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Introduction
Monocyte chemotactic protein-1 (MCP-1) is a member of the 
chemokine family.1 Initially, MCP-1 was identified as a potent 
chemotactic factor for recruiting monocytes to the site of infec-
tion for tissue repair.2 However, growing evidence has shown 
that MCP-1 is involved in various diseases including cancer.

An elevated expression of MCP-1 is related to malignant 
aggression in cancer patients. For example, an increase of MCP-1 
in serum is associated with advanced tumor stage and lymph 
node involvement in breast cancer.3 Elevated expression of 
MCP-1 is associated with advanced prostate cancer4 and is 
related to colorectal metastasis to liver in colorectal cancer.5 
Findings from laboratory studies are consistent with and support 
these clinical observations. Silencing of Mcp-16 or stable Mcp-1 
knockout7 reduces mammary tumorigenesis and metastasis in the 
MDA-MB-231 breast cancer model. Depletion of MCP-1 
reduces mammary tumorigenesis of triple negative breast cancer8 
and spontaneous metastasis of Lewis lung carcinoma9 in mice.

Adipose tissue produces many chemokines including MCP-
1.10,11 The expression of MCP-1 gene is higher in adipose tissue 
of obese patients compared to lean controls.10 Adipose MCP-1 
production is positively correlated with body adiposity and body 
mass index.12 Obesity is related to a greater risk of recurrence 
and poor prognosis in breast cancer13,14 and prostate cancer 

patients15,16 when compared to patients with normal body 
weights. Recent animal studies have shown that adipose-derived 
MCP-1 contributes to mammary tumorigenesis in MMTV-
PyMT mice17,18 and pulmonary metastasis of Lewis lung carci-
noma in C57BL/6 mice.19

The MCP-1 is involved in metabolic homeostasis.20-22 
Malignant cancer demands high energy and nutrient uptake and 
accelerated anabolism and catabolism to satisfy its rapid progres-
sion. We reported that the high-fat diet enhances pulmonary 
metastasis from a subcutaneous tumor in mice, evidenced by 
increases in the number and size of metastases form in the lungs, 
and that Mcp-1 knockout reduces the high-fat diet-enhanced 
spontaneous metastasis.9 To understand the role of MCP-1 in 
metabolism in the presence of metastasis, we conducted an untar-
geted metabolomic analysis of primary metabolism on plasma 
samples collected from the aforementioned study showing that 
Mcp-1 knockout reduces the high-fat diet-enhanced metastasis.9

Materials and Methods
Animals and diets

Four to five-week-old male Mcp-1 knockout mice (Mcp-1-/-, 
B6.129S4-Ccl2tm1Rol/J) on a C57BL/6J background and 
C57BL/6J wild-type (WT) mice were purchased from  
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The Jackson Laboratory (Bar Harbor, ME, USA). Mice were 
housed in a pathogen-free room (light-dark cycle: 12/12 hours, 
room temperature: 22°C ± 1°C). A modified AIN93G formula-
tion providing 16% or 45% of energy from corn oil (hereafter 
referred to as AIN93G diet or high-fat diet, HFD) was used in 
this study.9 Mice had free access to their diets and deionized 
water; they were weighed weekly.

Lewis lung carcinoma cell line

The Lewis lung carcinoma (LLC) cell line23 was obtained 
from Dr. Pnina Brodt (McGill University, Montreal, Quebec, 
Canada). The cells were cultured with RPMI-1640 medium 
supplemented with 10% heat-inactivated fetal bovine serum 
and maintained in a humidified atmosphere of 5% CO2 in air 
at 37°C. Cells were free of mycoplasma (Hoechst DNA stain-
ing and direct culture tests performed by American Type Cell 
Collection, Manassas, VA, USA).

Experimental design

The Institutional Animal Care and Use Committee of the 
Grand Forks Human Nutrition Research Center approved this 
study. The procedures followed the National Institutes of 
Health Guidelines for the Care and Use of Laboratory 
Animals.24

The study design was previously reported.9 Briefly, mice 
(n = 28 per group for WT mice, n = 21 per group for Mcp-1-/- 
mice) were fed the AIN93G diet or HFD for 7 weeks before 
they were subcutaneously injected with 2.5 × 105 LLC cells 
into the lower dorsal region. The resulting subcutaneous tumor 
was resected 11 days later when it was approximately 1 cm in 
diameter. All surgeries for the study were completed within 
3 days. Mice were then maintained on their respective diets for 
additional 10 days. At termination, lungs were harvested to 
assess the extent of metastasis. Plasma was collected for bio-
marker and metabolomic analyses.

Metabolomic analysis

Twelve plasma samples from each WT group and 10 from 
each Mcp-1-/- group were randomly chosen for metabolomic 
analysis. The chosen sample size was restricted by the availabil-
ity due to the use of plasma for biomarker analysis in the origi-
nal publication.9 The metabolomic analysis25,26 was performed 
at the West Coast Metabolomics Center (University of 
California-Davis Genomic Center, Davis, CA, USA). Plasma 
samples were prepared by silylation methyloximation and ana-
lyzed by gas chromatography time-of-flight mass spectrometry 
(GC-TOF-MS) for untargeted metabolomics of primary 
metabolism. Obtained data were processed by the BinBase 
database at the West Coast Metabolomics Center (University 
of California-Davis Genomic Center).27 Quantifier ion peak 

heights of the identified compounds were normalized to the 
sum intensities of all known compounds. Unidentified peaks as 
well as those representing less than 0.02% of total signal inten-
sity were excluded from statistical analysis. Additional com-
pounds were excluded if they could not be identified as 
metabolic intermediates or endpoints common to mammalian 
metabolism based on the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) Database or the Human Metabolome 
Database.28-30

Statistical analyses

A 2-way analysis of variance was used to evaluate effects of 
diet (AIN93G vs. HFD), genotype (WT vs. Mcp-1-/-), and 
their interactions on changes in plasma metabolites in mice 
bearing LLC metastases, with the false discovery rate- 
corrected P values reported. Values from treatment groups 
were normalized as fold changes in comparison to WT mice 
fed the AIN93G diet. Results are reported as means ± stand-
ard error of the mean (SEM). SAS 9.4 (SAS Institute, Cary, 
NC, USA) was used for the analyses. Differences with P ⩽ .05 
are considered significant.

Metabolomic analyses were performed by using 
MetaboAnalyst 5.0 (McGill University, Sainte Anne de 
Bellevue, Quebec, Canada). Data were scaled by the Pareto scal-
ing method and analyzed by the sparse partial least square-dis-
criminant analysis (sPLS-DA).31,32 The hierarchical clustering 
heatmap analysis was performed by using the normalized peak 
intensity with Euclidean distance for distance measurement 
and the Ward error sum of squares hierarchical clustering method 
for Cluster algorithm. Group averages for the 25 metabolites 
that differed most among the 4 groups were reported.

Pathway analysis of alterations in metabolic pathways by 
LLC metastasis was performed by using the pathway library 
for Mus musculus according to the KEGG database33,34 
(MetaboAnalyst 5.0, McGill University). Pathway enrichment 
analysis coupled with the pathway topology analysis was con-
ducted to identify altered metabolic pathways, with the Holm-
adjusted P values reported.35 Network analysis was performed 
to map the functional relationships of the identified metabo-
lites by using the KEGG global metabolic network analysis 
and the metabolite-metabolite interaction network analysis 
(MetaboAnalyst 5.0, McGill University). Differences with 
P ⩽ .05 are considered significant.

Results
Pulmonary metastasis

All mice subcutaneously injected with LLC cells form a pri-
mary tumor at the injection site and metastatic nodules in the 
lungs.9 The Mcp-1 knockout mitigates lung metastasis, evi-
denced by decreases in the number and size of metastases in 
the lungs.9
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Metabolomic analysis

We identified 133 compounds (Supplemental Table 1) from 
498 discrete signals determined by the GC-TOF-MS. Eighty-
seven of these 133 compounds (Supplemental Table 2) met the 
criteria for statistical analysis. These 87 metabolites were cate-
gorized into 4 groups related to amino acid, energy, lipid, and 
vitamin and nucleotide metabolism and were presented in 
Tables 1 to 4, respectively. Thirty-six of these metabolites dif-
fered significantly among the 4 groups, including 27 between 
the AIN93G diet and HFD, 13 between WT and Mcp-1-/- 
mice, and one interaction between the genotype and diet 
(Tables 1–4).

The hierarchical clustering heatmap analysis provides intui-
tive visualization of the results. The 25 metabolites that dif-
fered most among the 4 dietary groups were grouped into 5 
clusters (Figure 1). Cluster 1 included branched-chain amino 
acids (BCAA) valine and isoleucine which were higher in WT 
mice fed the AIN93G diet compared to other groups. Cluster 
2 included myristic acid (14:0), 1,5-anhydroglucitol, palmit-
oleic acid (16:1), arachidonic acid (20:4), cholesterol, palmitic 
acid (16:0), and stearic acid (18:0). These metabolites were 
relatively higher in AIN93G-fed mice than in HFD-fed mice, 
particularly AIN93G-fed Mcp-1-/- mice. In cluster 3, nine 
metabolites were elevated in HFD-fed mice, regardless of gen-
otype. These included allantoic acid, glucose, pseudouridine, 
glycine, pyruvic acid, myoinositol, serine, galactitol, and methyl 
O-D-galactopyranoside. In cluster 4, 3 metabolites (glyceric 
acid, citric acid, and succinic acid) were elevated in Mcp-1-/- 
mice, regardless of diet. In cluster 5, four metabolites fucose, 
sorbitol, ribose, and oxoproline were elevated in HFD-fed 
Mcp-1-/- mice compared to other groups. These findings 
showed that the HFD and Mcp-1 knockout altered the expres-
sion of metabolites in mice bearing LLC metastases.

The sPLS-DA scores plot showed separation by the HFD 
and Mcp-1 knockout among the 4 groups (Figure 2). Along the 
x-axis, component 1 showed a separation between the AIN93G 
diet and HFD (Figure 2A). Along the y-axis, component 2 
showed a separation between WT and Mcp-1-/- mice fed the 
AIN93G diet, but not mice fed the HFD (Figure 2A).

The loadings plot showed the metabolites identified by the 
sPLS-DA model for components 1 and 2. The loadings plot 
for component 1 identified energy metabolites (1,5-anhydro-
glucitol, galacitol, glucose, methyl-O-D-galactopyranoside, 
myoinositol, and pyruvic acid) and fatty acids (palmitoleic acid, 
myristic acid, palmitic acid, and stearic acid) as the top 10 
major determinants of separation (Figure 2B). The loadings 
plot for component 2 showed that energy metabolites (citric 
acid, glyceric acid, succinic acid, fucose, fumaric acid, isocitric 
acid, α-ketoglutarate, glucuronic acid, and parabanic acid) and 
amino acid valine were the top 10 major determinants of sepa-
ration (Figure 2C).

Pathway analysis

Pathway analysis was conducted to assess metabolic pathways 
altered by LLC metastases. The identified metabolites were 
mapped into 56 metabolic pathways (Supplemental Table 3) 
according to the KEGG database.34 Six pathways were altered 
significantly by LLC metastases. These 6 pathways were 
mainly related to amino acid and energy metabolism, namely 
aminoacyl-tRNA biosynthesis, arginine biosynthesis, alanine, 
aspartate, and glutamate metabolism, BCAA biosynthesis, 
glyoxylate and dicarboxylate metabolism, and citrate cycle 
(Table 5, Figure 3).

Network analysis

The network analysis highlights potential functional relation-
ships among the metabolites identified. Regardless of diet, the 
genotype difference significantly altered 8 metabolic pathways 
between WT and Mcp-1-/- mice. These pathways were the cit-
rate cycle, alanine, aspartate, and glutamate metabolism, BCAA 
biosynthesis, pantothenate and CoA biosynthesis, pentose 
phosphate pathway, glyoxylate and dicarboxylate metabolism, 
BCAA metabolism, and glycerolipid metabolism (Table 6). 
Additionally, diet, regardless of genotype, significantly altered 8 
metabolic pathways between the AIN93G diet and HFD. 
They were glycine, serine, and threonine metabolism, glycoly-
sis/gluconeogenesis, BCAA biosynthesis, galactose metabo-
lism, fatty acid synthesis, glyoxylate and dicarboxylate 
metabolism, glutathione metabolism, and alanine, aspartate, 
and glutamine metabolism (Table 6). The functional relation-
ship of the identified metabolites for genotype and diet are pre-
sented in Figure 4A and B, respectively.

Discussion
Lewis lung carcinoma is an aggressive murine carcinoma that 
metastasizes spontaneously to the lungs.9,23 The present study 
showed that amino acid metabolism is a major metabolic alter-
nation in LLC-bearing mice. This is evidenced by the fact that 
of the 6 metabolic pathways identified by the pathway analysis 
that are altered significantly, 4 are related to amino acid metab-
olism. The aminoacyl-tRNA biosynthesis pathways feature a 
group of enzymes that are responsible for aminoacylation of 
amino acids with a tRNA to form their respective amino acid-
tRNA in the first step of protein translation.36 The other 3 
pathways are arginine biosynthesis, alanine, aspartate, and glu-
tamate metabolism, and BCAA biosynthesis pathways.

Network analysis showed alterations in both BCAA bio-
synthesis and metabolism pathways when compared Mcp-1-/- 
mice to WT mice. The heatmap analysis showed that both 
valine and isoleucine in plasma were lower in Mcp-1-/- mice, 
particularly those fed the HFD. BCAAs are essential amino 
acids and building blocks for proteins. They activate the 
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Table 1. Plasma metabolites related to amino acid metabolism in Lewis lung carcinoma-bearing wild-type (WT) and Mcp-1-/- mice fed the AIN93G 
or high-fat diet (HFD).

AIN93G WT AIN93G Mcp-1-/- HFD WT HFD Mcp-1-/- DIET p GENE p DIET × GENE p

N-acetylglycine 1.00 ± 0.16 1.12 ± 0.22 1.03 ± 0.21 0.74 ± 0.15 .34 .64 .28

Alanine 1.00 ± 0.07 0.89 ± 0.10 1.08 ± 0.07 1.14 ± 0.07 .04 .77 .28

Aminomalonate 1.00 ± 0.09 1.20 ± 0.09 1.26 ± 0.09 1.10 ± 0.14 .46 .81 .09

Asparagine 1.00 ± 0.10 0.95 ± 0.06 1.12 ± 0.07 1.15 ± 0.08 .06 .86 .63

Citrulline 1.00 ± 0.05 0.94 ± 0.06 1.13 ± 0.05 1.02 ± 0.06 .06 .13 .71

Creatine 1.00 ± 0.06 0.96 ± 0.10 1.03 ± 0.09 0.87 ± 0.15 .75 .32 .54

Creatinine 1.00 ± 0.06 0.95 ± 0.09 1.07 ± 0.10 0.98 ± 0.13 .60 .46 .85

Cysteine 1.00 ± 0.11 0.92 ± 0.14 1.26 ± 0.10 1.04 ± 0.12 .12 .21 .56

Cystine 1.00 ± 0.20 1.04 ± 0.15 1.03 ± 0.09 1.07 ± 0.22 .85 .82 .98

Glutamic acid 1.00 ± 0.11 1.04 ± 0.14 1.04 ± 0.09 0.99 ± 0.13 .96 .97 .69

Glutamine 1.00 ± 0.12 1.17 ± 0.22 1.27 ± 0.15 1.09 ± 0.14 .57 .97 .27

Glycine 1.00 ± 0.07 0.92 ± 0.09 1.12 ± 0.05 1.27 ± 0.12 <.01 .70 .15

Histidine 1.00 ± 0.10 1.07 ± 0.12 1.14 ± 0.11 1.03 ± 0.12 .68 .89 .43

Indole-3-lactate 1.00 ± 0.07 1.21 ± 0.11 1.29 ± 0.12 1.12 ± 0.07 .30 .87 .06

Isoleucine 1.00 ± 0.05 0.92 ± 0.05 0.91 ± 0.05 0.78 ± 0.05 .03 .04 .61

Leucine 1.00 ± 0.08 0.95 ± 0.04 0.92 ± 0.04 0.86 ± 0.05 .15 .33 .95

Lysine 1.00 ± 0.09 1.15 ± 0.11 1.11 ± 0.11 1.10 ± 0.10 .81 .50 .44

Methionine 1.00 ± 0.07 1.00 ± 0.09 1.20 ± 0.06 1.08 ± 0.09 .08 .41 .45

Methionine sulfoxide 1.00 ± 0.08 0.99 ± 0.13 1.05 ± 0.07 1.00 ± 0.07 .75 .75 .84

Ornithine 1.00 ± 0.08 1.04 ± 0.10 1.17 ± 0.11 1.11 ± 0.09 .22 .93 .58

Oxoproline 1.00 ± 0.06 1.04 ± 0.04 1.08 ± 0.04 1.20 ± 0.06 .03 .14 .46

Phenylalanine 1.00 ± 0.05 0.97 ± 0.04 0.97 ± 0.05 0.91 ± 0.03 .28 .33 .73

Proline 1.00 ± 0.13 0.87 ± 0.17 1.39 ± 0.24 0.95 ± 0.24 .25 .17 .46

Serine 1.00 ± 0.07 0.96 ± 0.11 1.18 ± 0.05 1.23 ± 0.04 <.01 .99 .53

Trans-4-hydroproline 1.00 ± 0.06 1.02 ± 0.06 1.06 ± 0.05 1.20 ± 0.07 .04 .19 .30

Threonine 1.00 ± 0.06 1.05 ± 0.12 1.24 ± 0.06 1.20 ± 0.10 .02 .98 .60

Tryptophan 1.00 ± 0.11 1.08 ± 0.09 1.13 ± 0.09 1.06 ± 0.11 .58 .99 .45

Tyrosine 1.00 ± 0.07 0.98 ± 0.10 1.15 ± 0.09 1.11 ± 0.10 .13 .76 .90

Urea 1.00 ± 0.13 1.08 ± 0.17 1.02 ± 0.16 1.16 ± 0.17 .74 .49 .85

Valine 1.00 ± 0.05 0.87 ± 0.03 0.93 ± 0.03 0.82 ± 0.05 .18 <.01 .79

2-aminobutyric acid 1.00 ± 0.09 1.00 ± 0.15 1.27 ± 0.08 1.07 ± 0.10 .11 .32 .32

2-hydroxybutanoic acid 1.00 ± 0.17 1.41 ± 0.35 0.94 ± 0.13 1.68 ± 0.56 .74 .08 .60

2-ketoisocaproic acid 1.00 ± 0.10 0.91 ± 0.08 1.00 ± 0.07 0.83 ± 0.06 .64 .11 .65

Values of treatment groups are normalized to that of the AIN93G WT group. Values are means ± SEM with false discovery rate-adjusted p values (n = 12 per group for WT 
mice, n = 10 per group for Mcp-1-/- mice).
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Table 2. Plasma metabolites related to energy metabolism in Lewis lung carcinoma-bearing wild-type (WT) and Mcp-1-/- mice fed the AIN93G or 
high-fat diet (HFD).

AIN93G WT AIN93G Mcp-1-/- HFD WT HFD Mcp-1-/- DIET p GENE p DIET × GENE p

α-Ketoglutarate 1.00 ± 0.08 1.24 ± 0.15 1.02 ± 0.08 1.29 ± 0.22 .79 .07 .91

Citric acid 1.00 ± 0.03 1.19 ± 0.05 0.98 ± 0.04 1.15 ± 0.10 .64 <.01 .84

Erythritol 1.00 ± 0.10 1.24 ± 0.09 1.17 ± 0.11 1.27 ± 0.05 .29 .09 .45

Fructose 1.00 ± 0.10 1.23 ± 0.10 0.88 ± 0.14 1.18 ± 0.09 .44 .02 .76

Fucose 1.00 ± 0.05 1.18 ± 0.06 1.14 ± 0.05 1.26 ± 0.06 .05 <.01 .52

Fumaric acid 1.00 ± 0.05 1.18 ± 0.09 0.94 ± 0.06 1.13 ± 0.10 .49 .01 .89

Glucose-1-phosphate 1.00 ± 0.11 1.15 ± 0.15 1.39 ± 0.12 1.46 ± 0.21 .02 .48 .77

Galactitol 1.00 ± 0.07 1.06 ± 0.10 1.38 ± 0.09 1.53 ± 0.08 <.01 .24 .60

Glycerol-α-phosphate 1.00 ± 0.05 1.05 ± 0.05 0.87 ± 0.08 0.86 ± 0.03 .01 .74 .68

Glucose 1.00 ± 0.08 1.19 ± 0.07 1.47 ± 0.08 1.49 ± 0.08 <.01 .20 .29

Glucuronic acid 1.00 ± 0.05 1.10 ± 0.08 1.03 ± 0.04 1.13 ± 0.07 .65 .11 .99

Isocitric acid 1.00 ± 0.03 1.14 ± 0.08 0.95 ± 0.04 1.10 ± 0.09 .43 .02 .95

Lactic acid 1.00 ± 0.12 0.66 ± 0.09 0.80 ± 0.16 0.82 ± 0.12 .89 .23 .18

Malic acid 1.00 ± 0.08 1.09 ± 0.13 0.95 ± 0.09 1.01 ± 0.14 .55 .50 .91

Mannose 1.00 ± 0.04 1.11 ± 0.07 1.11 ± 0.06 1.09 ± 0.03 .46 .40 .20

Methyl O-D-
galactopyranoide

1.00 ± 0.11 1.07 ± 0.10 1.48 ± 0.11 1.49 ± 0.09 <.01 .72 .79

Myoinositol 1.00 ± 0.05 0.97 ± 0.05 1.20 ± 0.07 1.22 ± 0.06 <.01 .89 .73

Pyruvic acid 1.00 ± 0.15 1.01 ± 0.15 1.77 ± 0.25 1.59 ± 0.19 <.01 .64 .62

Sorbitol 1.00 ± 0.21 1.49 ± 0.20 1.49 ± 0.24 1.90 ± 0.18 .04 .04 .85

Succinic acid 1.00 ± 0.10 1.46 ± 0.12 1.06 ± 0.09 1.28 ± 0.19 .64 .01 .34

Threose 1.00 ± 0.10 1.23 ± 0.07 1.10 ± 0.07 1.06 ± 0.06 .65 .25 .08

1,5-anhydroglucitol 1.00 ± 0.05 1.05 ± 0.06 0.70 ± 0.03 0.68 ± 0.03 <.01 .69 .44

6-deoxyglucose 1.00 ± 0.04 1.07 ± 0.06 1.06 ± 0.06 1.18 ± 0.05 .11 .07 .60

6-deoxyglucitol 1.00 ± 0.09 1.26 ± 0.11 1.07 ± 0.09 0.96 ± 0.07 .22 .43 .06

Xylose 1.00 ± 0.09 1.34 ± 0.11 1.30 ± 0.13 1.32 ± 0.10 .19 .10 .14

Values of treatment groups are normalized to that of the AIN93G WT group. Values are means ±SEM with false discovery rate-adjusted p values (n = 12 per group for WT 
mice, n = 10 per group for Mcp-1-/- mice).

mammalian target of rapamycin complex (mTORC) pathway 
for protein synthesis, or they can be converted to glutamate, 
through α-ketoglutarate, which can either fuel the citrate 
cycle or serve as an indirect source of nitrogen for nucleotide 
and non-essential amino acid syntheses.37,38 Non-small cell 
lung carcinoma takes up circulating BCAAs and incorporates 
them into tissue protein and uses it as a nitrogen source.37 We 
found that LLC metastases contain a greater amount of valine 

when compared to the normal lung tissue.39 In the present 
study, the decreased valine in Mcp-1-/- mice, particularly those 
fed the HFD, is consistent with a recent metabolomic analy-
sis showing that plasma level of valine is lower in adipose-
specific Mcp-1 deficient MMTV-PyMT mice.18 Taken 
together, these findings indicate that the inflammatory 
cytokine MCP-1 may modulate BCAA metabolism path-
ways in cancer-bearing mice.
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Table 3. Plasma metabolites related to lipid metabolism in Lewis lung carcinoma-bearing wild-type (WT) and Mcp-1-/- mice fed the AIN93G or high-
fat diet (HFD).

AIN93G WT AIN93G Mcp-1-/- HFD WT HFD Mcp-1-/- DIET p GENE p DIET × GENE p

Arachidic acid 1.00 ± 0.11 1.18 ± 0.14 1.13 ± 0.23 1.15 ± 0.10 .76 .53 .59

Arachidonic acid 1.00 ± 0.06ab 1.27 ± 0.09a 0.96 ± 0.05ab 0.88 ± 0.12b .01 .23 .04

Cholesterol 1.00 ± 0.08 1.11 ± 0.05 0.88 ± 0.04 0.94 ± 0.07 .02 .19 .64

Dihydrocholesterol 1.00 ± 0.11 1.29 ± 0.09 1.26 ± 0.11 1.24 ± 0.12 .32 .22 .17

Ethanolamine 1.00 ± 0.10 0.92 ± 0.07 0.85 ± 0.05 0.91 ± 0.13 .38 .90 .45

Glyceric acid 1.00 ± 0.08 1.40 ± 0.09 1.11 ± 0.07 1.49 ± 0.24 .44 <.01 .93

Glycerol 1.00 ± 0.05 1.03 ± 0.04 0.97 ± 0.04 0.93 ± 0.04 .14 .86 .44

Heptadecanoic acid 1.00 ± 0.10 1.17 ± 0.07 0.97 ± 0.09 1.04 ± 0.10 .39 .20 .59

Inositol-4-monophosphate 1.00 ± 0.19 1.22 ± 0.21 1.23 ± 020 0.96 ± 0.22 .95 .89 .23

Lauric acid 1.00 ± 0.11 1.09 ± 0.17 1.28 ± 0.17 1.26 ± 0.10 .11 .81 .71

Linoleic acid 1.00 ± 0.07 0.96 ± 0.11 1.19 ± 0.13 1.30 ± 0.25 .08 .81 .62

Myristic acid 1.00 ± 0.09 1.02 ± 0.12 0.51 ± 0.03 0.66 ± 0.10 <.01 .35 .50

Oleic acid 1.00 ± 0.20 1.02 ± 0.29 1.09 ± 0.13 1.09 ± 0.27 .71 .97 .97

Palmitic acid 1.00 ± 0.05 1.12 ± 0.07 0.78 ± 0.04 0.81 ± 0.06 <.01 .16 .42

Palmitoleic acid 1.00 ± 0.16 0.96 ± 0.12 0.23 ± 0.03 0.27 ± 0.05 <.01 .98 .74

Phosphate 1.00 ± 0.03 0.93 ± 0.05 0.99 ± 0.04 0.95 ± 0.06 .97 .19 .82

Stearic acid 1.00 ± 0.08 1.12 ± 0.08 0.81 ± 0.05 0.85 ± 0.04 <.01 .23 .54

3-hydroxybutyric acid 1.00 ± 0.18 0.97 ± 0.20 0.75 ± 0.18 0.77 ± 0.21 .24 .97 .89

Values of treatment groups are normalized to that of the AIN93G WT group. Values are means ± SEM with false discovery rate-adjusted p values (n = 12 per group for WT 
mice, n = 10 per group for Mcp-1-/- mice). Values in the same row with different letters are significant at p ≤ .05.

Table 4. Plasma metabolites related to vitamin and nucleotide metabolism in Lewis lung carcinoma-bearing wild-type (WT) and Mcp-1-/- mice fed 
the AIN93G or high-fat diet (HFD).

AIN93G WT AIN93G Mcp-1-/- HFD WT HFD Mcp-1-/- DIET p GENE p DIET × GENE p

Vitamins

Nicotinic acid 1.00 ± 0.18 0.77 ± 0.11 0.94 ± 0.14 1.06 ± 0.24 .51 .74 .32

α-Tocopherol 1.00 ± 0.10 0.95 ± 0.12 1.08 ± 0.08 0.94 ± 0.11 .76 .36 .65

Threonic acid 1.00 ± 0.07 1.14 ± 0.12 0.95 ± 0.09 1.01 ± 0.13 .37 .32 .68

Nucleotides

Allantoic acid 1.00 ± 0.11 1.37 ± 0.15 1.50 ± 0.09 1.42 ± 0.16 .04 .27 .09

Oxalic acid 1.00 ± 0.19 1.25 ± 0.26 0.98 ± 0.19 1.24 ± 0.30 .93 .27 .99

Parabanic acid 1.00 ± 0.18 1.34 ± 0.28 0.80 ± 0.09 1.51 ± 0.35 .95 .03 .43

Pseudouridine 1.00 ± 0.06 1.14 ± 0.12 1.34 ± 0.08 1.29 ± 0.04 <.01 .54 .26

Ribose 1.00 ± 0.06 1.20 ± 0.22 1.18 ± 0.14 1.62 ± 0.10 .03 .02 .40

Thymidine 1.00 ± 0.07 0.94 ± 0.07 1.14 ± 0.08 0.97 ± 0.11 .33 .18 .48

Uracil 1.00 ± 0.12 0.84 ± 0.12 1.08 ± 0.08 0.68 ± 0.13 .72 .02 .29

Uric acid 1.00 ± 0.08 1.18 ± 0.13 1.17 ± 0.05 1.19 ± 0.05 .30 .24 .32

Values of treatment groups are normalized to that of the AIN93G WT group. Values are means ± SEM with false discovery rate-adjusted p values (n = 12 per group for WT 
mice, n = 10 per group for Mcp-1-/- mice).
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Elevations of plasma serine and glycine in mice fed the HFD 
indicate that the HFD may alter serine and glycine metabolism 
in LLC-bearing mice. Serine is a commonly consumed metab-
olite by cancer cells.40,41 A significant amount of serine is con-
verted to glycine by hydromethyltransferases in cancer cells.42,43 
Elevation of glycine occurs in breast cancer patients with lower 
survival rates.44 Dietary serine and glycine starvation reduces 
tumorigenesis in murine models of lymphoma and intestinal 
cancer.45 The observed serine and glycine elevations along with 
the elevation of glucose may contribute, at least partly, to the 
HFD-enhanced metastatic growth in the lungs.9

The network analysis showed that the HFD altered the 
fatty acid synthesis pathway in LLC-bearing mice. The 
clustered heatmap analysis showed that the HFD, compared 
to the AIN93G diet, lowered arachidonic acid (20:4) in 
plasma. Arachidonic acid can be obtained from the diet by 
desaturation and elongation of dietary linoleic acid.46,47  

It has been reported that arachidonic acid and its metabolite 
20-hydroxyeicosatetraenoic acid (20-HETE) are carcino-
genic in laboratory rodents.48,49 The 20-HETE can activate 
multiple signal pathways in cancer, including intracellular 
protein kinases and chemokines.50,51 Alterations in arachi-
donic acid metabolism have been reported in human cancer 

Figure 1. Twenty-five metabolites identified by the hierarchical clustering 

heatmap analysis in plasma that differed most in wild-type (WT) and 

Mcp-1-/- mice fed the AIN93G or high-fat diet (HFD). AIN93G WT (red): 

WT mice fed the AIN93G diet; AIN93G Mcp-1-/- (green): Mcp-1-/- mice fed 

the AIN93G diet; HFD WT (blue): WT mice fed the HFD; HFD Mcp-1-/- 

(cyan): Mcp-1-/- mice fed the HFD (n = 12 per group for WT mice, n = 10 per 

group for Mcp-1-/- mice). Methyl O-D-GP: Methyl O-D-galactopyranoside.

Figure 2. Components 1 and 2 of the synchronized 3-dimensional plot (A) 

by spare partial least square-discriminant analysis (sPLS-DA) of plasma 

metabolites from wild-type (WT) and Mcp-1-/- mice fed the AIN93G or 

high-fat diet (HFD) and loading plots of the most influential 10 metabolites 

in treatment separation among the 4 dietary groups for components 1  

(B) and 2 (C). AIN93G WT (red): WT mice fed the AIN93G diet; AIN93G 

Mcp-1-/- (green): Mcp-1-/- mice fed the AIN93G diet; HFD WT (blue): WT 

mice fed the HFD; HFD Mcp-1-/- (cyan): Mcp-1-/- mice fed the HFD (n = 12 

per group for WT mice, n = 10 per group for Mcp-1-/- mice). 1,5-AG: 

1,5-anhydroglucitol; Methyl O-D-GP: methyl O-D-galactopyranoside.
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patients52 and cancer models in laboratory rodents.53 Our 
findings suggest the possibility of an accelerated utilization 
of arachidonic acid during the HFD-enhanced metastatic 
progression. It warrants further investigation of arachidonic 

acid metabolism in the presence of malignancy, particularly 
the involvement of fatty acid desaturases in its conversion 
from linoleic acid and its metabolism to 20-HETE.

Compared to the AIN93G diet, the HFD lowered choles-
terol and long-chain saturated fatty acids [myristic acid (14:0), 
palmitic acid (16:0), and stearic acid (18:0)] in plasma. It has 
been shown that the incorporation of cholesterol in cell mem-
brane reduces fluidity and consequently cell dissemination by 
limiting cell morphologic changes during intravasation and 
extravasation of metastasis.54 Furthermore, elevated de novo 
synthesis of saturated and monounsaturated fatty acids in can-
cer cells makes membranes more stable than polyunsaturated 
fatty acids, which may protect cancer cells against oxidative 
stress.55 The HFD enhances metastasis.9 Thus, whether the 
observed lowering in cholesterol and long-chain saturated fatty 
acids contribute to HFD-enhanced metastasis through altera-
tion in membrane fluidity during metastatic dissemination 
warrants further investigation.

Figure 3. Matched metabolic pathway plot of metabolites identified in 

plasma from wild-type (WT) and Mcp-1-/- mice fed the AIN93G or high-fat 

diet. The x-axis marks the pathway impact and the y-axis marks the 

pathway enrichment. Each node represents a pathway. The nodes with 

larger sizes and darker colors (from yellow to red) positioning toward top 

right region represent higher pathway impact values and higher pathway 

enrichment. Pathways that are significantly altered are presented with 

their names next to their nodes. All detected metabolic pathways are 

presented in Supplemental Table 3.

Table 5. Metabolic pathways identified by the pathway analysis that 
are significantly altered by Lewis lung carcinoma metastasis.

KEGG PATHWAY NUMBER OF 
METABOLITES 
IDENTIFIED

pA IMPACTB

Aminoacyl-tRNA 
biosynthesis

18 <.01 0.17

Arginine biosynthesis 7 <.01 0.41

Alanine, aspartate and 
glutamate metabolism

9 <.01 0.36

Valine, leucine and 
isoleucine biosynthesis

5 <.01 0

Glyoxylate and 
dicarboxylate metabolism

8 .01 0.26

Citrate cycle 6 .03 0.30

ap values are obtained by the over-representation analysis and adjusted by the 
Holm method.
bImpact is the pathway impact score obtained by the pathway topology analysis.

Table 6. Metabolic pathways identified by the network analysis that 
are significantly altered by genotype (wild-type vs. Mcp-1-/-) and diet 
(AIN93G vs. high-fat diet) in Lewis lung carcinoma-bearing wild-type 
and Mcp-1-/- mice fed the AIN93G or high-fat diet.

METABOLIC PATHWAYS HITS p

Wild-type mice versus Mcp-1-/- mice

Citrate cycle 3 <.01

Alanine, aseparate, and glutamate metabolism 3 <.01

Valine, leucine, and isoleucine biosynthesis 2 <.01

Pantothenate and CoA biosynthesis 2 <.01

Pentose phosphate pathway 2 .01

Glyoxylate and dicarboxylate metabolism 2 .02

Valine, leucine, and isoleucine metabolism 2 .03

Glycerolipid metabolism 1 .05

Arginine biosynthesis 1 .10

AIN93G diet versus high-fat diet

Glycine, serine, and threonine metabolism 4 <.01

Glycolysis/gluconeogenesis 3 <.01

Valine, leucine, and isoleucine biosynthesis 2 <.05

Galactose metabolism 3 <.01

Fatty acid synthesis 2 <.01

Glyoxylate and dicarboxylate metabolism 3 <.01

Glutathione metabolism 2 .02

Alanine, aspartate, and glutamate metabolism 2 .05

Cysteine and methionine metabolism 2 .07



Yan et al 9

The HFD may have shifted energy production away from 
mitochondrial ATP production and toward glycolysis in LLC-
bearing mice. The elevated plasma glucose and pyruvic acid 
and a lower content of 1,5-anhydroglucitol (a marker of glyce-
mic control56) in HFD-fed mice suggest impaired utilization 
of glucose. Cancer cells increase their glucose uptake to meet 
their high energy demand through aerobic glycolysis for anab-
olism.57,58 The notion that the HFD accelerates glycolysis in 
LLC-bearing mice is supported by findings from a recent 

metabolomic comparison in which elevated glucose and 
decreased 1,5-anhydroglucitol occur in plasma from MMTV-
PyMT mice fed a HFD.18

In the present study, we observed elevations of citric acid, 
fumaric acid, isocitric acid, succinic acid, and glyceric acid in 
Mcp-1-/- mice regardless of the diet. Furthermore, the network 
analysis showed alteration in the citrate cycle pathway when 
compared Mcp-1-/- mice to WT mice. Citric acid, fumaric acid, 
isocitric acid, and succinic acid are metabolic intermediates of 
the citrate cycle. Glyceric acid is an oxidative product of glyc-
erol; its phosphate derivatives are important intermediates of 
glycolysis.59 Taken together, the elevated expression of citrate 
cycle intermediates suggests metabolic alteration in mitochon-
dria in Mcp-1-/- mice. However, it does not exclude the possi-
bility of a compensatory elevation in the absence of MCP-1 as 
increased plasma concentrations proinflammatory cytokines 
and angiogenic factors occur in these Mcp-1-/- mice.9

The heatmap analysis showed that sorbitol, fucose, ribose, 
and oxoproline contents were higher in HFD-fed Mcp-1-/- 
mice compared to other groups. Sorbitol is a sugar alcohol. It 
can be obtained from diets or derived endogenously from glu-
cose by aldose reductase and converted to fructose by sorbitol 
dehydrogenase in cells.60,61 The elevated expression of fructose 
is consistence with the elevation of sorbitol and suggests the 
altered sorbitol metabolism in Mcp-1-/- mice. Fucose (a mono-
saccharide) is a constituent of N-glycans. Ribose is a compo-
nent of ribonucleotide from which RNA is built. Oxoproline 
(an amino acid derivative) is a metabolite of the glutathione 
cycle that detoxifies hydrogen peroxide. The MCP-1 defi-
ciency mitigates malignant spread of LLC in mice fed the 
HFD, indicating the involvement of MCP-1 in HFD-
enhanced metastasis.9 The observed elevations of the afore-
mentioned metabolites suggest an interaction between HFD 
and MCP-1 deficiency, because such elevations were not 
found in other groups. Thus, the roles of these metabolites and 
their related metabolic pathways in HFD-enhanced metasta-
sis, particularly their interactions with MCP-1, remains to be 
an interest for further investigation.

Limitations of this study are that we were not able to per-
form metabolomic analysis on LLC metastases (the entire 
lungs were fixed to examine the extent of metastasis) nor had 
plasma samples from non-LLC-bearing mice fed different 
diets as negative controls. These limitations made us unable to 
conduct parallel comparisons of metabolomic differences 
between the metastases and plasma nor differences between 
the presence and absence of metastasis. Nevertheless, this study 
for the first time presented plasma metabolome in mice bear-
ing LLC lung metastases and their alterations resulted from 
Mcp-1-/- knockout.

In summary, LLC metastases altered the amino acid metab-
olism considerably. The HFD altered lipid and energy metabo-
lism in mice bearing LLC lung metastases. Elevations in citrate 
cycle intermediates in Mcp-1-/- mice indicates the involvement 

Figure 4. Metabolic network of the identified metabolites between 

wild-type and Mcp-1-/- mice (A) and between the AIN93G and high-fat 

diet (B). Colors, from white-yellow to red, indicate levels of impact the 

metabolites have to the network in an ascending order (the number of 

connections a node has to other nodes and the number of shortest paths 

going through the node). Network statistics for analyses A and B are 

presented in Table 6.
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of MCP-1 in mitochondrial energy metabolism during LLC 
malignant spread. Findings from this study can be helpful 
understanding the impact of obesity on prevention and treat-
ment of metastasis.
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