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Abstract

Brain activity during rest is spatially coherent over functional connectivity networks called resting-state networks. In resting-
state functional magnetic resonance imaging, independent component analysis yields spatially distributed network
representations reflecting distinct mental processes, such as intrinsic (default) or extrinsic (executive) attention, and sensory
inhibition or excitation. These aspects can be related to different treatments or subjective experiences. Among these,
exhaustion is a common psychological state induced by prolonged mental performance. Using repeated functional
magnetic resonance imaging sessions and spatial independent component analysis, we explored the effect of several hours
of sustained cognitive performances on the resting human brain. Resting-state functional magnetic resonance imaging was
performed on the same healthy volunteers in two days, with and without, and before, during and after, an intensive
psychological treatment (skill training and sustained practice with a flight simulator). After each scan, subjects rated their
level of exhaustion and performed an N-back task to evaluate eventual decrease in cognitive performance. Spatial maps of
selected resting-state network components were statistically evaluated across time points to detect possible changes
induced by the sustained mental performance. The intensive treatment had a significant effect on exhaustion and effort
ratings, but no effects on N-back performances. Significant changes in the most exhausted state were observed in the early
visual processing and the anterior default mode networks (enhancement) and in the fronto-parietal executive networks
(suppression), suggesting that mental exhaustion is associated with a more idling brain state and that internal attention
processes are facilitated to the detriment of more extrinsic processes. The described application may inspire future
indicators of the level of fatigue in the neural attention system.
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Introduction

Functional magnetic resonance imaging (fMRI, [1]) in the

absence of experimental tasks and behavioral responses, per-

formed with the subject in a relaxed resting state (RS-fMRI) allows

measuring the amount of spontaneous blood-oxygen-level-depen-

dent (BOLD) signal synchronization within and between multiple

regions across the entire brain [2]. In fact, RS-fMRI activity is

characterized by low frequency (0.01–0.1 Hz) BOLD signal

fluctuations, which are topologically organized as multiple spatially

distributed functional connectivity networks called resting-state

networks (RSNs) [3,4,5,6,7] and recent high temporal resolution

RS-fMRI studies have found a similar organization even at

frequencies above 0.1 Hz (see, e.g., [8]). As the RSN constituent

regions partially or totally overlap with typical brain activations

induced by perceptual and cognitive tasks [9,10], the study of one

or more RSNs has allowed a system-level functional description of

several mental processes and the characterization of the associated

brain status. More recently, by repeating RS-fMRI scans under

different experimental conditions, it has been possible to relate

these processes to (and manipulate by) externally modifiable

factors, such as different pharmacological treatments or psycho-

logical experiences [11,12,13,14,15].

Independent component analysis (ICA) [16], if applied to

whole-brain fMRI time-series, allows decomposing a single data

set into a series of images called ICA components with associated

characteristic time-courses, without the need to select a specific

temporal profile or constrain the anatomical space of interest.

While some of the ICA components describe artifacts and other

noise sources in the data, other components represent neurolog-

ically meaningful spatio-temporal patterns, which may reflect

stimulus-related activations in task-based fMRI or intrinsic

functional architecture in task-free fMRI. Particularly, with or

without a task, ICA is able to describe the BOLD signal temporal

correlations within and between functionally connected brain

regions [17]. However, unlike seed-based functional connectivity

analysis approaches, the spatial distribution of ICA components

does not rely on targeting one or another brain region for the

analysis. Moreover, in RS-fMRI, several ICA components

correspond to highly reproducible RSNs [3,5], suggesting how

ICA can be used for both characterizing and mapping RSN

functional connectivity in a region-independent fashion, and
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producing separate spatially distributed (voxel-level) representa-

tions of distinct mental processes, such as attention and perception,

in a task-independent fashion.

Exhaustion is a common psycho-physiological state after

prolonged mental performance. It reflects an individual’s need

for substantial recovery that arises after sustained expenditure of

mental effort to meet task demands [18]. Exhaustion is also

associated with an increased feeling of fatigue as well as an

increase in perceived mental load under unchanged task

conditions [19]. Earlier studies have demonstrated that control

of attention, monitoring of one’s actions and response planning in

complex tasks are impaired in relation to the buildup of mental

fatigue [20,21]. These impairments have two potential conse-

quences: either a decrease of performance or an increase of mental

effort expenditure to maintain the same level of performance [22].

Moreover, a recent ICA-based cross-sectional study, has reported

a higher RS-fMRI activity in all major RSNs, in students scanned

at the end of a long period of stress (caused by the preparation for

a selection exam), compared to control students scanned during

normal academic activities [23], highlighting a possible long-term

impact of stress exposure on the resting brain.

The main goal of the present work was to establish and

characterize a possible connection between mental exhaustion and

the baseline mental activity, as represented by the unconstrained

spatial distribution of the ICA-derived RSNs, in an acute phase.

To this end, we use RS-fMRI and an ICA-based methodology to

investigate the effect of sustained performance over the course of

several hours on the RSNs of healthy participants.

Methods

2.1. Ethics statement
The institutional review board for human subject research at

the Maastricht University approved the study and all subjects gave

written informed consent before the start of the experiment.

2.2 Overview of the study methodology
Our RS-fMRI design incorporated both a free day and a

working day for all participants to control for circadian effects

[24]. In both days RS-fMRI scans were acquired at the beginning

and the end of the day at the same daytimes (+/2 30 minutes),

corresponding for the working day to a period before the

beginning and after the ending of a number of exhausting

activities. To maximize the likelihood of inducing exhaustion in all

subjects, we used completely unfamiliar tasks, as these normally

demand the highest regulative efforts [25]. Specifically, we chose

to confront the subjects for the first time with a flight simulator,

which is expected to stimulate many concurrent and complex

brain activities in a real world scenario.

ICA decompositions were performed on all RS-fMRI scans.

The ICA maps from reference scans (free day or beginning of the

day) were hierarchically ‘‘clustered’’ within subjects (across days)

and between subjects, yielding RSN templates, which were

unbiased with respect to the factor of interest. Corresponding

RSN components were then evaluated in a second-level analysis to

detect any enhancement or suppression effects induced by the

sustained mental performance.

In addition to RS-fMRI, we also collected behavioral data at all

time points to assess the degree of self-reported exhaustion and

verify the possible consequences of exhaustion on cognitive

performance and mental effort during a standard N-back task.

2.3. Participants
11 healthy participants (mean age 22.7 years, 4 males) were

recruited from the Maastricht University student community. In

order to minimize potential artifacts in the lower regions of the

frontal cortex, we excluded candidates with orthodontic retainers.

Screened participants were invited for the testing session.

2.4. Tasks and Experimental Procedure
Participants arrived at the lab at the facilities of the Maastricht

Brain Imaging Center around 09:30 h, (+2 1 h). Previously, they

were instructed to get their normal amount of sleep, and not to

exceed moderate caffeine levels in the morning (maximum of two

cups of coffee for habitual users not less than one hour pre-

experiment). The degree of exhaustion was rated on two 0–150

Visual Analogue Scales (VAS). On one VAS participants were

asked to indicate their degree of tiredness, on the other their

degree of being rested. Scores of the latter scale were reversed and

a mean score of the two scales was calculated.

The participants were then placed in an MRI scanner and the

resting state functional and anatomical image data were recorded

(see below for MRI parameters). Afterwards, participants per-

formed a version of the N-back task [26]. The task consisted of 15

blocks of 20 N-back trials each, accounting for duration of one

minute per block. Participants had to memorize letters appearing

on a screen and indicate through a button press response if those

letters were identical to the letter one, two, or three trials back,

depending on the condition of that block. Each of the three n-back

conditions was presented five times, in a quasi-randomized order.

Performance was measured as the number of correct button

presses within the 2000 ms response window. Participants received

feedback after each individual trial in order to be able to

continuously adjust their effort expenditure during a block. After

each one-minute block, participants rated their subjective expen-

diture of mental effort on the Rating Scale Mental Effort (RSME)

[19]. The task and the RSME were programmed in E-Prime

(Psychology Software Tools, Inc., US). They were presented using

E-Studio on a Windows XP PC connected to an MRI compatible

projector/mirror system. Task and rating input was collected via

an MRI compatible optical 2-button joystick (Current Designs

Inc., Philadelphia, USA). All subjects had MRI experience and

trained the N-back task prior to the experiment, minimizing

possible effects of novelty of the environment or learning effects for

the task.

After this session, participants either underwent a 4 h practice

session in the university’s helicopter cockpit mock-up or spent the

same amount of time with self-chosen, low-effort activities. The

practice session was organized in such a way to induce the

exhaustion level of a demanding workday.

The helicopter practice session consisted of a short theoretical

instruction on helicopter take-off procedures and a practical part

of trying to perform a takeoff procedure according to the presented

guidelines. After around 2 h, the session was interrupted to

measure the second resting state fMRI scan and a second self-

evaluation of exhaustion using VAS.

After 2 more helicopter practice hours, participants returned to

the MRI lab at around 16:00 h. After again indicating their level

of exhaustion on the two VAS scales, they were placed back in the

scanner. We recorded resting state data with the same parameters

and instructions as in the previous sessions. Afterwards, partici-

pants performed the same N-back paradigm as in the morning

session. All subjects underwent both the free day treatment and the

work day treatment in quasi-randomized order. In summary, each

subject had five RS-fMRI scans, which for the sake of brevity has

been labeled according to the day, free day (FD) or working day
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(WD) and to the time point (T1, T2 and T3). A graphical

description of the study protocol is shown in figure 1.

2.5. Behavioral data analysis
Analysis of the behavioral data was conducted in SPSS 18 and

21. Behavioral scores of the two exhaustion scales were pooled

after reversion of the ‘‘rested’’ scale. Exhaustion and RSME

ratings were z-standardized per participant by subtracting the

participant’s respective mean and dividing by the participant’s

respective standard deviation. For the analysis, we only used the

ratings at T1 and T3, as the N-back task was only carried out

during these two points per day in order to not unduly interrupt

the flight task. One participant reported difficulties with the

exhaustion scale and therefore data from this participant were

excluded from all analyses. For the analysis of the exhaustion

scores, we performed a univariate analysis of variance (ANOVA)

with time-of-day (morning: T1 versus evening: T3) and the day

activity (work day: WD vs free day: FD) as factors. The dependent

variable was the normalized exhaustion score. As the results

showed a significant interaction of the time of the day and the day

activity, we subsequently contrasted the scores per level of daytime

and day activity. A Bonferroni adjustment for multiple compar-

isons was applied to the p-values of the simple main effects.

For the effort data, an initial exploratory general linear model

(GLM) of effort scores at T1 using day activities and N-back

conditions as factors showed an unexpected effect of day activity at

T1. We suspected that this might show learning effects for the N-

back tasks. Due to exclusion of 3 participants (see above in this

section and section 2.7), the order of the working day and the free

day were not balanced, as 6 of the remaining 8 participants started

with the working day. We thus included the order of test days (first

versus second day) as covariate. The subsequent GLMs that we

calculated separately for T1 and T3 thus included day activities

and N-back conditions as factors and the order of test days as a

covariate.

An influence of our treatment on the error counts made on the

N-back task was tested using a GLM per time of day with N-back

condition and day activities as factors and order of test days as

covariate, assuming a negative binomial distribution [27]. All p-

values from multiple comparisons were adjusted using the

Bonferroni correction.

2.6. MRI and fMRI data acquisition
The participants were placed in a Siemens Allegra 3T head

scanner (Siemens AG, Erlangen, Germany). Respiratory and pulse

measurement devices in the form of an expandable breath sensor

and an infrared finger clip were fitted on the participants.

The resting state data were recorded with the participant’s eyes

closed and the instruction to stay awake, but to not engage in any

specific mental activity for the time of the scan. Whole brain Echo-

Planar Imaging (EPI) was performed using the following

parameters: Matrix size 64664; slice thickness 3 mm; Slice order

descending and interleaved; no gap; FOV 1926192 mm;

TE = 30 ms; TR = 2000 ms, 180 repetitions. Slice orientation

was tilted in order to minimize susceptibility artifacts in the

orbitofrontal regions [28]. Anatomical imaging was carried out

with a standard Alzheimer Disease Neuroimaging Initiative

(ADNI) complaint T1 weighted sequence, voxel size1 cubic mm;

flip angle = 9 deg; TR = 2250 ms; TE = 2.6 ms.

2.7. MRI and fMRI data preparation
Standard (f)MRI image data preparation, normalization and

pre-processing and statistical analysis and visualization were

performed with the BrainVoyager QX software (Brain Innovation

B.V., The Netherlands) [29]. Functional data preprocessing

included the correction for slice scan timing acquisition, the 3D

rigid body motion correction and the application of a temporal

Figure 1. The research design consisted of two days. On the free day, participants were in the lab only in the morning and in the afternoon. In
between, they performed self-chosen, low-effort activities. On the working day, morning and afternoon schedules were kept identical, however, an
additional resting state measurement was included in the noon. Time scale is not proportional see methods for timing information. RS = resting
state; FT = flight task.
doi:10.1371/journal.pone.0094222.g001
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high-pass filter with cut-off set to 2 cycles per time-course. One

participant showed excessive (.4 mm) movement in at least one of

the scanning runs. Additionally, data from one run of another

participant were lost due to a file transfer error. Data from both of

these participants were excluded from all analyses. Structural and

functional data of the remaining 8 subjects were co-registered and

spatially normalized to the Talairach standard space. In the course

of this procedure, the functional images were resampled to an

isometric 3 mm grid covering the entire Talairach box.

To account for possible BOLD effects due to cardiac pulsation

and respiratory cycle [30] physiological noise correction was

performed on each functional scan using the RETROICOR

technique [31]. Time-courses for components of heart rate,

respiration and respiration volume per time were created from

the recorded physiological signals at the fMRI sampling rate using

Matlab scripts (The Mathworks, United States) available from the

AFNI suite [32] and used, together with the motion estimate time-

courses available from the previous 3D rigid body motion

correction, as predictors in single-study GLM analysis [33] of

each functional scan. Using the residual time-courses from this

GLM allowed us to regress out possible signal fluctuations time-

locked with the phase of cardiac and respiratory cycles and

residual movement-related signal fluctuations.

2.8. Resting-state fMRI data analysis
Single-subject and group-level ICA analyses were performed on

the pre-processed functional time series and the estimated

independent components using two plug-in extensions of Brain-

Voyager QX implementing the fastICA algorithm [34] and the

self-organizing group-level ICA (sog-ICA) algorithm [35,36].

For each subject and each scan, 30 independent components

were extracted and scaled to spatial z-scores (i.e. the number of

standard deviations of their whole-brain spatial distribution).

These values express the relative amount a given voxel is

modulated by the activation of the component [17] and hence

reflect the amplitude of the correlated fluctuations within the

corresponding functional connectivity network. The final number

of ICA components is a free parameter, which has previously been

either empirically determined or estimated [37] as the number of

principal components retained in the multivariate data. This

number typically lies between 20 and 60 depending on the data. In

the present work we used the same rule of thumb of Grecious et al.

[38] and chose to keep a number of principal components

corresponding to at least one sixth of the number of time points

(180/6 = 30) and accounting for more than 99.9% of the total

variance.

The group ICA analysis was conducted in two steps.

In the first step, the baseline scans from both days (FD-T1 and

WD-T1) were submitted to a hierarchical sog-ICA analysis [38].

Thereby, the most representative RSN maps were selected for the

second step. To minimize day- and treatment bias, the baseline

scans of the two days were pooled together in the first level of the

hierarchical sog-ICA and the scans corresponding to the

exhausted states were not included. The final result of the first

step consisted of 30 clusters of 8 components (one per subject) and

this was the basis of a random-effects analysis, which was

conducted as a 1-factor ANOVA with 1 within-subject factor

(‘‘cluster membership’’) and subjects as random observations.

From this ANOVA, we produced 1-sample t-test maps (one for

each cluster) and identified at least seven of the most relevant RSN

components as reported and illustrated in previous studies (see, e.

g., [5]). For each identified RSN, an RSN template mask was

obtained by applying a voxel-level threshold of P = 0.05 (corrected

for multiple voxel-level comparisons).

In the second step, all RSN template masks were used to select

one best-fitting component per subject per RSN in each separate

scan [39,40]. Thus, for each RSN, we obtained five best-fitting

RSN components per subject (one component per condition), and

then submitted 32 individual components (4 components per

condition: FD/WD_T1/T3, 8 subjects) to a random effects 2-

factor ANOVA with 2 within subject factors: ‘‘day’’ (F vs W) and

‘‘time point (‘‘T1 vs T3’’). The components corresponding to the

intermediate condition WD_T2 were not used in the 2-way

ANOVA, but were considered for display purposes in the

subsequent regional analyses.

In order to isolate exhaustion-induced effects, from this 2-way

ANOVA, we combined three linear contrasts, respectively

accounting for (i) the effect of the treatment across days at T3:

[WD-T3.FD-T3], (ii) the effect of treatment in the working day:

[WD-T3.WD-T1] and (iii) the effect of treatment across days and

time points [WD-T3.FD-T1]. The third contrast was added to

exclude any interaction effects implied by the contrast [FD-

T3,FD-T1] and not by the contrast [WD-T3.WD-T1].

Combining all these inequalities yields: [3*WD-T3.WD-

T1+FD-T1+FD-T3], which is the linear contrast that we have

tested to identify the regions with statistically significant effects of

‘‘enhancement’’ or ‘‘suppression’’ of the regional RS-fMRI

oscillations. To correct for multiple comparisons, statistically

significant regional effects from this contrast were only accepted

for compact clusters surviving the joint application of a voxel- and

a cluster-level threshold, which were chosen using a non-

parametric randomization approach. Namely, an initial uncor-

rected threshold was applied (p = 0.01) to all voxels and, then, a

minimum cluster size was calculated that protected against false

positive clusters at 5% after 500 Monte Carlo simulations [29,41].

To further correct for the number of studied RSNs, a cluster-

corrected level of 5/N% was considered, N being the number of

RSNs selected in the first step of the analysis (and therefore the

number of actual 2-ANOVA contrasts).

For regions of interest determined in the above analysis,

individual ICA z-scores were extracted for the scans WD-T2 and

WD-T3, averaged over all voxels and used for a linear correlation

analysis with the degrees of exhaustion, as expressed by the mean

VAS score. To compute a pooled statistical significance of these

correlations, while correcting for the implicit study effect, we

entered these regional ICA scores into a 2-way analysis of

covariance (ANCOVA) with one categorical factor (scan), one

continuous factor (VAS score) and a scan-by-exhaustion interac-

tion term. Because these analyses were only exploratory, we report

their statistical significance level without correction for multiple

comparisons.

Results

3.1. Behavioral results
In the analysis of the exhaustion scores, the results of the

ANOVA showed that both treatment (F (1,28) = 21.66, p,0.001)

and time-of-day (F (1,28) = 13.85, p,0.001) had an influence on

the level of exhaustion. There was a significant interaction effect of

time-of-day and the day activity (F (1, 28) = 5.6 p = 0.032). Analysis

per level of time-of-day showed that exhaustion was rated higher

(F (1, 28) = 23.84, p,0.001) in the afternoon of the work day (WD-

T3) than on the afternoon of the free day (FD-T3). There was

no significant difference at the T1 measurement points

(F (1,28) = 2.89, p = 0.1) (see Figure 2).

When testing for differences in RSME ratings at T1, we initially

found an unexpected effect of day activity (F (1,236) = 18.98,

p,0.001). As we suspected a possible learning effect, we repeated
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the analysis with the order of test days as a covariate. The

covariate test day indeed had a significant influence on the RSME

scores (F (1,235.) = 38.46, p,0.001). The factorN-back condition

was still significant (F (2,235.) = 107.91, p,0.001), while day

activity was no longer a significant factor (F (1,235.) = 0.92,

p = 0.338). At T3, still both the covariate order of test days (F

(1,235.) = 10.89, p,0.001) and the factor N-back condition (F

(2,235.) = 26.53, p,0.001) were both significant. At this point,

however, also day activity was significant (F (1,235.) = 5.60,

p = 0.0192) (see Figure 3).

All participants were able to perform the N-back task without

problems, as the average error rates per condition suggest (1-back:

mean = .81, SD = .95; 2-back: mean = 1.22, SD = 1.39 and 3-

back: mean = 2.49, SD = 2.02). The performance of the partic-

ipants, measured in number of errors, was shown to be influenced

at T3 by both the order of test days (Wald x2 (1, N = 240) = 7.89,

p,0.005) and the N-back condition (Wald x2 (2, N = 240) = 14.87,

p,0.001), but not the day activity (Wald x2 (1, N = 240) = .96,

p = 0.326).

3.2. Imaging results
In the first step of the analysis including only the morning

sessions, at least seven RSN components were identified that were

highly similar to those reported in previous ICA-based RS-fMRI

studies. These RSN components could be functionally categorized

by the Talairach coordinates of the most active sub-regions (for

reference, we used, e. g., the table presented by Allen et al. [42])

and were accordingly labeled as (two) default-mode networks (an

anterior and a posterior default-mode network), a visual network,

an auditory network, a sensori-motor network, and two (lateral-

ized) dorso-lateral fronto-parietal networks. These components

were selected as ‘‘baseline’’ RSN components for the second step

of the analysis (fig. 4).

In the second step of the analysis, that included both free and

work sessions, clusters of voxels displaying statistically significant

differences in the comparison between the most exhausted

condition and the mean of all other conditions were detected

within four RSNs. These are reported in table 1 and will be

illustrated and discussed below.

We found statistically significant regional effects of exhaustion in

the early visual processing network (fig. 3), in the anterior default

mode network (fig. 4) and in both the right (fig. 5) and the left (fig.

6) dorso-lateral fronto-parietal networks(fig. 7), corresponding to

the two executive attention networks.

In the visual processing network (fig. 5), a compact cluster

located in left lingual gyrus showed a statistically significant

regional effect, with rs-fMRI signals enhanced in the most

exhausted condition (p,0.01, clus. size .702 mm3, cluster- and

network-level corrected). Extracting the average ICA scores in this

region from each individual revealed a statistically significant

positive correlation with the self-reported exhaustion scores

(p = 0.0237) but no significant scan-by-exhaustion interaction

(p.0.05).

We found no significant effects in the anterior and posterior

default mode networks. At an uncorrected level of significance, in

the anterior default mode network, a compact cluster located in

Figure 2. Exhaustion levels over the course of the work (wd_t1/t3) and the free day (fd_t1/t3) with standard error bars.
doi:10.1371/journal.pone.0094222.g002
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medial frontal gyrus showed an effect similar to that observed in

the early visual processing network (p,0.01, clus. size .378 mm3,

cluster-level corrected) with a positive correlation between the

regional ICA scores and the exhaustion scores (p = 0.03) (fig. 6)

and no significant scan-by-exhaustion interaction (p.0.05).

Finally, both left and right fronto-parietal executive attentional

networks exhibited reduced functional connectivity in the most

exhausted state compared to all other states (fig. 7). More

specifically, in the left fronto-parietal executive attention network,

a compact cluster located in left middle frontal gyrus showed an

effect opposite to that observed in the anterior default mode and

the visual processing networks (p,0.01, clus. size .675 mm3,

cluster- and network-level corrected). In the right fronto-parietal

network, the suppression of RS-fMRI signals was distributed

across the anterior and posterior nodes. In fact, two compact

clusters (p,0.01, clus. size .540 mm3, cluster- and network-level

corrected) located anteriorly in right middle frontal gyrus and

posteriorly in the right angular gyrus exhibited a similar significant

suppression. However, for none of the regions, the correlation with

behavioral scores or the scan-by-exhaustion interaction reached

statistical significance (p.0.05).

Discussion

In this study, we intended to explore the distributed topological

changes of the main RSNs in healthy volunteers who spent an

entire full day in completing challenging and demanding tasks. By

using a multi-level ICA-based approach, we demonstrated

domain-specific spatially selective effects, which were in some

cases correlated with the increased levels of mental exhaustion

reported by the studied subjects.

4.1 Behavioral effects of mental exhaustion
The behavioral results were in line with our hypotheses.

Namely, the sustained performance in the working day induced an

increased self-reported level of exhaustion compared to the free

day.

In the working day, there was no significant difference between

exhaustion levels at T1 and T2. We speculate that the short

training periods were not enough to actually exhaust the

participants strongly already at T2. This reflects our rationale to

design a paradigm featuring longer task duration. In fact, a short

period of activity in a stimulating environment such as a flight

simulator can be assumed to actually increase arousal and thereby

decrease experienced exhaustion. Also, it is possible that at T1,

participants still experienced effects of sleep inertia and low body

temperature, as their bodies just started to wake up (see, e. g.,

[43]). Nonetheless, when correlating brain and behavior, we

pooled data from both T2 and T3 as we did not want to exclude

the possibility that functional brain networks could predict

potential sub-threshold exhaustion effects already at T2.

Next to an increase in exhaustion, we also found a significant

increase of mental effort expenditure to maintain the same

performances (i. e. same error rates) in the N-back task at the end

of the working day compared to the free day at identical day times.

This means that participants were able to sustain their perfor-

mance level, yet they had to invest a significantly higher amount of

Figure 3. Effort ratings for all N-back conditions as an effect of treatment (work vs free days): Estimated marginal means per time-
of-day and day activity (value of the centered covariate day order = 0). Error bars represent standard errors.
doi:10.1371/journal.pone.0094222.g003
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mental effort. This finding is consistent with the framework of

Hockey [22] and similar findings have been demonstrated earlier

(see, e. g., [21]).

4.2 Distributed effects of mental exhaustion on the early
visual processing network

A remarkable effect of the work treatment was detected in the

early visual processing RSN, where the RS-fMRI fluctuations

were significantly higher in the exhausted state and the regional

scores were positively correlated with the degree of exhaustion.

This RSN has been previously found to be principally associated

with the electro-encephalographic (EEG) ‘‘alpha’’ rhythm [5],

which is typically more prominent in exhausted states, such as

after sustained visual attention [20] or driving tasks [44,45], but

also proportionally more attenuated in relaxed states, such as after

a daytime nap [46]. Most relevant to our findings, a recent study

Figure 4. Group ICA results for the analysis of the pooled baseline resting state scans (WD-T1, FD-T1): (a) anterior default mode
network; (b) posterior default mode network; (c) visual network; (d) sensory-motor network; (e) right fronto-parietal network; (f)
auditory network; (g) left fronto-parietal network. Statistical thresholds were corrected for multiple comparisons.
doi:10.1371/journal.pone.0094222.g004

Table 1. Regional effects of exhaustion in resting-state networks (individual clusters).

Resting-state Network Anatomical Region
Center of Mass x,y,z
(Talairach) T-stat [Avg, Max] Extension [mm3]

Correlation with Exhaustion
[F-stat, p-value]

Early Visual Left Lingual Gyrus 216, 262, 0 +4.16, +6.77 1796 (**) 6.7, 0.0237 (***)

Anterior Default-mode Medial Frontal Gyrus 21, +46, +33 +4.06, +6.24 380 (*) 6.04, 0.03 (***)

Left Fronto-Parietal Left Middle Frontal Gyrus 234, +7, +48 24.59, 29.82 2590 (**) 0.01, 0.93

Right Fronto-Parietal Right Angular Gyrus +46, 261, +36 23.50, 27.369 887 (**) 0.57, 0.46

Right Fronto-Parietal Right Middle Frontal Gyrus +33, +7, +35 24.24, 26.568 911 (**) 2.52, 0.13

(*) P,0.05 cluster-level corrected.
(**) P,0.05 cluster- and network-level corrected.
(***) Uncorrected p-value.
doi:10.1371/journal.pone.0094222.t001
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by Lim et al. [47] has demonstrated how EEG alpha activity can

even predict successful recovery from a sustained mental task if

measured during a short break: Namely, participants showing a

lower level of EEG alpha activity in a resting period between two

blocks of task performance also showed a higher increase in

performance after the break. Taking these evidences together, and

considering that it is generally believed that the presence of alpha

oscillations signifies ‘‘idling’’ or inhibition of cortical processing

[48,49], the observed regional increase of the RS-fMRI signal

fluctuations in the visual network induced by exhaustion clearly

points to increased inhibition of the neural activity in the early

visual system implied by exhaustion.

4.3 Distributed effects of mental exhaustion on the
default-mode networks

Albeit only descriptively, we also report a weak positive effect of

exhaustion in the anterior DMN, characterized by the regional

increase of RS-fMRI signal fluctuations in the medial frontal

gyrus. In this region, the correlation between the mean regional

ICA scores and the self-rated degree of exhaustion was also

positive and statistically significant in the exhausted states. A

similar effect of increased resting state frontal connectivity in the

anterior DMN has been recently observed in patients with mild

traumatic brain injury [50]. In contrast to this study, however, no

significant effects were found in the posterior DMN.

4.4 Distributed effects of mental exhaustion on the
fronto-parietal networks

Different from what has been observed in the early visual

processing and the anterior default mode networks, both the right

and the left dorso-lateral fronto-parietal networks were found to be

suppressed in the exhausted, compared to the relaxed states, with

clusters of significantly negative differences in frontal and parietal

lateralized regions.

The suppression of the fronto-parietal networks could be a sign

that brain fatigue is deteriorating the subjects’ executive abilities.

In fact, the suppressed areas in these networks have long been

established as crucial in the effortful maintenance of sustained

attention [51,52,53,54,55,56], therefore the functional connectiv-

ity of these networks could be impaired after long periods of

sustained activation with associated heavy mental workload. In our

experimental and analytical framework, this possible RSN

impairment was detected before performance degradation in the

Figure 5. Early visual processing network. (a) Statistical map of the differential effects (WD_T3.WD_T1+FD_T1+FD_T3). Statistical thresholds
were corrected for multiple comparisons. (b) Bar graph of the regional ICA scores (with standard error bars) in all conditions. (c) Correlation graph of
the regional ICA scores against the normalized degree of exhaustion for the separate working day sessions (with fit lines indicating the directions of
the correlations).
doi:10.1371/journal.pone.0094222.g005
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subsequent N-back tasks, as demonstrated by the same error rates

at the end of the working and free days.

The suppression of fronto-parietal networks observed with RS-

fMRI in a significantly exhausted state could be linked to recent

arterial spin labeling (ASL) perfusion based fMRI (P-fMRI) results

[53,56].

Lim et al. [56] have showed that sustained periods of taxing

cognitive workload represented by 20-min executions of a

psychomotor vigilance test (PVT), besides measurable perfor-

mance declines, also cause significant deactivations (as reflected by

regional cerebral flow (rCBF) reductions) in a right fronto-parietal

network during a post-task resting interval, compared to a pre-task

resting baseline. Remarkably, it is this rCBF decrease between

post- and pre-task baselines, and not the rCBF increase during the

task, that turns out to predict the PVT performance decline,

suggesting the presence of persistent effects of cognitive fatigue in

the right fronto-parietal network after a period of heavy mental

work, as well as the critical role of this executive attention network

in mediating the (temporary) impairment of cognitive abilities.

Even if RS-fMRI suppression occurred in both dorsal fronto-

parietal networks, this effect appeared more widespread and

distributed over distant regions in the right lateralized network,

where both frontal and parietal nodes were suppressed, than in the

left dorsal fronto-parietal network, where only one anterior region

in the left middle frontal gyrus was suppressed. In other words, the

suppression appears to be a more generalized phenomenon in the

right fronto-parietal network, even if the correlation with the self-

rated degree of exhaustion does not reach statistical significance in

any of the single regions with detected differences. Contrariwise,

the suppression is stronger in the left fronto-parietal network,

suggesting a potentially worse damage in the anterior portion of

this network.

In line with the idea that more sustained activity during the tasks

causes more deterioration to the executive attention network after

the tasks, the more widespread involvement of the right fronto-

parietal network could be linked to the right lateralization reported

(in both human and monkey studies) when these areas are engaged

in tasks requiring attention, vigilance and continuous performance

[51,57,58,59,60,61,62]. In the working day, i.e. during intensive

helicopter flying practice in the simulator, subjects were confront-

ed with a task that required continuous attention and careful

control of the cockpit interfaces to successfully operate the aircraft.

Hence, the task requirements in our study can be assumed to

strongly engage the right fronto-parietal network, even if we

cannot be as specific as to predict which aspect of the task in

particular is responsible for the reported increase of exhaustion

Figure 6. Anterior default mode network. (a) Statistical map of the differential effects (WD_T3.WD_T1+FD_T1+FD_T3). Statistical thresholds
were corrected for multiple comparisons. (b) Bar graph of the regional ICA scores (with standard error bars) in all conditions. (c) Correlation graph of
the regional ICA scores against the normalized degree of exhaustion for the separate working day sessions (with fit lines indicating the directions of
the correlations).
doi:10.1371/journal.pone.0094222.g006
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and the suppression of the right fronto-parietal network.

Contrariwise, the higher deterioration observed in the left middle

frontal gyrus (compared to its contra-lateral counterpart) could be

attributed to the fact that in healthy (non-depressed) subjects

cognitive performance inducing stress, causes abnormally higher

activations in left compared to the right middle frontal gyrus

during the same working memory task [63]. Thereby, it is

plausible that this kind of stress could have contributed to the more

regionally specific deterioration of the left fronto-parietal network.

Taken together, our results demonstrate mental exhaustion

affects RS-fMRI activity in different directions depending on the

RSN. Namely, visual and default-mode networks exhibit a local

up-regulation, and fronto-parietal networks exhibit a local down-

regulation, of network-specific RS-fMRI activity. These findings

suggest that mental exhaustion affects RSNs not depending on the

character of being a task-positive or a task-negative network

(which would, e.g., imply an opposite regulation of visual and

default-mode networks) but, more likely, on the character of being

associated with sensory inhibition or excitation (as is the case for

the visual network) and on the character of being associated with

intrinsic or extrinsic neural processes (as is the case for default-

mode and the fronto-parietal networks).

Moreover, when correlating regional ICA scores with exhaus-

tion levels, significant coupling were found in the upregulated, but

not in the downregulated, RSNs. A likely explanation for this

finding is that RSN upregulation implies higher signals, and,

therefore, a higher signal-to-noise ratio, in the ‘‘exhausted’’ states,

and this produces less noisy observations in the post-hoc

correlations. Contrariwise, RSN downregulation causes relatively

more noisy observations in the exhausted states. Thus, we could

expect more statistical power in correlating the upregulations than

the downregulations.

4.5 Relation to previous works
Other groups have previously addressed possible alterations in

RSN functional connectivity and their endogenous dynamic

features that can be related to cognitively effortful tasks. For

instance, using a similar ‘‘rest-task-rest’’ design, Barnes et al. [64]

found that brain endogenous dynamics tend to recover some of

their pre-task dynamic features relatively slowly, suggesting that

large-scale neurocognitive systems can take a considerable period

of time to return to a stable baseline state after demanding task. In

line with this theory, Gordon et al. [65] demonstrated that after a

working memory task, the immediately following resting state

functional connectivity remained persistently altered compared to

the baseline resting state, in a fashion similar to how this was

altered during the task performance. Particularly, when examining

Figure 7. Left (a,b) and right (c,d) fronto-parietal networks. (a,c) Statistical maps of the differential effects (WD_T3.WD_T1+FD_T1+FD_T3).
Statistical thresholds were corrected for multiple comparisons. (b,d) Bar graphs of the regional ICA scores (with standard error bars) in all conditions.
doi:10.1371/journal.pone.0094222.g007
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the task positive network (TPN) and the DMN, a suppression of

the within-network functional connectivity in the TPN (as well as a

modest non-significant enhancement of the DMN) was observed in

this study, which seems highly relevant to the interpretation of the

present findings. In fact, following Gordon et al. [65], the observed

reduction of the functional connectivity in the fronto-parietal

networks may well reflect a cognitive after-effect, such that the

brain continues to ruminate with the flight simulation after the task

is ceased, or, more likely, the persistence of subjective aspects from

the recent effortful cognitive experience. This is possible because

fronto-parietal activity is associated with diverse cognitive tasks

and demands that are central to intelligent thoughts, actions and

behaviors, including the creation of structured mental programs,

the control and (rapid) reorganization of the mental focus and the

separation of successive task steps [66], all problem-solving abilities

stimulated by the flight simulator.

Some studies examining pre vs post task resting state functional

connectivity have also suggested or demonstrated the existence of

learning effects in multiple domains, albeit not all in the same

RSNs and regions, and not all in the same direction (i. e.

manifesting as positive or negative changes). Duff et al. [67] have

shown negative changes in the sensorimotor network following a

simple finger tapping exercise. Using motor learning paradigms,

Albert et al. [11] have reported an increased functional

connectivity in the left fronto-temporal network, whereas Vahdat

et al. [68] found that the only regions showing functional

connectivity changes purely associated with motor learning were

located in the cerebellar cortex and in the superior parietal lobule

and all exhibited negative correlations with learning. Using a

visual learning paradigm, Lewis et al. [69] were in line with Albert

et al. [11] in that within-network learning effects would mainly

consist of increased resting state functional connectivity that were

related to highly specific synaptic mechanisms stimulated by the

learning task. Finally, both Waites et al. [70] and Grigg and Grady

[71] used different language tasks to show a positive after-effect of

the cognitive activity in which positive changes in resting

connectivity were prevalent in high order areas. The common

denominator of all these evidences is that learning effects generally

cause positive changes in the resting state functional connectivity

of high order brain regions and networks, whereas low order

domains, such as the sensorimotor or visual domains, might

require highly specific learning tasks to show similar learning-

related effects prevailing over perceptual or fatigue-related effects.

Along this line, considering that our stimulation was not specific to

any of the studied low order systems (but rather engaged all brain

systems in highly and purposely effortful performances), and that

we observed a reduction of the resting state functional connectivity

in both the left and the right FPN, we suggest that the learning

factor was not as prominent in our experimental design as the

exhaustion factor.

4.6 Limitations
This study has two important limitations. First, given the low

number of subjects, the reported analyses are to be considered

only exploratory and, therefore, all results are at present useful

only for elaborating initial working hypotheses in the design of

future studies. Second, it should be considered that the N-back

task, while very common and popular in cognitive experiments,

could be not appropriate in relation to possible learning effects

induced by the practice with the flight simulator. In our

experiments, it was not possible (due to technical problems) to

record objective indicators regarding the performance at the

simulation and therefore the possibility that the extensive practice

with the simulator might also have caused that subjects gain

knowledge of new skills, cannot be excluded. On the other hand,

several studies have shown that apparently less efficient mental

processes (resulting, e. g., in increased reaction time on task) can

actually correspond to improved performances due to practice

(see, e. g., [72]).

Conclusions

In conclusion, this study demonstrates the potential utility of

RS-fMRI, in combination with ICA-based distributed modeling of

the spontaneous BOLD activity synchronization, for revealing and

characterizing the neural networks that present some immediately

visible effects of mental exhaustion after sustained and highly

demanding training and practice. In fact, our results demonstrate

that some of the ICA components corresponding to the most

important and reported RSNs exhibit regional changes in their

spatial distribution which can be associated with persistent effects

of exhaustion, as measurable in the immediate aftermath of a

period of heavy cognitive workload. Therefore, characterizing the

resting state functional connectivity of these RSNs with ICA may

provide novel markers of cognitive fatigue and mental exhaustion

useful for identifying neural ‘‘risk factors’’ for accidents and errors

due to prolonged task performance. For instance, considering the

specific paradigm used here, this framework could be potentially

useful to identify risk factors in pilots in relation to, e. g., the

maximum number of flight hours allowed. Moreover, a possible

clinical implementation of this paradigm could help neurologists to

address the effects of cognitive fatigue in neurological diseases

[73].
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