possibilities for identifying certain disease‐related
biomarkers. Recently, many studies have been carried out according to

microarray data profiles to elucidate the pathogenesis of MM (C. Liu,

Gu, & Jiang, 2017; Sun et al., 2015). However, the results are based on a
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single cohort study, creating poor reproducibility and consistency. To

overcome these disadvantages, integrated bioinformatics methods

should be combined with expression profiling techniques.

In the current study, we downloaded two microarray datasets,

GSE6477 (Chng et al., 2007) and GSE47552 (Lopez‐Corral et al.,

2014), from the NCBI‐Gene Expression Omnibus database (NCBI‐
GEO), including gene expression data for purified plasma cell samples

from 110 patients with MM and 20 healthy controls. We identified

differentially expressed genes (DEGs) using the interactive web tool

GEO2R with standard data processing and analyzed these DEGs

were performed Gene Ontology (GO) and pathway enrichment

analysis with the Database for Annotation, Visualization and

Integrated Discovery (DAVID), KEGG pathways and REACTOME.

Subsequently, we integrated the DEG protein–protein interaction

(PPI) network with module screening to identify hub genes in MM.

Identifying DEGs and enriching their functions and signaling path-

ways may help reveal potential biosignatures for the diagnosis and

management of MM.

2 | MATERIALS AND METHODS

2.1 | Microarray data information and DEG
identification

The gene expression profiles GSE6477 and GSE47552 were obtained

from NCBI‐GEO. The microarray data of GSE6477 are based on

GPL96 platforms (HG‐U133A Affymetrix Human Genome U133A

Array) and include purified plasma cell samples from 69 newly

diagnosed patients with MM and 15 healthy controls. The GSE47552

data are based on GPL6244 platforms (HuGene‐1_0‐st Affymetrix

Human Gene 1.0 ST Array) and include purified plasma cell samples

from 41 newly diagnosed MM patients and 5 healthy controls.

GEO2R was used to identify DEGs between patients with MM and

healthy controls. In this study, genes with p < .05 and [logFC] > 1 were

defined as DEGs. The DEG data were processed at the Morpheus

website (available online: https://software.broadinstitute.org/morpheus)

to draw a heatmap of the top 100 significantly changed genes.

2.2 | GO and pathway enrichment analysis

DAVID (https://david‐d.ncifcrf.gov/) was used to analyze candidate DEG

functions and KEGG pathway enrichment. GO term enrichment analysis

includes biological process (BP), cellular component (CC), and molecular

function (MF). Pathway analysis was also carried out using another

online database, REACTOME (available online: http://www.reactome.

org). Interrelation analysis between pathways was developed using the

ClueGo plug‐in Cytoscape software. A p value <.05 was considered the

cut‐off criterion.

2.3 | PPI network establishment and modular
analysis

We evaluated the DEG‐encoded proteins and PPI information using

the STRING database (available online: http://string‐db.org).

F IGURE 1 Identification of differentially expressed genes in two cohort profile datasets (GSE6477 and GSE47552). (a) Respective volcano

plot of the two datasets. Red plots represent genes with [logFC] > 1 and p < .05. Blue plots represent the remaining genes with no significant
difference. (b) Heatmap of the top 100 DEGs (100 up‐ and 100 downregulated genes). (c) Commonly changed DEGs in the two datasets
(51 up‐ and 78 downregulated genes). DEGs, differentially expressed genes [Color figure can be viewed at wileyonlinelibrary.com]
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F IGURE 2 Gene Ontology (GO) term enrichment analysis of all DEGs. (a) GO analysis of DEGs consisting of three subontologies (biological

process, molecular function and cellular component). (b) Significantly enriched GO terms for all DEGs. DEGs, differentially expressed genes
[Color figure can be viewed at wileyonlinelibrary.com]
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Cytoscape software version 3.7.1 was applied to establish the protein

interaction network.

MCODE, a plug‐in in Cytoscape, was utilized to screen the

modules from the PPI network and identify the most significant

module based on the MCODE score and node number.

2.4 | Survival analysis

Correlation between DEG expression and survival in MM was

analyzed using the PrognoScan database (http://dna00.bio.kyutech.

ac.jp/PrognoScan/). PrognoScan searches for relationships between

gene expression and MM disease‐specific survival (DSS) were based

on the GSE2658 data set (n = 559). A Cox p value <.05 was

considered statistically significant.

3 | RESULTS

3.1 | Identification of DEGs in MM

We obtained gene expression profiles of purified plasma cell samples

from newly diagnosed patients with MM and healthy controls from

the GSE6477 and GSE47552 datasets and analyzed DEGs using

GEO2R. Setting the cut‐off criterion as p < .05 and [logFC] > 1, we

identified 1,266 and 871 DEGs from GSE6477 and GSE47552,

respectively (Figure 1a). Figure 1b shows the top 100 genes depicted

as a heatmap. These genes were well clustered between patients

with MM and healthy controls. Employing integrated bioinformatics

analysis, we identified 51 upregulated genes and 78 downregulated

genes as common to the two datasets (Figure 1c).

3.2 | GO term enrichment analysis of DEGs

We performed DEG GO analysis using the DAVID gene annotation

tool. As shown in Figure 2a, the DEGs were examined according to

three subontologies: BP, CC, and MF. Figure 2b and Table 1 illustrate

that for BP, upregulated genes were mainly enriched in translational

elongation and translation; downregulated genes were largely

enriched in positive regulation of response to the stimulus, positive

regulation of immune system process, immune response, activation of

the immune response, response to wounding and lymphocyte

mediated immunity. For CC, enrichment of upregulated genes was

primarily in the cytosolic ribosome, ribosomal subunit, and cytosolic

part, and that of downregulated genes was mainly in the extracellular

region part. Upregulated genes in MF are mainly involved in

structural constituents of ribosome and structural molecule activity

and the downregulated genes mainly in Ras guanyl‐nucleotide
exchange factor activity.

3.3 | Signaling pathway enrichment analysis

KEGG and REACTOME pathway enrichment analyses of the up‐ and
downregulated DEGs were performed (Figure 3a; Table 2). Enrich-

ment of upregulated DEGs was mostly in the formation of a pool of

free 40S subunits, L13a‐mediated translational silencing of cerulo-

plasmin expression, and eukaryotic translation termination and

SRP‐dependent cotranslational protein targeting to the membrane.

Downregulated DEGs were mainly enriched in the transcriptional

regulation of white adipocyte differentiation, the B cell receptor

signaling pathway, platelet degranulation, chondroitin sulfate

biosynthesis, and posttranslational protein phosphorylation.

Subsequently, we performed an interrelation analysis of pathways

by examining KEGG processes in ClueGO. All DEGs were primarily

associated with the B cell receptor pathway, hematopoietic cell

lineage, NF‐kappa B pathway, and the PPAR pathway (Figure 3b).

3.4 | Immune analysis of downregulated DEGs

Based on the above results, we found the downregulated DEGs to be

significantly associated with the immune system. Therefore, we

performed the interrelation analysis by assessing the immune system

TABLE 1 Gene Ontology term enrichment analysis of DEGs in
multiple myeloma

Term Description Count p value

Upregulated

GO:0022626 Cytosolic ribosome 6 4.39 × 10−6

GO:0006414 Translational elongation 6 1.27 × 10−5

GO:0033279 Ribosomal subunit 6 4.08 × 10−5

GO:0003735 Structural constituent of

ribosome

6 5.19 × 10−5

GO:0044445 Cytosolic part 6 9.25 × 10−5

GO:0022625 Cytosolic large ribosomal

subunit

4 2.06 × 10−4

GO:0006412 Translation 7 4.48 × 10−4

GO:0005840 Ribosome 6 4.64 × 10−4

GO:0015934 Large ribosomal subunit 4 1.10 × 10−3

GO:0005198 Structural molecule

activity

7 4.04 × 10−3

Downregulated

GO:0048584 Positive regulation of

response to stimulus

9 1.29 × 10−5

GO:0002684 Positive regulation of

immune system process

9 1.37 × 10−5

GO:0006955 Immune response 14 1.39 × 10−5

GO:0002253 Activation of immune

response

6 7.44 × 10−5

GO:0009611 Response to wounding 11 1.54 × 10−4

GO:0044421 Extracellular region part 14 2.02 × 10−4

GO:0002449 Lymphocyte mediated

immunity

5 3.11 × 10−4

GO:0002252 Immune effector process 6 3.92 × 10−4

GO:0006952 Defense response 11 5.07 × 10−4

GO:0050778 Positive regulation of

immune response

6 5.63 × 10−4

Abbreviations: DEGs, differentially expressed genes; GO, Gene Ontology.
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process of downregulated DEGs in ClueGO. As depicted in Figure 4,

downregulated DEGs were mainly enriched in B cell differentiation,

positive regulation of monocyte chemotaxis, positive regulation of

T cell proliferation and leukocyte tethering or rolling. In addition, we

conducted an interrelation analysis between pathways in the BPs of

downregulated DEGs (Figure 5). Consistent with the above results,

we observed an enrichment of the downregulated DEGs largely in B

cell differentiation, leukocyte tethering or rolling, platelet degranula-

tion, positive regulation of T cell proliferation, positive regulation of

monocyte chemotaxis and regulation of complement activation.

3.5 | PPI construction and modular analysis

Based on the STRING online database and Cytoscape software, we

constructed a DEG PPI network = containing 94 DEGs (41 upregu-

lated and 53 downregulated), with 94 nodes and 224 edges

identified, as shown in Figure 6a. By utilizing cluster analysis of the

PPI network in Cytotype MCODE, we identified two significant

modules based on the degree of importance. Module 1 contained 8

nodes and 27 edges (Figure 6b); Module 2 contained 5 nodes and 7

edges (Figure 6c). KEGG and REACTOME pathway enrichment

analyses of the DEGs in these modules were then performed. DEGs

in Module 1 were mainly enriched in the formation of a pool of free

40S subunits, L13a‐mediated translational silencing of ceruloplasmin

expression and eukaryotic translation initiation (Table 3). DEGs in

Module 2 were mainly enriched in the B cell receptor signaling

pathway, the immune system, regulation of complement cascade and

interferon alpha/beta signaling (Table 4).

3.6 | Survival analysis of DEGs

Finally, we explored the potential prognostic value of DEGs for

patients with MM by evaluating the correlation between DEG

expression and survival rates using PrognoScan. Based on the

GSE2658 data set (n = 559), 31 DEGs (Table S1; 8 upregulated

and 23 downregulated genes) were identified to be significantly

associated with DSS in MM. Representative genes are shown in

Figure 7. SNRPE, TXN, HIST1H1C, and CKS2 were upregulated,

whereas DENND2D, CYP1B1, DCN, VCAN, HLA‐DPA1, TP73‐AS1,
CHRDL1 and RCBTB2 were downregulated.

4 | DISCUSSION

MM remains incurable for most patients despite dramatic

improvements in new treatments. In this study, we analyzed the

expression of genes in two microarray datasets based on purified

plasma cells of MM patients and healthy controls. A total of 129

common DEGs were identified (51 upregulated and 78 down-

regulated), with p < .05 and [logFC] > 1. Subsequently, we utilized

bioinformatics methods to deeply explore these DEGs, including

GO term enrichment, signaling pathway enrichment, PPI network

construction, and survival analysis.

GO term enrichment analysis consists of three groups: BP, CC, and

MF. With regard to BPs, the DEGs identified are mainly involved in

positive regulation of the immune system process, immune response

and positive regulation of response to the stimulus. Evading immune

destruction is one of the hallmarks of cancer (Hanahan & Weinberg,

F IGURE 3 Signaling pathway enrichment analysis of DEGs. (a) KEGG and REACTOME pathway enrichment of up‐ and downregulated DEGs.
(b) Interrelation analysis of pathways via assessment of KEGG processes in ClueGO. DEGs, differentially expressed genes [Color figure can be
viewed at wileyonlinelibrary.com]
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2011). Indeed, cancer cells are involved in extensive and dynamic

crosstalk with immune cells, and many molecular events mediate this

interrelationship (Grivennikov, Greten, & Karin, 2010). Patients with

MM have increased susceptibility to infections, and the immune

system and immune responses play crucial roles in the pathogenesis of

MM (Rossi, Botta, Correale, Tassone, & Tagliaferri, 2013). Myeloma

cells primarily reside in the bone marrow immune microenvironment,

which also contains innate immune cells (such as macrophages,

myeloid‐derived suppressor cells, and natural killer cells) and adaptive

immune cells (T and B lymphocytes; Guillerey, Nakamura, Vuckovic,

Hill, & Smyth, 2016). Some of the genes identified in the present study

have been shown to participate in the crosstalk between MM cells

with immune cells, such as vascular cell adhesion molecule 1 (VCAM1)

and CD9 (Belloni et al., 2018; De Bruyne et al., 2008), leading to

progression of MM.

DEGs in CC are mainly enriched in cytosolic ribosomes.

Consistent with this, DEGs in MF are mainly associated with

the structural constituents of ribosomes. Ribosome biogenesis is a

process by which ribosomes are generated for protein synthesis, and

this process is critical for cells to survive, grow and proliferate

(Iadevaia, Liu, & Proud, 2014; Lessard, Brakier‐Gingras, & Ferbeyre,

2019). In cancer, ribosome biogenesis is commonly enhanced to meet

the increased anabolic requirements related to malignant transfor-

mation and tumor development. In addition, the ribosome serves as a

central information hub, and numerous oncogenic signaling pathways

modulate its function[12 13]. For instance, RPS9, identified as an

upregulated DEG in this study, contributes to cancer cell metastasis

through c‐Myc (K. C. Chen et al., 2018). Several studies on MM have

revealed that ribosome biogenesis is associated with the MM risk

allele and response to bortezomib treatment (Ali, Ajore, Wihlborg, &

Niroula, 2018; Hofman et al., 2017).

Next, interrelation analysis of pathways was conducted by utilizing

KEGG processes in ClueGO. The results showed all DEGs to mainly be

associated with the B cell receptor signaling pathway, hematopoietic

cell lineage, the NF‐kappa B signaling pathway, and the PPAR signaling

pathway. The B cell receptor signaling pathway has been reported to

mediate PD‐L1 signaling and metabolism in hematologic malignancies

(Li et al., 2018; Vangapandu et al., 2017). Consistent with our results,

F IGURE 4 Interrelation analysis between pathways (immune system process) of downregulated DEGs. (a) The interrelation between

immune system pathways. (b) Numbers of genes enriched in the identified pathways. DEGs, differentially expressed genes [Color figure can be
viewed at wileyonlinelibrary.com]

YAN ET AL. | 23791



F IGURE 5 Interrelation analysis between pathways (biological process) of downregulated DEGs. (a) Interrelation between biological process
pathways. (b) Numbers of genes enriched in the identified pathways. DEGs, differentially expressed genes [Color figure can be viewed at
wileyonlinelibrary.com]
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F IGURE 6 Protein–protein interaction (PPI) network of DEGs and module analysis. (a) Based on the STRING online database, a DEG PPI
network was constructed containing 94 DEGs (41 upregulated DEGs labeled in red and 53 downregulated DEGs labeled in blue).
(b) Identification of two significant modules based on the degree of importance. Module 1 contains 8 nodes and 27 edges. (c) Module 2

contains 5 nodes and 7 edges. DEGs, differentially expressed genes; PPI, protein–protein interaction [Color figure can be viewed at
wileyonlinelibrary.com]

TABLE 3 Pathway enrichment analysis of Module 1 genes function

Term Description Count p value

R‐HSA‐72689 Formation of a pool of free 40 S subunits 7 4.36 × 10–14

R‐HSA‐156827 L13a‐mediated translational silencing of Ceruloplasmin expression 7 8.39 × 10–14

R‐HSA‐72706 GTP hydrolysis and joining of the 60 S ribosomal subunit 7 8.93 × 10–14

R‐HSA‐72613 Eukaryotic translation initiation 7 1.36 × 10–13

R‐HSA‐72737 Cap‐dependent translation initiation 7 1.36 × 10–13

R‐HSA‐156902 Peptide chain elongation 6 7.80 × 10–12

R‐HSA‐72764 Eukaryotic translation termination 6 1.01 × 10–11

R‐HSA‐2408557 Selenocysteine synthesis 6 1.01 × 10–11

R‐HSA‐156842 Eukaryotic translation elongation 6 1.08 × 10–11

R‐HSA‐975956 Nonsense‐mediated decay (NMD) independent of the exon junction complex (EJC) 6 1.15 × 10–11

R‐HSA‐192823 Viral mRNA translation 6 1.56 × 10–11

R‐HSA‐1799339 SRP‐dependent cotranslational protein targeting to membrane 6 3.05 × 10–11

R‐HSA‐927802 Nonsense‐mediated decay (NMD) 6 3.75 × 10–11

R‐HSA‐975957 Nonsense‐mediated decay (NMD) enhanced by the exon junction complex (EJC) 6 3.75 × 10–11

R‐HSA‐2408522 Selenoamino acid metabolism 6 3.95 × 10–11

R‐HSA‐72766 Translation 7 7.10 × 10–11
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this pathway was found to be the most significant pathway in another

MM polygenic interaction study (Chattopadhyay et al., 2018). The

NF‐kappa B signaling pathway plays a crucial role in the proliferation,

survival and treatment resistance of MM, and dysregulation of NF‐kB
may result from genetic and microenvironment‐driven mechanisms

(Demchenko et al., 2010; Keats et al., 2007; McMillin et al., 2010).

Furthermore, important therapeutic advances have emerged through

alteration of the activity of NF‐kB with pharmacological interventions

(Adams, 2004; Moreau et al., 2012). The three subtypes of PPAR

(PPARalpha, beta/delta, and gamma) exhibit differential expression

patterns in vertebrates. PPARγ agonists significantly suppress the

adhesive interaction between MM and bone marrow stromal cells

(Wang, Yang, Zhang, & Farrar, 2007) and increase the cytotoxic effect

of other drugs in MM cells (Aouali et al., 2009).

TABLE 4 Pathway enrichment analysis of Module 2 genes function

Term Description Count p value

bta04662 B cell receptor signaling pathway 4 1.03 × 10−5

R‐HSA‐168256 Immune system 5 1.23 × 10−3

R‐HSA‐977606 Regulation of complement cascade 2 1.42 × 10−3

R‐HSA‐166658 Complement cascade 2 1.79 × 10−3

R‐HSA‐1300652 Sperm: oocyte membrane binding 1 2.13 × 10−3

R‐HSA‐909733 Interferon alpha/beta signaling 2 2.48 × 10−3

R‐HSA‐5336415 Uptake and function of diphtheria toxin 1 4.26 × 10−3

R‐HSA‐9020558 Interleukin‐2 signaling 1 5.95 × 10−3

R‐HSA‐1280218 Adaptive immune system 3 6.07 × 10−3

R‐HSA‐76002 Platelet activation, signaling and aggregation 2 6.45 × 10−3

R‐HSA‐1280215 Cytokine signaling in immune system 3 7.11 × 10−3

R‐HSA‐198933 Immunoregulatory interactions between a lymphoid and a non‐lymphoid cell 2 7.14 × 10−3

R‐HSA‐912631 Regulation of signaling by CBL 1 1.02 × 10−2

R‐HSA‐913531 Interferon signaling 2 1.08 × 10−2

R‐HSA‐1187000 Fertilization 1 1.32 × 10−2

R‐HSA‐168249 Innate immune system 3 1.35 × 10−2

F IGURE 7 Correlation between individual DEG expression and MM disease‐specific survival. Kaplan–Meier survival curves comparing high
and low expression of DEGs in MM in PrognoScan, as based on the GSE2658 data set (n = 559). DEGs, differentially expressed genes; MM,

multiple myeloma [Color figure can be viewed at wileyonlinelibrary.com]

23794 | YAN ET AL.



Subsequently, interrelation analysis was performed. Immune

system process analysis of downregulated DEGs indicated that B cell

differentiation, positive regulation of T cell proliferation, and leukocyte

tethering or rolling interact with each other through key genes,

such as spleen‐associated tyrosine kinase (SYK; related to MM

cell survival and migration; Lorenz et al., 2016), complement

Component 3d receptor 2 (linked to the innate complement‐mediated

immune response; Sorman, Zhang, Ding, & Heyman, 2014), VCAM1

(contributing to drug resistance in MM; Belloni et al., 2018) and

cadherin 11 (CDH11; involved in MM progression and bone

destruction; Christopoulos et al., 2017). Interrelation analysis via

assessment of the BPs of downregulated DEGs was consistent with

the above results. A variety of mechanisms to evade immune

surveillance have been reported in MM, including impaired antibody

production (Rawstron et al., 1998), deregulation of the T cell

compartment (Koike et al., 2002), upregulation of inhibitory ligands

(Paiva et al., 2015), disruption of antigen presentation (Brown, Pope,

Yuen, Gibson, & Joshua, 1998) and recruitment of immunosuppressive

cells (Franssen et al., 2015; Malek et al., 2016). Thus, various

immunotherapy strategies have been developed, such as immunomo-

dulatory drugs, checkpoint inhibitors, monoclonal antibodies, chimeric

antigen receptor T‐cells, and vaccines (Kumar & Anderson, 2016;

Rodriguez‐Otero, Paiva, Engelhardt, Prosper, & San Miguel, 2017).

These strategies have shown encouraging results in patients with

relapsed refractory MM and also in improving patient outcomes (Neri,

Bahlis, & Lonial, 2016).

A PPI network of DEGs was constructed, containing 94 nodes and

224 edges. In this network, screening revealed two significant

modules based on the degree of importance. Many of the core genes

within the subnetworks have been reported to play a crucial role in

the development of MM, such as SYK, CD81, and CD9. SYK, a protein

kinase, is a critical element in B cell receptor signaling (Knoll et al.,

2017). Moreover, SYK has been demonstrated to be involved in

ectoenzyme CD38‐, chemokine receptor CXCR4‐, and integrin ligand

VCAM1 signaling (Buchner et al., 2010). CD38 is characteristically

expressed on myeloma cells, and CXCR4 and VCAM1 play a

crucial role in MM‐microenvironmental crosstalk (Schuler, Ewerth,

Waldschmidt, Wasch, & Engelhardt, 2013). Targeting SYK has shown

promising therapeutic effects in B cell malignancies, including chronic

lymphoid leukemia (D. Liu & Mamorska‐Dyga, 2017), and in MM,

inhibition of SYK resulted in significant decreases in cell survival and

migration (Lorenz et al., 2016). Previous studies have demonstrated

that CD81 is an independent prognostic factor in MM and may be

associated with MM pathogenesis (Arana et al., 2018; F. Chen et al.,

2018; Paiva et al., 2017). Expression of CD9 in MM cells is related to

the disease status and survival of patients with MM, and CD9 was

found to be involved in transendothelial invasion in an MM mouse

model (De Bruyne et al., 2006). Moreover, CD9 expression was found

to be downregulated during disease progression, which led to

decreased susceptibility of MM cells to NK cell–mediated cytolysis

(De Bruyne et al., 2008). Our survival analysis revealed 31 DEGs to

be significantly associated with survival in MM patients, and further

investigation of these genes in clinical research is warranted.

In conclusion, integrated bioinformatics analysis of multiple

datasets of newly diagnosed MM patients and healthy controls

was performed. Common DEGs were identified that are signifi-

cantly enriched in various pathways, especially immune responses,

followed by evaluation of the prognostic value for patients with

MM. Notably, most of the prognostic genes are immune‐related
genes. The results of this study increase our understanding of the

molecular drivers that underlie MM initiation and progression, and

the critical genes and pathways identified constitute potential

therapeutic targets.
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