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Abstract: The 3′ untranslated regions (3′ UTRs) of mRNAs serve as hubs for post-transcriptional
control as the targets of microRNAs (miRNAs) and RNA-binding proteins (RBPs). Sequences in
3′ UTRs confer alterations in mRNA stability, direct mRNA localization to subcellular regions,
and impart translational control. Thousands of mRNAs are localized to subcellular compartments
in neurons—including axons, dendrites, and synapses—where they are thought to undergo local
translation. Despite an established role for 3′ UTR sequences in imparting mRNA localization in
neurons, the specific RNA sequences and structural features at play remain poorly understood. The
nervous system selectively expresses longer 3′ UTR isoforms via alternative polyadenylation (APA).
The regulation of APA in neurons and the neuronal functions of longer 3′ UTR mRNA isoforms
are starting to be uncovered. Surprising roles for 3′ UTRs are emerging beyond the regulation of
protein synthesis and include roles as RBP delivery scaffolds and regulators of alternative splicing.
Evidence is also emerging that 3′ UTRs can be cleaved, leading to stable, isolated 3′ UTR fragments
which are of unknown function. Mutations in 3′ UTRs are implicated in several neurological
disorders—more studies are needed to uncover how these mutations impact gene regulation and
what is their relationship to disease severity.

Keywords: 3′ UTR; alternative polyadenylation; local translation; RNA-binding protein;
RNA-sequencing; post-transcriptional regulation

1. Introduction

3′ untranslated regions (UTRs) enable post-transcriptional control to provide spatiotemporal
regulation of gene expression within a cell. Recognition of cis-elements by RNA-binding proteins
(RBPs) drives tight modulation of gene expression by altering mRNA degradation rates, driving
subcellular localization of mRNA, and regulating translation efficiency. These changes ultimately
impact the spatiotemporal dynamics of protein synthesis. In this review, the roles that 3′ UTRs play in
controlling mRNA dynamics in the nervous system are discussed, along with new emerging roles for
3′ UTRs that go beyond their roles in mRNA localization and translation.

2. Cis-Acting Roles for 3′ UTRs in Neuronal Gene Regulation

2.1. miRNA Regulation

The 3′ UTR is particularly well understood as the target region for microRNA (miRNA) regulation
(Figure 1A). Several miRNAs are specifically expressed in the nervous system and have roles in neural
development and maintenance. During the early stages of neural specification and differentiation,
gene regulatory networks that establish neuronal identity are regulated by miRNAs [1–3]. miRNAs
also regulate axon outgrowth/pathfinding and dendritogenesis [3–5]. This is achieved in part by
miRNA suppression of mRNAs encoding a wide variety of cytoskeletal and signaling proteins [6–9].
In fully mature neurons, miRNAs are involved in synaptic plasticity [10–12] and the regulation of
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circadian rhythms [13]. Given these important roles for miRNAs in neurons, it is not surprising that
alterations in miRNA expression is implicated in neurodegenerative disorders, such as Alzheimer’s
disease (AD) and Parkinson’s disease [14–16], and neuropsychiatric problems, including depression,
anxiety, schizophrenia, and autism spectrum disorder [17–19]. Along the same lines, mutations in 3′

UTRs encoding miRNA seed sites have also been associated with several disorders [20–22].
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Figure 1. Post-transcriptional regulation via 3′ untranslated regions (3′ UTRs). 3′ UTRs mediate post-
transcriptional gene regulation via (A) miRNA interactions, (B) RNA methylation, (C) regulating 
mRNA stability/decay by interaction with RNA-binding proteins (RBPs; illustrated as colored balls), 
and (D) imparting subcellular localization within neurons to regions such as dendrites and axons, 
where they can undergo local translation. ARE, AU-rich element. 

2.2. RNA Methylation 

Methylation of DNA is well understood to regulate chromatin dynamics and transcription. In 
recent years, it has emerged that methylation of RNA also impacts gene regulation (Figure 1B). While 
there are many types of RNA modifications, N6-methyladenosine (m6A) is one of the most abundant 
and the best characterized to date [23]. Transcriptome-wide analysis revealed that m6A modifications 
are particularly enriched in 3′ UTRs [24,25]. m6A modifications play roles in axon guidance, 
neurogenesis, neural survival, and synaptic function [26,27]. m6A modifications appear to be 
particularly important for control of mRNA translation. YTHDF1 (YTH N6-methyladenosine RNA 
binding protein 1) is a m6A reader protein. By binding to m6A marked regions, predominantly in 3′ 
UTRs, YTHDF1 regulates protein synthesis in response to neuronal activity. Mice lacking YTHDF1 
display impaired hippocampal synaptic transmission and defects in learning and memory, 
demonstrating the key role for RNA methylation in the nervous system [28].  

2.3. mRNA Stability and Translational Control  

The rate of mRNA decay is influenced by several determinants, including poly(A) tail length 
and 3′ UTR sequence content. RBP interactions with 3′ UTRs are important determinants of mRNA 
stability (Figure 1C). AU-rich elements (AREs) located in 3′ UTRs were first reported to mediate 
mRNA decay of cytokine transcripts [29]. AU-rich binding proteins bind AREs and can stabilize or 
promote degradation of the mRNA. For instance, the KH-type splicing regulatory protein (KSRP or 
KHSRP) and HuD (ELAV-like protein 4) are RBPs that bind to an ARE in the 3′ UTR of the GAP-43 
(Gap43) mRNA. Although both proteins target the same region, they employ antagonistic regulation 
of GAP-43 mRNA—KSRP enhances its turnover during axonal outgrowth of hippocampal neurons 
[30], whereas HuD stabilizes it in select neuronal populations [31]. mRNA stability influences not 
only the number of times an mRNA can be translated, but also impacts mRNA localization since the 
transcript must resist degradation in order to be subcellularly localized. 
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2.2. RNA Methylation

Methylation of DNA is well understood to regulate chromatin dynamics and transcription. In
recent years, it has emerged that methylation of RNA also impacts gene regulation (Figure 1B).
While there are many types of RNA modifications, N6-methyladenosine (m6A) is one of the most
abundant and the best characterized to date [23]. Transcriptome-wide analysis revealed that m6A
modifications are particularly enriched in 3′ UTRs [24,25]. m6A modifications play roles in axon
guidance, neurogenesis, neural survival, and synaptic function [26,27]. m6A modifications appear
to be particularly important for control of mRNA translation. YTHDF1 (YTH N6-methyladenosine
RNA binding protein 1) is a m6A reader protein. By binding to m6A marked regions, predominantly
in 3′ UTRs, YTHDF1 regulates protein synthesis in response to neuronal activity. Mice lacking
YTHDF1 display impaired hippocampal synaptic transmission and defects in learning and memory,
demonstrating the key role for RNA methylation in the nervous system [28].

2.3. mRNA Stability and Translational Control

The rate of mRNA decay is influenced by several determinants, including poly(A) tail length
and 3′ UTR sequence content. RBP interactions with 3′ UTRs are important determinants of mRNA
stability (Figure 1C). AU-rich elements (AREs) located in 3′ UTRs were first reported to mediate mRNA
decay of cytokine transcripts [29]. AU-rich binding proteins bind AREs and can stabilize or promote
degradation of the mRNA. For instance, the KH-type splicing regulatory protein (KSRP or KHSRP)
and HuD (ELAV-like protein 4) are RBPs that bind to an ARE in the 3′ UTR of the GAP-43 (Gap43)
mRNA. Although both proteins target the same region, they employ antagonistic regulation of GAP-43
mRNA—KSRP enhances its turnover during axonal outgrowth of hippocampal neurons [30], whereas
HuD stabilizes it in select neuronal populations [31]. mRNA stability influences not only the number
of times an mRNA can be translated, but also impacts mRNA localization since the transcript must
resist degradation in order to be subcellularly localized.
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3. 3′ UTR-Mediated Subcellular Localization of mRNAs within Neurons

Ever since the first findings of asymmetric localization of mRNAs in ascidian eggs [32], subcellular
localization of transcripts in polarized cells has been of great interest. In neurons, mRNAs are found in
axons, dendrites, and synapses [33–36] (Figure 1D). The number of subcellularly localized transcripts
identified in neurons continues to grow as a result of advances in transcriptomics and methods to isolate
dendrites and axons from soma. Most mRNA localization transcriptome studies have been performed
in cultured primary explants/neurons [37–40] and immortalized neuronal-like cells such as Neuro2A
and CAD cells [41] (see Box 1). Methods to physically isolate long axons/processes from cultured
tissues/cells include the use of compartmentalized chambers and membrane inserts. These allow
axons to be separated from soma for downstream RNA analysis. We are now aware that hundreds
to thousands of mRNAs are found in axons or dendrites of both the peripheral and central nervous
systems [39,42,43], and that the transcriptome of each neuronal subcompartment is unique. It is more
challenging to identify dendrite/axon localized mRNAs using sequencing approaches in vivo. Laser
microdissection of dendrite-enriched regions followed by RNA-Seq has been successfully performed
in various systems including rat brain slices [42]. It is clear from such studies that many mRNAs are
found in dendrites and axons.

Box 1. APA trends in cultured neuronal-like cells versus neurons.

Selection of the proper biological system is a key for studying the dynamics of alternative 3′ UTR usage in
neurons. Most previously reported studies have employed either (1) immortalized neuron-like cell lines, (2)
isolated neurons, (3) stem cell/induced pluripotent stem cell derived neurons, or (4) tissues. A key benefit of
using cell lines are their malleability. For instance, the properties of 3′ UTRs and localizing potentials of Tau
and GAP-43 have been largely studied in P19 and PC12 cells [44–46]. Much of the research focusing on miRNA
binding to 3′ UTRs has been performed in Neuro2A cells [47,48] and the localization of alternative last exon 3′

UTR isoforms in neurites was studied using differentiated CAD and Neuro2A cells [41]. Expression of alternative
3′ UTR isoforms can vary widely between mouse tissues and cell lines. Several examples are shown in this figure.
RNA-Seq reads were aligned using HISAT2 [49], processed using SAMtools [50], and tracks visualized at the last
two exons of the Calm1, Rac1, and Ranbp1 genes using Integrated Genomics Viewer [51]. Note the changes in
read coverage pertaining to the alternative long 3′ UTRs. Gene models in light blue represent un-annotated
transcript isoforms. SRA accession numbers are noted.
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3.1. RNA Localizing Cis-Elements

The study of mRNA subcellular localization determinants has focused on cis-acting sequence
elements in mRNAs and the RBPs that bind them. The subcellular localization of mRNAs in neurons
has often been attributed to 3′ UTR sequences [52,53]. Since the identification of a localizing cis-element
in the β-actin 3′ UTR, known as zipcode, and its trans-acting RBP partner, zipcode-binding protein
(ZBP; as known as IMP1) [54–56], considerable attention has been focused on determining 3′ UTR
cis-elements and RBP trans-factors influencing mRNA localization [39,43,57]. Although some motif
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enrichment has been observed, efforts to find a universal “zipcode” sequence governing mRNA
localization has been unsuccessful. Sequences identified as localization elements are largely unique
to each gene. Thus, mRNA localization elements cannot currently be identified by a motif-searching
bioinformatics approach (for examples of localizing cis- and trans- elements, refer to [53]).

Assessing the role of 3′ UTRs in mRNA localization has heavily relied on the use of 3′ UTR
reporter assays. For this type of experiment, the 3′ UTR sequence of interest is subcloned downstream
of a reporter, such as a fluorescent protein (FP), or adjacent to mRNA reporter motif, such as MS2
bacteriophage coat protein-binding sequences, to observe the effect of the 3′ UTR on localization (For
more experimental approaches, see Box 2). Then, a minimal localizing element can be identified by
testing the effect that 3′ UTR deletions or mutations have on reporter mRNA axonal or dendritic
localization. Using reporter systems, 3′UTR sequence determinants for localization have been identified
for CaMKIIα (Camk2a), β-actin (Actb), GAP-43, Importinβ1 (Kpnb1), and Rgs4 mRNAs [58–62].

Only a few studies have uncovered the impact of 3′ UTR sequences on localization using loss of
function approaches in vivo. The localizing role of the 3′ UTR of CaMKIIα in mice was confirmed
by inserting a heterologous poly(A) site into the endogenous locus to prevent full length 3′ UTR
generation. This approach successfully prevented mRNAs from being localized in dendrites [63]. 3′

UTR-mediated localization of β-actin mRNAs in vivo was identified using a heterologous reporter
construct harboring different 3′ UTR sequences [52]. The heterologous reporter transgenic approach
showed that the 3′ UTR of β-actin directed expression of the reporter gene to axons [52]. Localization of
Bdnf alternative 3′ UTR mRNAs have been investigated in vivo through similar approaches as well (see
Section 4.2. Neural functions of long 3′ UTR mRNA isoforms). Recent technical advances in genome
editing have facilitated 3′ UTR deletions with increased precision and speed in animal models. For
example, the CRISPR-Cas9 (Clustered regularly interspaced short palindromic repeats-Cas9) system
was used to delete part of the mTOR (Mtor) 3′ UTR which was found to impair local translation in
dorsal root ganglion (DRG) neurons [64].

All these results suggest that 3′ UTRs impact the localization of transcripts in neurons in vitro
and in vivo. There is plenty of evidence for certain sequences to be sufficient for mRNA localization in
neurons, but there is still scant evidence that they are necessary. For example, although the 3′ UTR
of β-actin was found to be sufficient to drive expression of the reporter gene in axons [52], there are
still no published studies, to our knowledge, showing the impact of deleting zipcode sequences from
the genome on endogenous β-actin mRNA localization. Precise genome-editing techniques such as
CRISPR/Cas are now commonplace, so in the coming years we expect new studies that characterize
transgenic animals with deletions in single putative localization elements.

mRNA localizing elements can be more complicated than simply a primary nucleic acid
sequence. For instance, the spatial arrangement of localization elements within the 3′ UTR can
impact localization [65]. Localizing elements can also be comprised of structural features, such
as G-quadruplex motifs [66]. Although identification of RNA structural motifs is challenging, it
is becoming more feasible with the advent of new RNA structure probing methods that allow for
identification of RNA secondary structures in cells [67]. Perhaps the continued search for single
localization elements is misguided? It is emerging that multiple elements with redundant functions
within 3′ UTRs might impact localization—3′ end sequencing analysis of axons and cell bodies found
that multiple elements spanning across 3′ UTRs influence subcellular localization as opposed to
single regions [42]. It should also not be forgotten that localization elements can also be found in 5′

UTRs [68–70]. Perhaps many localized mRNAs rely on the presence of multiple, redundant localization
elements in both 5′ UTRs and 3′ UTRs.
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Box 2. Experimental approaches to study localization of mRNAs.

Fluorophore-labeled probe-based methods, such as fluorescence in situ hybridization (FISH), have improved
in situ detection of mRNAs in fixed neurons in term of resolution and sensitivity compared to previous in situ
hybridization methods, allowing single molecule RNA detection. Largely, two types of RNA FISH methods
are available. The first method is based on usage of multiple oligo probes each harboring a fluorophore
that target a same single RNA molecule (e.g., Stellaris®) [71]. The other type of method is based on
amplification of fluorescence signal by in situ biochemical reactions, such as rolling-circle based method
(e.g., OligoMix®) [72], branched DNA method (e.g., RNAscope®) [73], and primer-exchange reaction based
method (e.g., SABER-FISH) [74]. Advanced techniques, such as MCP-FP (MS2 bacteriophage coat protein-FP),
λN-FP (N protein of bacteriophage λ-FP), RCas9-FP (dead RNA Cas9-FP), and fluorescent RNA aptamer system,
have allowed visualization of RNA trafficking in live cells. Co-expression of a MCP-FP or λN-FP protein construct
and a reporter construct containing phage protein binding motif sequence upstream of 3′ UTR of interest allowed
tracking of mRNA localization in live cells [75,76]. Simultaneous delivery of RCas9-FP and target-specific single
guide RNA allowed binding of the Cas9 to the mRNA of interest and visual tracking of endogenous mRNAs in
live cells [77]. Use of fluorescent RNA aptamers, such as Peppers, has overcome dimensional limitations of FP
tethering techniques and enhances signal-to-noise ratios allowing improved in vivo tracking [78].
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How do 3′ UTR sequences in mRNAs drive localization to axons and dendrites? An attractive
hypothesis is that the mRNAs are actively transported. The trafficking of RBP–mRNA complexes,
referred as messenger ribonucleoproteins (mRNPs), has been associated with cytoskeleton-based
transport systems [79–81]. Motor proteins usually lack RNA-binding domains, thus, it is widely
considered that the localizing transcripts associate with RBPs and accessory proteins to indirectly
interact with motor proteins [80]. ZBP1 (which interacts with the β-actin 3′ UTR) has been reported
to interact with the motor protein KIF5A (kinesin heavy chain isoform 5a) and Myosin Va [82,83].
ZBP1-containing mRNPs mediate dynamic movement and dendritic localization of β-actin mRNA [56].

Alternatively, an mRNA might be found in a particular subcellular compartment because of
passive diffusion and long half-life conferred by 3′ UTR–RBP interactions [84]. A transcriptome-wide
assessment of mRNA stability in somata and neuropil compartments of rat Cornu Ammonis (CA1)
region suggested that neuropil localized 3′UTR isoforms have longer half-life compared to non-localized
3′ UTR mRNA isoforms [42]. This might be, at least partially, due to increased GC-content and predicted
secondary structure elements in neuropil localized RNAs which confer structural stability [42]. The
same study also has revealed that neuropil localized 3′ UTR mRNA isoforms are enriched for neuronal
RBP motifs that have been associated with mRNA localization [42]. RBP-mediated selective transport
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and mRNA stability-dependent localization mechanisms need not be mutually exclusive since many
RBPs are multi-functional and could mediate both active localization and stability.

3.3. RNA Granules

There are emerging roles for RNA granules in neuronal mRNA localization and translation
control [85]. RNA granules are membraneless intracellular structures that possess liquid-like properties
to support their dynamic organization and serve as a means of compartmentalizing and accelerating
biochemical reactions [86–88]. These granule structures are self-assembled through liquid–liquid phase
separation. One of the components that facilitates liquid–liquid phase transition and formation of
granules are proteins that contain low complexity domains. These domains induce liquid–liquid
phase transition through self-aggregation (recently reviewed in [89,90]). Thus, it has been proposed
that RBPs with low-complexity domains might control both selective recruitment of RNAs and the
formation of RNA granules through phase transition [91,92]. For instance, FMRP (fragile X mental
retardation protein) and FUS (fused in sarcoma) proteins induce phase transition and translational
control in mRNPs [93,94]. An interesting characteristic of mRNA components of these granules is that
these mRNAs contain significantly longer 3′ UTR sequences and are enriched in binding motifs for the
granule RBPs [91], suggesting 3′ UTR contents impact RNA granule dynamics.

A recent study showed that protein constituent of RNA granules also mediates the interaction
between RNA granules and moving membranous organelles to drive microtubule-dependent
long-distance transport of RNAs. Annexin A11 is a protein containing a low-complexity domain
and membrane binding domain. Through these domains, Annexin A11 mediates association of RNA
granules with lysosomes to control RNA localization in neurons [95]. In vivo functional roles in
neurons for phase transition have recently been uncovered. TIAR-2 (TIA-1/TIAL RNA binding protein
homolog), an RNA-binding-domain-containing TIA family protein found in Caenorhabditis elegans,
was found to mediate phase transitioning and formation of liquid-like granules. Mutating prion-like
domains in TIAR-2 mitigates granule formation and impaired axon regeneration [96]. How RNA
granules regulate gene expression and impact nervous system functions will certainly be an area of
intense investigation for years to come.

4. Alternative Polyadenylation Generates Long 3′ UTRs in Neurons

Alternative polyadenylation (APA) is an RNA processing mechanism that allows the generation
of alternative mRNAs with distinct 3′ ends from a single gene through the selective usage of alternative
polyadenylation (poly(A)) sites. In mammals, at least 50–70% of protein-coding genes undergo APA,
and many of these alternative 3′ UTRs show tissue-specificity of expression [97–99]. APA can be
largely classified into two categories (Figure 2). One produces alternative protein isoforms through
internal/intronic polyadenylation or through alternative last exon splicing choices. The other type of
APA occurs within the 3′ UTR via tandem poly(A) sites and generates transcript isoforms that harbor
the same coding sequences (CDS) and thus only differing in their 3′ UTR content.

Early microarray studies and work on individual genes revealed a bias among brain tissues for
expressing higher levels of long versus short 3′ UTR mRNA isoforms for genes expressed in multiple
tissues [100–102]. Later studies using RNA-Seq revealed the transcriptome-wide catalog of these
neural-specific 3′ UTR lengthening events (see Box 3 for bioinformatics methods to quantify alternative
3′ UTR usage). In Drosophila, nearly 400 genes were found to express previously unannotated long 3′

UTR isoforms in head samples and late stage embryos [103]. Some of these transcripts had 3′ UTRs of
staggering length, dwarfing the length of the protein-coding region of the mRNA. For example, the
long 3′ UTR of mei-P26 was found to express an 18.5 kb long 3′ UTR [103]. Investigation of long 3′

UTRs in neural tissues of mouse and human yielded similar findings of neural-specific enhancement of
long 3′ UTRs with thousands of previously unannotated long 3′ UTR isoforms being identified [104].

A bias for longer 3′ UTRs in the nervous system appears to be attributed to expression in neurons
as opposed to other neuronal cell types such as astrocytes, microglia, and oligodendrocytes [105–107].
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This raises two questions: (1) What is the mechanism that leads to longer 3′ UTRs in neurons? (2) Do
these longer 3′ UTR mRNAs have specific neural functions?
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Figure 2. Types of alternative polyadenylation (APA). APA generates alternative 3′ ends for a given
gene. Tandem 3′ UTR APA is the most common and does not cause changes in protein-coding regions,
whereas other APA events that are sometimes linked to regulated alternative splicing can result in
alternative last exons that have different coding and 3′ UTR content. pA, poly(A) site.

Box 3. Quantification of alternative 3′ UTR mRNA isoforms using standard RNA-Seq data.

Although RNA-Seq has become a routine procedure, the identification and quantification of alternative 3′

UTR isoforms using RNA-Seq data presents many challenges. Primarily, two types of detection algorithms
are currently used: (1) de novo detection of APA isoforms based on the read density changes and (2) reliance
on annotated or reported 3′ ends. De novo detection-based methods do not rely on 3′-end sequencing data
or previously reported 3′ ends, thus providing unique advantages. Change-Point is a 3′ UTR APA detection
software that identifies APA events between two conditions based on read density changes [108]. It compares
the ratio of mapped reads in the common 3′ UTR region and the ratio of the extended 3′ UTR region between
two samples and the identification of exact APA site is based on the location where ratio change is the maximum.
Dynamic analyses of alternative polyadenylation from RNA-Seq (DaPars) is a de novo 3′ UTR APA detection
software that uses similar read density-based approach but quantifies dynamic APA events between two or more
experimental conditions and allows identification of novel long 3′ UTRs [109]. In contrast to the two previous
methods, APAtrap allows identification of multiple APA sites. First, novel 3′ UTR ends are identified by assessing
the coverage of RNA-Seq reads through the annotated 3′ end and further downstream regions. Once the most 3′

end is defined as the distal poly(A) site, then potential proximal poly(A) sites are identified using the read density
changes [110]. Given the expansion of 3′ end databases, APA events can also be reliably detected using methods
based on annotated Poly(A) sites. Quantification of APA (QAPA) estimates the expression of alternative 3′ UTR
isoforms using annotated poly(A) sites. First, it builds a reference library comprising all the reported 3′ UTR
sequences. Then, RNA-Seq reads are mapped to the 3′ UTR library using alignment-free algorithm. APA usage is
quantified by the ratio of isoform expression to the sum of the expression of all detected 3′ UTR isoforms from its
cognate gene. This method identifies multiple APA events and is able to process multiple datasets at a time [105].
Significance analysis of alternative polyadenylation using RNA-Seq (SAAP-RS) is another method based on
Poly(A) database. The 3′ UTR regions are split into upstream (UP) and downstream (DN) regions. RNA-Seq
read distribution is assessed in the UP and DN region to determine the relative expression difference [107].

4.1. APA Mechanisms Underlying Long 3′ UTR Expression in Neurons

The mRNA 3′ end processing machinery includes cleavage and polyadenylation specificity factors
(CPSF), cleavage stimulation factors (CstF), cleavage factors (CF I and II), poly(A)-binding protein
(PABP), poly(A) polymerase (PAP), and RNA polymerase II (Pol II), among other proteins [111]. One
of the mechanisms that mediates APA selection involves these 3′ end processing factors. APA patterns
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have been associated with the expression levels of CstF64 [112–114] and CFI [115,116]. These studies
suggested that the concentration of the specific processing factors might define the usage of poly(A)
signals leading to the cell/tissue-specific 3′ UTR expression patterns. The speed or pausing of Pol II
can also influence APA, by providing sufficient time to recruit 3′ end processing factors and to process
the poly(A) site [117]. A slower RNA Pol II mutant showed preferential selection of proximal poly(A)
sites in Drosophila [118]; however, this effect was limited to non-neural tissues, suggesting a different
regulatory mechanism at play in neurons [119].

RBPs can influence APA by competing with the cleavage and polyadenylation machinery for
access to the poly(A) site. One of the most striking examples of RBP regulating 3′ UTR extension is the
neural-specific RBP, Elav (embryonic lethal abnormal visual protein) in Drosophila. Drosophila embryos
lacking Elav were found to lack long 3′ UTR isoforms for several genes, and the ectopic expression
of Elav in non-neural tissues resulted in mRNAs with longer 3′ UTRs [120]. A putative mechanism
for this regulation is through Elav binding to the proximal poly(A) site, thus competing with 3′ end
processing, and causing the selection of a downstream poly(A) site [120] (Figure 3). In addition to
directly binding RNA, an additional role for Elav binding to DNA promoter sequences has been
demonstrated, and this might also be required for Elav regulation of APA in Drosophila neurons [121].
In mammalian neural tissues or neuron-like cells, the Elav homolog ELAVL3 (ELAV-like protein 3),
along with NOVA2 and FUS have been shown to impact 3′ UTR APA [122–124].
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Figure 3. Mechanisms of neural APA in Drosophila. The neuronal RBP Elav regulates APA by binding
to target mRNA proximal poly(A) site region to block the 3′ end processing machinery. This promotes
the usage of downstream distal poly(A) sites. Consequently, neuronal tissues of Drosophila selectively
express APA isoforms with longer 3′ UTRs. DSE, downstream element; AAUAAA is shown as a
representative polyA signal.

4.2. Neural Functions of Long 3′ UTR mRNA Isoforms

Given the relevance of 3′UTRs in controlling the subcellular localization of mRNAs, one hypothesis
of long 3′ UTR function has been that it localizes due to the extra 3′ UTR sequences not found in
the short 3′ UTR counterpart. This phenomenon was first characterized for the long 3′ UTR mRNA
isoform of Bdnf. Loss of the long 3′ UTR mRNA isoform was found to impair dendritic localization of
the mRNA and cause defects in spine morphology and synaptic plasticity [125].

Based on the findings for Bdnf, groups have speculated that a function of the alternative long
3′ UTRs might be to impart subcellular localization. However, transcriptomic studies have failed to
identify a strong bias for long 3′ UTR isoforms to be preferentially localized compared to short 3′ UTR
counterparts [42,43]. Although many 3′ UTR isoforms showed subcellular localization bias, a significant
number of the alternative 3′ UTR transcripts reside in the same soma or neuropil subcompartment [42].
Another study actually found evidence that shorter 3′ UTR isoforms are more abundant than long 3′
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UTR isoforms in neurites of mouse embryonic stem cell (ESC)-derived neurons [126]. These results
suggest that long 3′ UTRs may not generally confer axon/dendrite localization.

5. Functional Relevance of Local Translation in Neurons

Regardless of the roles for alternative 3′ UTR isoforms, the notion of localized mRNAs undergoing
local translation in both dendrites and axons is now well appreciated [127,128]. Local translation
allows precise spatiotemporal regulation of protein expression. The specific role of localized mRNA
translation has been explored largely in three contexts: (1) neuron development and neurite outgrowth,
(2) synaptic function in mature neurons, and (3) neurite maintenance and regeneration.

Localization and translation of mRNAs in growing neurons has been explored especially for
cytoskeleton-related genes to support neurite pathfinding and asymmetrical organization. Tau, an
axonal microtubule-associated protein encoded by the Mapt gene, is one mRNA that localizes mainly
into axons, and its role in establishing neuronal polarity might rely on axonal translation [129–131].
Rhoa mRNAs axonally localize in embryonic DRG neurons in a 3′ UTR-dependent manner. During
cytoskeletal rearrangement of the growth cone, 3′ UTR-dependent local translation of RhoA is necessary
to induce growth cone collapse in response to guidance cue Sema3A (Semaphorin 3A) [132].

The ability of axonally or dendritically localized mRNAs to undergo local translation is critical for
synaptic functions. Synaptic plasticity, including homeostatic scaling, is a process that is dependent on
translation of axonal and dendritic proteins [133–136]. Synaptic concentration of ion channels, such as
Kv1.1 (Kcna1), is regulated through 3′ UTR-dependent localization and translation in hippocampal
neurons [137]. Synaptic rearrangement is another cellular process that takes advantage of local
translation. Matrix Metalloproteinase 9 (Mmp9), an endopeptidase that regulates the pericellular
environment, is localized in a 3′ UTR-dependent manner and undergoes translation when hippocampal
neurons are activated [138]. Neurogranin (Nrgn) undergoes local translation, during which FMRP
exerts regulation through its 3′ UTR, and plays a role in synaptic plasticity and memory encoding [139].
All these examples lead to an open conclusion that synaptic function requires local translation of
specific transcripts.

Local translation is relevant for neuron maintenance and regeneration—it is implicated in
retrograde signaling, mitochondrial function, and transcription factor activation related to the axon
maintenance and regeneration. Several proteins involved in injury-induced retrograde singling
pathways have been shown to be locally translated. Some examples include 3′ UTR mRNA isoforms
of Ranbp1 (Ran-specific binding protein 1) and Importinβ, which are involved in nuclear export
and import, respectively [59,140]. Mitochondria-related proteins also undergo local translation to
support axon maintenance [141]. Nerve growth factor-induced local translation of myo-inositol
monophosphatase-1 (Impa1) is critical for nuclear CREB (cyclic AMP-responsive element-binding
protein) activation and prevention of axonal degeneration [142]. Local protein synthesis and turnover
during the axon regeneration is considered to be regulated by various pathways dependent on mTOR,
p38 mitogen-activated protein kinase, and caspase [143]. mTOR regulates local translation of other
mRNAs through its own local translation in injured axons and regulates other retrograde injury
signaling molecules [64].

Multiple techniques have been developed in order to study local translation. Some of these
techniques rely on reporter or fusion protein system and some on metabolic or genetic labeling (see
Box 4). Studying local translation in vivo in animals, however, is more challenging. Some metabolic
labeling techniques, such as FUNCAT (fluorescent noncanonical amino acid tagging), BONCAT
(bio-orthogonal non-canonical amino acid tagging), and OP-Puro (O-propargyl-puromycin) labeling,
enable global tagging of the newly synthesizing proteins in vivo through specific diet or injection of
metabolic analogs [144–146]. These techniques, however, have not been applied to in vivo nervous
systems and do not allow transcript (3′ UTR isoform)- or gene-specific analysis but rather confirm
robustness of translation upon specific physiological contexts.
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Box 4. Studying local translation.

Investigating the mRNA sequences regulating mRNA localization and local translation has largely relied
on the use of fluorescent protein (FP) reporters. One of the caveats of using FP to study localized translation
is the ability to freely diffuse within cells. Myristoylation of FP (Myr-FP) anchors the protein with membrane
limiting its diffusion thus providing spatial information on the translating protein [147]. Technical advances
have allowed visualization of local translation at increased temporal resolution. The photoconvertible FP,
Kaede, fusion techniques have been used to study local translation. Kaede emits green fluorescence until it is
cleaved by UV-induction then it emits red fluorescence. Newly synthesized proteins can be detected by green
fluorescence after UV treatment [137]. One can label newly synthesizing proteins by pulse-chase application of
amino acid orthologs and click-chemistry through BONCAT or FUNCAT methods [144,145]. These methods
allow both purification of newly synthesized proteins and in situ visualization. Puromycin labeling-based
methods incorporate Puromycin, an analog of aa-tRNA, into newly synthesized proteins to inhibit amino acid
polymerization. Thus, puromycin conjugates can be used to visualize de novo protein synthesis [148]. Similarly,
puromycylation of a specific protein can be detected in situ by Puro-PLA (proximity ligation assay) through in
situ coincidental detection of anti-Puromycin and anti-POI antibodies [149]. Some techniques provide detection
power both for mRNAs and newly synthesized proteins allowing bonafide detection of localized translation,
although they still require multiple tagging strategies. Translating RNA Imaging by Coat protein Knock-off
(TRICK) methods takes advantage of phage coat proteins and its binding sequences, i.e., PP7 and MS2, to
visualize the displacement of PP7-GFP by translating ribosomes and co-detection of its cognate mRNA by
MS2-RFP [150]. Single-molecule Imaging of NAscent PeptideS (SINAPS) uses reporter constructs containing
multiple SunTag epitope for visualization of translation and MCP binding sequence for mRNA detection [151].
Similarly, nascent chain tracking (NCT) uses multiple FLAG epitope tags and antibody-based detection of
translating proteins and MCP system to visualize mRNAs [152].Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 11 of 24 
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6. Distinct Functions for Locally Synthesized Proteins

A straightforward way to envision the role of mRNA subcellular localization is that it can provide
rapid translation to generate a protein required in a spatial region of interest at a precise time. For
instance, translation of β-actin mRNAs localized into axonal growth cones increases the protein levels
in the same growth cone region to support axon guidance [153]. An emerging theme, however, is that
protein synthesis in specific subcellular regions exposes the newly synthesized proteins to distinct
proteomic repertories. In the case of the Npas4 gene, NPAS4 (neuronal PAS domain protein 4) proteins
synthesized from the dendrite-localized and soma-localized transcripts interact with distinct protein
partners (Figure 4A). Soma-localized Npas4 transcripts undergo de novo translation upon neuron
activation through L-type voltage-gated calcium channels (L-VGCCs) in the Stratum pyramidale layer
(soma region) of hippocampus. These soma-originated NPAS4 proteins associate with ARNT2 (aryl
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hydrocarbon receptor nuclear translocator 2) and act as nuclear transcription factors. This mechanism
is distinct from the heterodimerization of NPAS4 triggered by excitatory postsynaptic potential (EPSP)
induction. In the latter case, dendritically localized Npas4 and Arnt1 mRNAs undergo local translation,
form heterodimers, and are translocated together to the nucleus to bind transcription promoter or
enhancer regions [68]. This example not only distinguishes differential means of inducing NPAS4
expression upon distinct neuronal signals but also emphasizes the importance of compartmentalization
of mRNAs and its translation to modulate the protein–protein interactome.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 13 of 24 
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Figure 4. Newly emerging roles for 3′ UTRs. (A,B) mRNA 3′ UTRs can serve as scaffolds for the
interactome of their host proteins. (C) 3′ UTRs can serve a non-coding role as a sponge for miRNAs.
(D) Translationally inactive 3′ UTRs mRNA isoforms can impact internalization of receptor proteins
and influence axon growth. (E) 3′ UTR sequences can act as mediators of alternative splicing on
the same pre-mRNA. (F) Isolated 3′ UTR fragments cleaved from mRNAs might regulate host gene
translation and/or encode peptides. AP, action potential; L-VGCC, L-type voltage-gated calcium
channel; EPSP, excitatory postsynaptic potential; NMDAR, NMDA receptor; SO, stratum oriens; SP,
stratum pyramidale; SR, stratum radiatum; CA1, cornus ammonis 1.

Alternative 3′ UTRs can recruit RBPs to increase the likelihood that an RBP interacts with the
nascent protein as it is translated, thus impacting protein–protein interactions. For instance, the RBP



Int. J. Mol. Sci. 2020, 21, 3413 12 of 24

HuR (ELAV-like protein 1) interacts with the long 3′ UTR of CD47 (leukocyte surface antigen CD47) to
act as an intermediate scaffold mediating SET-dependent localization of CD47 proteins to the plasma
membrane [154]. Another example is the long 3′ UTR isoform of BIRC3 (baculoviral IAP repeat
containing 3) that, unlike the short isoform, recruits a unique set of proteins. The long 3′ UTR of BIRC3
recruits a protein complex composed by IQGAP1 (IQ motif containing GTPase-activating protein 1),
RALA (Ras-related protein), STAU1 (Staufen 1), and HuR, to promote their interaction with nascent
BIRC3 proteins [155]. Interestingly, the 3′ UTR isoforms do not differently drive mRNA or protein
localization, suggesting that the long 3′ UTR-dependent function of BIRC3 is not localization or local
translation. Instead, the long 3′ UTR of BIRC3 serves as a scaffold RNA to enhance protein–protein
interactions (Figure 4B). These studies were performed in non-neuronal cell lines—in the future it
will be interesting to see if analogous examples emerge from studies of alternative 3′ UTR isoforms
expressed in neurons.

7. Beyond Localization and Translational Control

In addition to the conventional roles for 3′ UTRs in regulating mRNA stability, localization, and
translational control, several new functions of 3′ UTRs have emerged in recent years.

7.1. Coding-Independent Functions of 3′ UTRs

Evidence is emerging that alternative 3′ UTR isoforms have functions in trans, independent from
influencing the protein-coding functions of the gene they are transcribed from. Ube3a1 is an essential
gene implicated in Angelman syndrome and Autism spectrum disorders. An activity induced Ube3a1
transcript is alternatively polyadenylated at intron 11 to encode an isoform lacking the catalytic domain.
This alternative 3′ UTR isoform is synaptodendritically localized. Although knockdown of Ube3a1
impaired dendritic complexity and spine morphology, this was not due to the protein-coding capacity
of the transcript. Ube3a1 RNA containing a frameshift mutation or Ube3a1 3′ UTR alone was able to
fully rescue the dendritic phenotypes acting as endogenous miRNA sponge [156] (Figure 4C).

Tp53inp2 is a transcript highly enriched in axons of sympathetic neurons that has a protein
coding-independent function. Tp53inp2 is able to translate into proteins in other tissues, but it is
translationally suppressed in neurons due to its long 3′ UTR, suggesting its unique role as a non-coding
mRNA in sympathetic neurons. Despite the lack of translation, Tp53inp2 mRNA is involved in TrkA
(tropomyosin-related kinase receptor A) receptor internalization and downstream signaling, and
phenotypes can be rescued by non-translatable Tp53inp2 transcript [157] (Figure 4D).

The precise molecular mechanisms underlying non-coding roles for alternative 3′ UTR isoforms
remain to be illuminated. More examples should continue to emerge given the new feasibility of isoform
specific deletions using CRISPR-Cas9 technologies, and isoform specific knockdown approaches such
as short hairpin RNAs (shRNAs), antisense oligonucleotides, and CRISPR-Cas13 [158].

7.2. Coordination of Alternative Splicing and APA

Potential crosstalk between alternative splicing and APA has been suggested in the past
since several RBPs have documented roles in regulating both of these pre-mRNA processing
events [120,123,159]. An example of a 3′ UTR isoform being associated with a particular alternative
splicing event of the same gene has been recently discovered. In Drosophila, the expression of the long
3′ UTR isoform of the Dscam1 gene was found to be coupled to the skipping of an upstream exon.
The neuronal RBP Elav was found to induce both the expression of the long 3′ UTR and skipping of
an upstream exon. Long-read sequencing on the Oxford Nanopore MinION platform demonstrated
the tight connection between the alternative splicing and APA events—long 3′ UTR mRNAs in adult
heads were found to always skip the upstream exon. Moreover, shRNA-mediated knock-down of exon
skipping transcripts abolished the long 3′ UTR isoform of Dscam1 and vice-versa. This connectivity of
an exon skipping event and an alternative long 3′ UTR could be explained simply by the co-regulation
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by Elav. However, it was found that Elav could only exert its influence on the exon skipping event
when the Dscam1 long 3′ UTR was present [160] (Figure 4E).

What is the mechanism of 3′ UTR-mediated regulation of exon skipping? It is possible that the 3′

UTR acts as a splicing factor delivery system. In such a model, intramolecular interactions between
upstream introns and the 3′ UTR might occur, allowing RBPs bound to the 3′ UTR to interact with
upstream splice sites. Or perhaps 3′ UTR sequences bind to upstream intronic sequences that are
important for splicing, and block association of spliceosome components? Future work is needed
to determine if coupling of 3′ UTR choice to upstream alternative splicing events is widespread and
whether it occurs in human neurons. To date, widespread coupling of 3′ UTR selection to alternative
exons have not been widely identified because of the short (<150 nt) read length of conventional
RNA-Seq approaches. The emergence of new long-read sequencing platforms and library preparation
strategies could provide the opportunity to uncover global coordination of APA and alternative
splicing [161,162].

7.3. Isolated 3′ UTR Fragments

The presence of 3′ UTR fragments that are separated from the protein-coding regions of the mRNA
has been identified in a handful of studies over the past decade (Figure 4F). Capped analysis of gene
expression (CAGE)-seq and full-length cDNA-seq identified several 3′ UTR-derived RNAs which are
not directly originated from transcription by RNA Pol II promoters [163]. Additionally, in situ imaging
approaches have shown a divergence in 3′ UTR to CDS expression ratios across tissues suggesting cell-
and tissue-specific expression of isolated 3′ UTRs [163,164]. A potential role in regulating host gene
translation has been suggested based on the abundance of 3′ UTR fragments being inversely correlated
with protein levels from the same gene [164].

How are isolated 3′ UTR fragments generated? It has been suggested that some are cleaved
post-transcriptionally in the cytoplasm [165]. A recent study suggested that post-transcriptional
cleavage of Impa1 transcript occurs at an internal poly(A) site to generate 3′ UTR fragments in the
cytoplasm [166]. The generation of the 3′ UTR fragments appeared to occur in axons of rat cervical
ganglion neurons, but not in cell bodies [166]. In this case, 3′ UTR cleavage possibly involves the
RNA surveillance machinery, as evidenced by its reliance on UPF1 [166]. Some 3′ UTR fragments are
associated with ribosomes [164,167] and some have the potential to encode peptides [167].

Clearly, further work is needed to identify the precise mechanism(s) responsible for the generation
of isolated 3′ UTR fragments. What are the molecular features of the 5′ and 3′ ends of cleaved 3′

UTRs? New library preparation strategies are needed to specifically sequence these isolated fragments.
The functions of isolated fragments in the nervous system remain completely unknown, but with
insight into their biogenesis and sequence features, genetic approaches to investigate their functions
will surely emerge.

8. 3′ UTR-Associated Neurological Disorders and Behavior

Polymorphisms in 3′ UTRs are associated with neurological disorders and behavior. For example,
the variable number of tandem repeat (VNTR) polymorphism in the 3′ UTR of the dopamine transporter
(DAT1) has been associated with eating and substance use disorders, and symptom severity in Tourette
syndrome [168,169]. A single nucleotide polymorphism (SNP; rs2304297) in the 3′ UTR of CHRNA6
gene, which encodes for a nicotinic acetylcholine receptor (nAChR) subunit, has been associated with
adolescent cigarette smoking, smoking cessation, and striatum volume [170,171]. A SNP in the 3′

UTR of the SNCA gene, which encodes α-synuclein, has also been associated with Parkinson’s disease.
Heightened levels of α-synuclein is pathogenic, thus whether the polymorphisms in the 3′ UTR of
SNCA is implicated in regulation of SNCA expression is of great interest [172–175]. Moreover, there
might be a role for 3′ UTRs variants in AD. In this regard, 3′ UTR polymorphisms in the APP gene have
been shown to target miR-147 and miR-20a [21]. Although the exact molecular mechanism by which
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this SNP has an effect on these behaviors is largely unknown, it is possible that these polymorphisms
impact the expression of the host gene by disrupting regulatory elements.

Impaired RNA granule assembly is associated with long repeat expansion disorders such as
myotonic dystrophy, amyotrophic lateral sclerosis, and spinocerebellar ataxia [176,177]. Repeat
expansion in 3′ UTRs can sequester RBPs into granules affecting their normal functions. For instance,
in the debilitating neuromuscular disorder Myotonic dystrophy type I, a repeat expansion in the 3′

UTR of the DMPK gene sequesters the splicing factor MBNL1 into nuclear RNA foci to prevent from
functioning in normal pre-mRNA processing [178,179].

In Huntington’s disease (HD), expression of many alternative 3′ UTR isoforms, among others the
huntingtin (HTT) gene, are altered. Profiling of alternative 3′ UTR isoforms has shown that HTT long
3′ UTR isoform specifically is altered in multiple tissues of HD patients [180]. The exact mechanism
whereby the altered abundance of the long 3′ UTR isoform of HTT contributes to HD pathology
remains elusive.

Strong evidence for the contribution of 3′ UTR mutations in neurological disease susceptibility
and pathogenesis is still limited. Increased whole genome sequencing depth and sensitivity, increased
numbers of sequenced individuals, and improved 3′ UTR annotations might lead to new discoveries
of medically relevant 3′ UTR SNPs. The use of massively parallel reporter assays to assess the role of
3′ UTR SNPs on translational control could be a useful approach to uncover whether particular 3′ UTR
SNPs have functional relevance, such as has been performed to identify human genetic variants that
influence splicing [181].

9. Conclusions

The 3′ UTR imparts post-transcriptional regulation by impacting mRNA stability, subcellular
localization, and translational control. APA controls the susceptibility of transcripts to this regulation,
and the functional roles for alternative 3′ UTR isoforms have been discovered for only a handful
of genes. New emerging mechanisms suggest that 3′ UTRs have roles in modulating the protein
interactome of newly translated proteins and coordinating alternative splicing. Given the limitations of
some neuronal-like immortalized cultured systems, we call for an increased emphasis on performing
3′ UTR functional studies in primary neuronal culture and whole organisms.
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