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Bone Marrow-Derived Cells and
Wound Age Estimation
Yuko Ishida*, Mizuho Nosaka and Toshikazu Kondo*

Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan

Appropriate technology as well as specific target cells and molecules are key factors for

determination of wound vitality or wound age in forensic practice. Wound examination

is one of the most important tasks for forensic pathologists and is indispensable to

distinguish antemortem wounds from postmortem damage. For vital wounds, estimating

the age of the wound is also essential in determining how the wound is associated with

the cause of death. We investigated bone marrow-derived cells as promising markers

and their potential usefulness in forensic applications. Although examination of a single

marker cannot provide high reliability and objectivity in estimating wound age, evaluating

the appearance combination of bone marrow-derived cells and the other markers may

allow for a more objective and accurate estimation of wound age.

Keywords: bone marrow-derived cells, hematopoietic stem cells, mesenchymal stem cells, skin wound, wound

healing, wound age

INTRODUCTION

Wound healing is a dynamic process in which numerous cells and extracellular matrix structures
are involved. These cellular and molecular events are highly regulated. Wound healing is an
ordered and controlled progression that matures through artificially defined phases of hemostasis
(coagulation), inflammation (infiltration of granulocytes and mononuclear cells), proliferation
(epithelization, fibroplasia, and angiogenesis), and maturation (collagen deposition and formation
of scarring tissue) (1–5) (Table 1).

In the first step, platelet activation and the coagulation cascade play a major role, with fibrin
strands adhering in the first few seconds, subsequently forming blood clots and trapping platelets
in the wound area. The inflammatory phase is triggered by the recruitment of inflammatory cells
to the wound site and attempts to eliminate damaged cells. Leukocyte recruitment is a hallmark of
the inflammatory phase. In the first event, neutrophils infiltrate the wound site for the sterilization,
followed by the accumulation of monocytes and lymphocytes. These leukocytes secrete various
bioactive molecules, such as cytokines, chemokines, enzymes, and growth factors (6). Cytokines
and chemokines are involved in the wound healing process by recruiting leukocytes. To date,
several candidates, including IL-1, IL-6, IL-8, and TNF-α, have been identified for wound age
determination in the early phase after injury (7–9).

The main objective of the proliferative phase is to cover and fill the wound. The margins of
the wound start contacting with fibroblasts that are activated and differentiate into myofibroblasts.
Thereafter, the re-epithelialization process also begins. This stage mainly results from extracellular
matrix (ECM) deposition of collagen (10–12). Finally, during maturation, collagen fibers are
reorganized from collagen type III to type I, tissue is restructured, and strength and flexibility are
gained by promoting epithelialization and angiogenesis (13–15). In forensic pathology, growth
factors capable of stimulating cell proliferation and cellular differentiation, such as TGF-α and
TGF-β1, and some types of collagens have been shown to be available for wound age estimation
(16, 17).
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TABLE 1 | Wound healing phases.

Wound healing

phases

Main events

Homeostasis When blood vessels constrict, platelets are activated by

contact with exposed collagen, releasing their granules,

which further leads to platelet activation and

aggregation. Along with activation of the coagulation

cascade which results in the deposition of a temporary

fibrin matrix within the wound (1, 2).

Inflammation Numerous cytokines are secreted to promote neutrophil

and macrophage chemotaxis, leading to the onset of the

inflammatory phase (2, 3). Neutrophils are one of the first

cells to appear acutely. Macrophages aid in

phagocytosis and produce more cytokines and growth

factors that promote fibroblast proliferation,

angiogenesis, and keratinocyte migration.

Proliferation Fibroblasts recruit to the wound transform into

myofibroblasts under the influence of several cytokines,

causing increased collagen production and eventual

wound contraction (4, 5). Modeling and establishment of

new blood vessels are important in wound healing and

occurs simultaneously at all stages of the repair process

(2).

Maturation Granulation tissue is replaced by permanent scar (2).

Recently, several lines of accumulating studies have shown
that bone marrow (BM)-derived cells (BMDCs) may contribute
to tissue repair and/or regeneration of damaged tissue including
the skin (18–21). After tissue injury, hematopoietic and
multipotent progenitor cells are mobilized from the BM into
a pool of circulating cells, which migrate to the site of injury
and regulate the proliferation and migration of epithelial and
dermal mesenchymal cells in the early inflammatory phase (22).
The contribution of BMDCs to inflammatory cells in the acute
response to injury is well-established, and the long-term role of
BMDCs in the healing of skin wounds is being elucidated.

In this review, we assess the characteristics and key functions
of BMDCs at each step of the wound healing process and whether
they can be useful markers for forensic diagnosis of wound age.

HISTORY OF WOUND AGE ESTIMATION

Raekallio first introduced the application of a new method of
enzymatic histochemistry and presented some new data for
estimating wound age (23). A few years later, an important
biochemical technique was reported that involved the detection
of serotonin and histamine at the wound edge (24, 25). Over the
next decade, significant progress has been made in the scientific
research on immunology and immunohistochemistry. The
application of immunohistochemical techniques has paved the
way for a new field of wound age research by forensic pathologists
(26). In the following decade, knowledge of basic immunological
principles and application of immunohistochemical methods
have led to significant scientific development (7, 8, 17, 27–
44). The history of clinical medicine has been correlated with
advances in basic research. Since forensic medicine is applied

FIGURE 1 | Changes in BMDCs to macrophages in wound tissue. BM-HSCs

toward M1/M2 macrophages in injured tissue.

medicine, it is always necessary to apply the latest basic research
knowledge to practice forensic medicine.

BM-DERIVED HEMATOTOIETIC STEM
CELLS

BM-Derived Hematopoietic Stem Cells
(BM-HSCs) in Wound Healing
Hematopoietic stem cells (HSCs) constitute a relatively large
fraction of BM mononuclear cells (45). Differentiation of
HSCs into macrophages is one of the most important events
during wound healing (46). There exist two major sources
of wound macrophages: resident and BM; the latter accounts
for a larger proportion and plays a dominant role in wound
healing (47–49). When attracted to the wound, monocytes
differentiate into macrophages, which can engage in multiple
activities with many possible phenotypes (50, 51). Early in the
healing process, macrophages produce multiple cytokines and
chemokines that stimulate the inflammatory response (52, 53).
Wound macrophages actively phagocytose, removing microbes,
dying cells, and necrotic material (54). Several studies have
suggested thatmacrophage phagocytosis of senescent neutrophils
causes a switch from a pro-inflammatory to a growth-promoting
phenotype (55).

BM-derived monocytes from the circulation are classified as
either inflammatory monocytes, which are CD14+CD16−

that can differentiate into M1 macrophages, or anti-
inflammatory monocytes, which are CD14lowCD16+ that
give rise to M2 macrophages (56). In a mouse model of
wound healing, circulating monocytes can also be divided
into two groups: CX3CR1lowCCR2+Ly6C+, which produces
inflammatory cytokines and enters the wound first, and
CX3CR1highCCR2−Ly6C− which enters later (57). M1
macrophages play an important role in protection from
pathogens by producing high levels of iNOS and inflammatory
cytokines such as TNF-α, IL-1b, IL-6, and IL-12, and initiate
a Th1 immune response (58). M2 macrophages have anti-
inflammatory properties and are characterized by high IL-10
secretion and high arginase-1 expression (58, 59) (Figure 1).

The potential of BM-HSCs in skin regeneration is derived
from their high plasticity and involvement in the angiogenesis
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(60, 61). In addition, they also affect ECM during wound
healing by secreting collagen and downregulating MMP
expression (62). Moreover, they stimulate the proliferation of
keratinocytes and fibroblasts, significantly accelerating wound
closure (63).

Macrophages in Wound Age Estimation
Macrophages are mononuclear phagocytes that are recruited
from the BM under inflammatory conditions, such as tissue
repair (64). Macrophages are involved in host defense, the
initiation and resolution of inflammation, growth factor
production, phagocytosis, and tissue restoration in wounds (65).
During inflammation, macrophages are recruited to the wound
site to develop classical and alternative activation phenotypic
polarization mediated by cytokines, oxidants, lipids, and growth
factors released by macrophages (57, 64, 66). These cells regulate
the response to changing wound environments and participate in
multiple overlapping wound healing phases.

During early wound healing, macrophages help to clear the
wound of contaminating microbes and apoptotic neutrophils
and debris via phagocytosis (67–69). In addition, macrophages
regulate the activity of other wound cells through the production
and release of cytokines, chemokines, and growth factors.
Early after injury, macrophages release numerous inflammatory
cytokines and chemokines, including IL-1β, IL-6, TNF-α, and
CCL2, to amplify the inflammatory response (70). Topical
application of CCL2 could promote skin wound healing in
diabetic mice, and these effects may be mediated by the action
of CCL2 on macrophages (71). Indeed, immunohistochemical
studies on the time-dependent expression of chemokines in
human skin wounds have shown that inflammatory macrophages
are positive for anti-CCL2 antibodies; moreover, a positive rate of
> 30% for CCL2 indicates a wound age of at least 1 day (8).

Cyclooxygenase (COX) is an enzyme that is responsible
for the formation of prostanoids, including thromboxane and
prostaglandins such as prostacyclin, from arachidonic acid
(72). COX-1 is constitutively expressed under physiological
conditions, and COX-2 is expressed for increased production of
prostanoids that occur at the site of disease and inflammation.
Therefore, COX-2 may be involved in the inflammatory phase
of wound healing. In human skin wound specimens, neutrophils
are themain COX-2 expressing cells; however somemacrophages
also express COX-2 (73). In addition, the number of MMP-2+

and MMP-9+ macrophages significantly increase with wound
age (74). These observations indicate that immunohistochemical
detection of increased number of MMP-2+ and MMP-9+

macrophages in skin wounds, in combination with other markers
such as COX-2, further enhances the reliability of wound
age estimation.

Wound macrophages are also an important source of growth
factors such as VEGF, which is important for angiogenesis (75,
76). Moreover, macrophages have been shown to be involved
in collagen degradation during the tissue remodeling phase
of wound healing (77, 78). In human wound specimens with
wound ages of >7 days, granulation tissue and angiogenesis were
observed with the migration of VEGF+ macrophages (79).

Mast Cells in Wound Age Estimation
Mast cells (MCs), that are one of the immune cells involved
in allergy and anaphylaxis, play pivotal roles in skin wound
healing thorough the release of chemical mediators such as
histamine and the production of cytokines and chemokines (80).
From the aspects of wound age estimation, there are several
immunohistochemical studies on the dynamics of MCs with
focusing on triptase and chimase (81, 82). The number of MCs
immediately increased after wounding, eventually reaching a
peak at 1–3 h later followed by decreasing within 6 h (81, 82).
The post-mortem release of proteins from MCs is known as
an influence factor on the data interpretation, which should
be taken into consideration in the forensic practices (83). In
order to avoid the influences of the postmortem release from
MCs, the stem cell factor (SCF) and the Kit receptor, which
involved in the survival, growth, migration, and activation of
MCs, are investigated. Actually, SCF+ cells rapidly increased in
the dermis by day 1 after injury, whereas the Kit receptor elevated
more gradually, with a peak on day 14 (84). On the contrary,
Oehmichen et al. (85) investigated the loss of MC enzymatic
activity at the woundmargin, and found the loss of naphtol AS-D
chloroacetate esterase (NASDCAE) activity at wound margins in
injuries of < 60 min (85).

Dendritic Cells (DCs) in Wound Age
Estimation
DCs are mononuclear and antigen presenting immune cells. DCs
have an ultimate origin in HSCs from the BM (86). Intermediate
precursors of DCs lack a lineage-specific marker (lin−) and can
be sought among BM cells that have not yet expressed DC
markers such as CD11c and surface MHC class II molecules.
Later, DC precursors can be found in BM cells that already
express the DC marker CD11c, but that still lack cell surface
expression of MHC class II molecules (86).

Several studies have indicated that dermal DC recruitment
may be involved in the repair process of damaged tissue
(87–90). CD11c and HLA-DR are considered specific markers
for dermal DCs (91). Kuninaka et al. performed a double-
color immunofluorescence analyses with anti-CD11c and anti-
HLA-DRα antibodies to detect DCs in human skin wounds
from autopsies (92). DCs were rarely detected in wounds
aged <1 day, whereas DC accumulation increased over
time in wounds aged 3–14 days. These findings suggest
that DCs could be a useful cellular marker for determining
wound age.

There is a specific DC population in the human epidermis,
and those epidermal DCs express CD1a and CD207/langerin,
and is called Langerhans cells (93). However, there is only one
forensic study exploring the dynamics of dermal DCs after
wounding. Bacci et al. (94) investigated the behavior of epidermal
DCs/Langerhans cells in relation with wound ages. Both MHC-
II+ cells and CD1a+ cells rapidly increased in number within
the first hour after injury. Especially, CD1a+ cells, as well-
differentiated Langerhans cells, increased earlier and for a shorter
time period than MHC-II+ cells. These observations implied
that the behavior of epidermal DCs/Langerhans could give a
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useful information to differentiate antemortem skin lesions from
postmortem damage especially in neck compression cases.

BM-DERIVED MESENCHYMAL STEM
CELLS

History of BM-Derived Mesenchymal Stem
Cells (BM-MSCs)
BM contains HSCs and MSCs. MSCs were first observed in
the BM by Cohnheim in 1867 (95). Cohnheim discovered
that these cells could be a source of fibroblasts involved
in wound repair. Subsequently, these cells were isolated and
cultured by Friedenstein (96). While culturing cells from rat
BM, Friedenstein discovered that these cells were a population
of non-hematopoietic cells that were morphologically similar to
fibroblasts attached to the plastic of the culture flask. The term
“mesenchymal stem cells” was presented by Caplan in 1991 after
conducting human BM studies (97). To date, it is a hot topic of
research that is being explored for multiple purposes.

BM-MSCs in Wound Healing
With the expansion of MSC research, its potential role in skin
wound healing has been elucidated. BM-MSCs can accelerate
wound healing by regulating the function of inflammatory
cells such as neutrophils, macrophages and lymphocytes to
provoke an anti-inflammatory response (98). In addition, BM-
MSCs can be directed to differentiate into multiple skin cell
lineages, including keratinocytes and endothelial cells, and
secrete various cytokines to promote wound re-epithelialization
and limit excessive scarring (98–103). In addition, BM-MSCs can
be recruited to the wound site to induce neovascularization and
to increase cell migration and proliferation (104, 105).

Several studies have revealed the underlying mechanisms of
BM-MSC recruitment to the wounds. BM-MSCs express CCR7,
a receptor of CCL21, which was found to be the main factor
responsible for enhanced BM-MSC migration to the wounds
in mice (106). Intradermal injection of CCL21 increased the
recruitment of BM-MSCs to the wound, resulting in accelerated
repair (106). Moreover, serum levels of HMGB1 are increased by
skin grafting, and intravenously administered HMGB1 augment
the accumulation of PDGFRα+ MSCs in the skin graft by
enhancing the expression of the SDF-1 receptor CXCR4 in these
cells (107, 108).

The inflammatory phase is important for the wound healing
process because it leads to the recruitment of immune cells to
remove pathogens and clear the wound. MSCs can suppress the
inflammatory responses in several ways. It is generally recognized
that infiltrative M2 macrophages play an important role in the
progression of wound healing, the promotion of angiogenesis,
and the suppression of inflammation (109–111). MSCs promote
macrophage polarization to the M2-like functional phenotype,
which reduces inflammation and immunosuppressive function
(112). Zhao et al. revealed that IL1RA from BM-derived MCSs
inhibits the production and activity of IL-1 and TNF-α (113).
These studies suggest that MSCs exhibit anti-inflammatory

potential through the regulation of macrophage polarization and
expression of anti-inflammatory cytokines.

In the proliferative phase, macrophages release growth factors
such as EGF and TGF-α to stimulate keratinocyte migration and
proliferation (114). Smith et al. revealed that BM-MSCs are a
source of soluble signals that regulate dermal fibroblast migration
and proliferation (115). MSCs can also contribute to angiogenesis
at the wound site. In the wound area,MSCs secrete growth factors
such as VEGF, PDGF, bFGF, and angiopoietin-1 to promote
angiogenesis and wound healing (116, 117). In addition, SDF-
1 secreted by MSCs induces endothelial cell survival, vascular
branching, and pericyte recruitment (118). These paracrine
mechanisms of MSCs play important roles in angiogenesis. The
wounds treated with MSC-seeded hydrogels showed a significant
enhancement of angiogenesis, which was associated with elevated
VEGF levels within the wound (119). Qiu et al. demonstrated that
educated MSC exosomes significantly increase wound healing by
inducing angiogenesis (120).

MSCs have also been shown to contribute to the production
and remodeling of ECM during the wound healing process.
BM-MSCs secrete high levels of TIMPs, which stabilize
vessels and protect the vascular basement membrane, forming
MMP-induced degradation (121). This ECM production
and remodeling function of MSCs may be associated
with the promotion of angiogenesis and the formation of
granulation tissue.

BM-MSCs may be involved in the regeneration of
mesenchymal and other embryonic tissues, including the
skin (106). In animal models of wound healing, intravenously
transplanted MSCs can differentiate into cells of resident tissue,
including fibroblasts, myofibroblasts, vascular endothelial cells,
pericytes, and keratinocytes in the wound area (106, 116). In
addition, MSCs injected into mouse wounds transdifferentiate
into keratin-14+ keratinocytes in vivo (106, 116). Labeled MSCs
were observed in the hair follicles, sebaceous glands, and blood
vessels in full-thickness wounds in an animal model (122).
BM-MSC-engineered skin (EGF loaded) has been found to
repair sweat glands and improve skin wound healing (123).

These studies indicate that BM-derivedMSCs can differentiate
into tissue-specific cells, secrete a wide range of paracrine
factors, and regulate the immune response and the local tissue
microenvironment (Figure 2).

Fibrocytes in Wound Age Estimation
In 1994, a distinct population of blood-borne fibroblast-like
cells that rapidly entered sites of tissue injury was described
(124). These cells, named “fibrocytes,” comprise 0.1–0.5% of
the non-erythrocyte cells in the peripheral blood and show an
adherent, spindle-shaped morphology when cultured in vitro.
Cultured fibrocytes express the fibroblast products including type
I collagen I (Col I), type III collagen (Col III), and fibronectin,
CD45RO, CD13, and CD34. Additionally, fibrocytes express
MHC class II and costimulatorymolecules (CD80 andCD86) and
can present antigens in vitro and in vivo (125, 126). Fibrocytes
differ from monocytes/macrophages, dendritic cells, and other
antigen-presenting cells in their morphology, growth properties,
and cell surface markers. In addition, fibrocytes isolated from
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FIGURE 2 | Mechanistic roles of MSCs in the skin wound healing. Mechanisms of acceleration of wound healing by MSCs; (i) activation of keratinocytes and

fibroblasts, (ii) increase in angiogenesis and neovascularization, (iii) increase in M2 macrophages infiltration, (iv) recruitment of stem/progenitor cells, (v) secretion of

cytokines and growth factors, (vi) production of ECM, (vii) decrease in inflammatory cytokine levels by immunosuppressive effects, and (viii) differentiation into

endothelial cells, fibroblasts, and keratinocytes.

peripheral blood and cultured ex vivo secrete cytokines, growth
factors, and chemokines (127). TGF-β functions as a fibrocyte
maturation factor during differentiation (128, 129).

There is an increasing evidence that fibrocytes contribute
to new fibroblast and myofibroblast populations during wound
healing. Prior to differentiation, immature fibrocytes secrete
ECM-degrading enzymes, including MMP-2, -7, -8, and -9
which promote the migration of fibrocytes into granulation
tissue and endothelial cell invasion (130, 131). CCL21 acts as
a potent stimulus for fibrocyte chemotaxis in vitro and for
the migration of injected fibrocytes to sites of skin wound
site in vivo (128). In addition, exogenous TGF-β1 stimulates
in vitro differentiation and synthetic activity of cultured human
fibrocytes into mature fibroblasts or myofibroblasts (128).
Moreover, fibrocyte differentiation can occur in conditions where
serum amyloid P (SAP) and aggregated IgG levels are low, such
as during the resolution phase of inflammation (132, 133). The
main fibrocyte secreting cytokines include TGF-β1 and CTGF
(134). Moreover, fibrocytes indirectly regulate resident fibroblast
activity during wound healing (132).

Although the role of fibrocytes in wound healing has been
postulated based on their accumulation at the wound sites (124),
the molecular signals that mediate the migration of fibrocytes to
the wounds have not been investigated. Abe et al. demonstrated
that fibrocytes express several chemokine receptors, such as
CCR3, CCR5, CCR7, and CXCR4 (128). Furthermore, Ishida
et al. showed that Ccl3−/− and Ccr5−/− mice exhibit reduced
bleomycin (BLM)-induced fibrosis and the number of CCR5+

fibrocytes in the lungs compared to wild-type mice (135). This
finding indicates that the CCL3-CCR5 axis can mediate the
migration of BLM-induced fibrocyte to the lungs. In addition,

fibrocytes also express CX3CR1, and their population increases
in the lungs of mice with BLM-induced pulmonary fibrosis
(136). These findings suggests that the CX3CL1-CX3CR1 axis
is essential for the development of BLM-induced pulmonary
fibrosis by regulating fibrocytes capable of exerting fibrosis-
promoting activity. Therefore, some chemokine systems may
be involved in the migration of fibrocytes to damaged and
fibrotic tissues.

Ishida et al. performed a double-color immunofluorescence
analyses using anti-CD45 and anti-Col I antibodies to examine
the time-dependent appearance of fibrocytes in human skin
wounds of different age groups (137). The appearance of
fibrocytes in human skin wounds occurs at least a 4-days post
infliction; therefore, detection of fibrocytes could be a useful
marker for wound age determination.

Endothelial Progenitor Cells (EPCs) in
Wound Age Estimation
EPCs are cells that act as endothelial precursors and help
promote angiogenesis to improve tissue perfusion. EPCs were
first described in 1997 as a population of postnatal mononuclear
blood cells that have been shown to promote angiogenesis
following recruitment from the BM (138, 139). EPCs are positive
for the following cell surface markers: CD31, CD45, CD14,
CD105, CD146, VEGFR-2, CD144, and von Willebrand factor
(vWF). Morphologically they appear spindle-shaped (140, 141),
and the presence of CD14 and CD45 on these cells indicates
that they are hematopoietic rather than of endothelial origin.
In addition, markers such as CD31, CD144, VEGFR-2, vWF,
and eNOS are not necessarily endothelium-specific (142). There
is no single marker that defines EPCs, and a combination of
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TABLE 2 | Summary of related studies on the appearance and effects of BMDCs on the skin wound healing process.

Cell types Markers Methods Model

source

used

Functions, effects/findings Regular

detection

Time

frame

References

Macrophages F4/80+CD115+

CD11b+

Create a full-thickness

wound on the back skin of

WT mice, and transplant

WT or db/db HSCs

Mouse FACS analysis show that type 2

diabetes impairs

monocytes/macrophages infiltration

and ultimately impairs wound healing

3–14 d 3–14 d (46)

Macrophages CX3CR1-GFP Create full-thickness

wounds on the back skin

Mouse FACS analysis show the GFPhi

population increases after injury

4–7 d 0–7 d (47)

CD34+ stem

cells

CD34+ Create full-thickness

wounds on the back skin

and transplant

nanofiber-expanded human

umbilical cord blood-derived

(NEHUCB) CD34+ cells

Mouse GFP-NEHUCB CD34+ cells home to

wound area and accelerate wound

healing

3 h−7 d 3 h to 7 d (62)

Macrophages Macrophage

morphology

A subcutaneously implanted

polyvinyl alcohol (PVA)

sponge wound model (7 cm

skin incision on the back)

Rat Phagocytosis of wound macrophages

on wound neutrophils

5–10 d 1–10 d (67)

Macrophages F4/80+ Create full-thickness

wounds on the back skin

Mouse Immunohistochemistry staining of

wounds shows that there is no

difference in macrophage recruitment

to the wounds of WT and PPARγ−/−

mice

3–5 d 3–5 d (69)

Macrophages F4/80+ Create full-thickness

wounds on the back skin

Mouse Western blotting analysis shows that

diabetic mice exhibit reduced

infiltration of macrophages into

wounds, and ultimately impaired

healing

Uninjured

and days

1–10

Uninjured

and days

1–10

(71)

MMP-2+

macrophages

CD68+MMP-

2+
Double-color

immunofluorescent staining

using skin wounds

Human MMP-2+ macrophages on skin

wounds are useful markers for

determining the age of wounds

9–12 d Uninjured

and 12 h to

21 d

(74)

Macrophages F4/80+CD11b+ Create full-thickness

wounds on the back skin

Mouse FACS analysis shows that CCR2

deficiency reduces macrophage

infiltration into the skin wounds

2–7 d 2–14 d (76)

DCs FXIIIa+ Immunostaining burn

specimens

Human Need further studies to clarify the

significance of FXIIIa expression by

dermal cells

Uninjured

and days

5–30

(87)

Plasmacytoid

DCs (pDCs)

PDCA1+B220+ Measure pDCs in tape

stripped skin by flow

cytometry

Mouse Immunohistochemistry for Siglec-H,

pDC-specific marker, shows

lymphocytic cells in injured skin

24 h 24–48 h (89)

pDCs BDCA2+ Immunostaining tape

stripped skin

Human Injury induces pDC infiltration and

expression of IFN-α

24 h (89)

DCs CD11C+MHC-

II+Ly6G−

Measure DCs in burned skin

by flow cytometry

Mouse Wound closure in DC-deficient mice

is delayed

4 d (90)

DCs CD11c+HLA-

DRα+

Double-color

immunofluorescent staining

using skin wounds

Human The appearance of DC in human skin

wounds provides information to help

determine the age of the wound

4–14 d 3–21 d (92)

MSCs GFP+ Create a full-thickness

excisional skin wound and

transplant with GFP+ MSCs

Mouse FACS analysis show that about 10%

of total cells in day 7 wounds are

GFP+ BM-MSC, and MSCs enhance

wound healing

7–14 d 7–28 d (116)

Fibrocytes Col I+CD34+ Implant the wound chamber Mouse 10–15% of the cells present in wound

chamber fluid are fibrocytes

Rapidly Over 10 d (124)

Fibrocytes Col

I+CD11b+

Inject cultured murine

fibrocytes into the tail vein

and create a full-thickness

skin wound

Mouse Chemokine SLC acts as a potent

stimulus for homing of fibrocytes to

the site of tissue injury

4 d (128)

Fibrocytes Col I+ Culturing peripheral blood

mononuclear cells (PBMC)

in burn patients

Human Fibrocyte development is systemically

increased in burn patients

7 d to

12m

7 d to 12m (129)

(Continued)
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TABLE 2 | Continued

Cell types Markers Methods Model

source

used

Functions, effects/findings Regular

detection

Time

frame

References

Fibrocytes CD45+Col I+ Double-color

immunofluorescent staining

using skin wounds

Human Fibrocytes are involved in wound

healing in human skin, and detection

of fibrocytes is a useful marker for

wound age determination

9–14 d 4 d to 21 d (137)

Human EPCs acLDL+ulex-

lectin+
EPC transplantation into a

dermal excisional wound

model

Mouse EPC transplantation increases

neovascularization and ultimately

accelerates wound re-epithelialization

(1)

Mouse EPCs c-Kit+Tie-2+ Create full-thickness

wounds on the back skin

Mouse FACS analysis shows that the

absence of CCR5 reduce vascular

EPC accumulation, and ultimately

delay skin wound healing

2–4 d 2–4 d (156)

Human EPCs CD34+Flk-1+ Double-color

immunofluorescent staining

using skin wounds

Human EPC detection helps determine

wound age

7–12 d 2–21 d (159)

markers has been used to identify them within a heterogeneous
population. EPCs are mobilized from the BM through a complex
process involving enzymes, growth factors and cell surface
receptors. The first step in the EPC mobilization is MMP-9
activation (143). VEGF plays an important role in the activation
ofMMP-9 and can increase the recruitment of EPCs from the BM
(144). Interestingly, fibrocytes can produce angiogenic factors,
including MMP-9 and VEGF, as demonstrated in vivo (131).

EPCs are known to be sensitive to hypoxia because they
respond to HIF-1-induced SDF-1 under conditions of oxygen
deprivation (145). They contribute to angiogenesis and are
promising targets for the treatment of chronic wounds such as
diabetic ulcers (146–148). Transplanted BM-MSCs induce the
recruitment of endogenous EPCs to the wound site from the
BM or circulation via growth factors such as VEGF, PDGF,
HGF, and insulin-like growth factor and the SDF-1-CXCR4
axis (149–153). Transplantation of human EPCs into a mouse
skin wound model has been shown to accelerate wound closure
and increase angiogenesis (154). EPC transplantation accelerated
wound re-epithelialization in a mouse skin excision wound
model compared to that in control mice (155). EPCs produce
several chemoattractants of monocytes and macrophages which
are known to play important roles in the early stages of
wound healing. In addition, EPCs migrate to the wound and
are incorporated directly into the newly formed capillaries in
the granulation tissue (155). Thus, EPCs have the potential to
differente into the endothelium, recruit other cells to the wound
site, and secrete growth factors and cytokines; these factors
explain the effects on wound healing.

Ishida et al. demonstrated that topical application of
CCL2, a potent macrophage chemoattractant, can promote
neovascularization, collagen accumulation, and eventual
cutaneous wound healing in mice with diabetes (71). The effects
of CCL2 may be mediated by EPCs and macrophages, which
are critically involved in angiogenesis and collagen production,
respectively, and their effects on steps essential to the wound
healing process. In addition, the CCL5-CCR5 axis is essential for

EPC recruitment (156). In a mouse model of skin wounds, gene
expression of the Ccl5 and Ccr5 genes was upregulated at the
wound sites and CCR5 protein was detected in endothelial cells.
Ccr5−/− mice showed delayed wound healing with diminished
neovascularization. The CCR5+ EPCs were directly incorporated
into the vasculature at the wound sites. Moreover, EPCs produce
growth factors such as TGF-β and VEGF, which are important
for skin wound healing (157, 158). These observations suggest
that EPCs may contribute to skin wound healing as a source of
endothelial cell origin and growth factors.

The accumulation of EPCs in wound sites increases over
time after injury; this finding indicates that EPC accumulation
may help estimate wound age (156, 159). In forensic practice,
examining only a single marker does not provide forensic safety;
therefore, some markers need to be investigated in wound
samples for a more accurate estimation of wound age. For
example, detection of both EPCs and VEGF (79) provides more
reliable information for estimating wound age, especially during
the proliferative phase, as their collaboration synergistically
promotes angiogenesis.

CONCLUSION AND FUTURE
PERSPECTIVES

Over the last few decades, numerous studies have elucidated the
role of BMDCs in skin wound healing (Table 2). It is clear that
BMDCs have great potential for skin tissue regeneration as they
not only regenerate lost tissue, but also promote wound repair
in a paracrine manner. Several cell types, including HSCs and
MSCs, are currently being investigated. Recent data on BM cell
therapy in skin repair show great promise as therapeutic agents
in clinical practice. Further investigation into experimental and
clinical applications is required to identify the most effective cell
migration system for BM cells at the wound sites. However, it is
evident that BMDCs contribute to skin wound healing; therefore,
these cells can serve as candidates for wound age estimation
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in forensic practice. New molecular biomarkers and innovative
devices and technologies are constantly being sought to correctly
diagnose the cause of death, postmortem interval, wound age,
and more.

Recent studies have stimulated us to recognize the importance
of BMDCs in the skin; however, many questions remain. For
example, BMDCs contribute not only to inflammatory and
mesenchymal cells of the dermis, but also to keratinocytes of the
epidermis. In addition, it is not yet known whether BM-derived
cells are essential to contribute to the cells that make up the
normal skin. Furthermore, the specific types of BMDCs playing a
role in these processes are unidentified. We believe that answers
to these questions will help us understand skin homeostasis and
the wound healing process as well as develop new techniques for
future skin wound age estimation in future.

Finally, there is a limitation of wound age estimation as
the forensic evidence. From the aspects of forensic pathology,
the purpose of wound age estimation is to present the
objective evidence in court. Cell types, enzymes and chemical
mediators are experimentally and practically applied to wound
age estimation as the marker (160). Actually, when only a
single marker is investigated, contradictory results are often
obtained, eventually making confusion the interpretation of data.
It is needless to say that various populations of BMCs and
BMC-derived enzymes as well as chemical mediators should

be investigated. Moreover, among multiple forensic institutes,
the accumulation of practical evidence using different types
and sizes of wound samples with known post-injured intervals
is necessary.
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