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ABSTRACT Here, we report the results of 16S rRNA gene amplicon sequencing of bac-
terial endophytes from parasitized and unparasitized samples of the common sunflower
(Helianthus annuus) and samples of its associated plant parasite field dodder (Cuscuta
campestris), collected from one location in Fresno County, California (August 2017).

Bacterial endophytes (bacteria internal to the plant body) impact host plant growth,
physiology, and disease (1, 2). Different species of plants and even individuals in

the same plant population can have different endophyte communities (3–5). Plant
parasites use modified root structures (haustoria) to penetrate host vascular tissues
to obtain water and nutrients and incidentally to transfer genes, mRNA, herbivory-
induced signals, and viruses (2, 6–9). How endophytes may influence interactions
between plant parasites and their hosts is unknown.

Here, we report the results of 16S rRNA gene amplicon sequencing of bacterial
endophytes from parasitized and unparasitized samples of the common sunflower
(Helianthus annuus) and samples of its associated plant parasite field dodder (Cuscuta
campestris) (Table 1).

Stem tissues from randomly selected parasitized sunflower-dodder pairs (n = 15) and
unparasitized sunflower plants (n = 15) were collected and transported on ice to the lab-
oratory for surface sterilization (10). Briefly, 10 to 20 g of tissue was sterilized through
two rounds of submersion in phosphate-buffered saline for 2 min, followed by 70% etha-
nol for 1 min and then 30% (round 1) or 3% (round 2) hydrogen peroxide (H2O2) for 3
min. Samples were then rinsed three times with deionized water. Sterilization was veri-
fied by plating onto 1/10 strength (4 g of Trypticase soy agar and 15 g of Bacto agar per
liter) Trypticase soy agar plates, with incubation for 10days at 30°C. DNA was extracted
as described previously (10). We modified the published protocol by resuspending the
air-dried pellet with 30ml of sterile, deionized water.

We performed a nested PCR with the chloroplast-excluding primers 16S 799f
(AACMGGATTAGATACCCKG) and 16S 1492r (TACGGHTACCTTGTTCGACTT) (11). The 50-
ml PCR mixture contained 100 ng of genomic DNA, 1 ml of each primer at 10 nmol/liter,
10ml of 5� GoTaq buffer, 5ml of 25mmol/liter MgCl2, 2.5ml of 1mg/ml bovine serum al-
bumin, 1 ml of deoxynucleoside triphosphates (dNTPs), each at 10mmol/liter, and 2.5 U
GoTaq polymerase. Thermocycler conditions were initial denaturing for 3min at 95°C, 20
cycles of 40 s at 95°C, 40 s at 50°C, and 90 s at 72°C and a final 10-min elongation at
72°C (12). Agarose (1%) gel electrophoresis was used to separate the PCR products. The
bacterial product band (;750bp) was excised and purified using the Zymoclean gel DNA
recovery kit (Zymo Research, Irvine, CA). The purified DNA was reamplified using the bar-
coded primer set 16S 799f and 16S 1115r (AGGGTTGCGCTCGTTG) (13), using the same
conditions as described above. The resultant 300- to 400-bp band was excised and purified
as described above. Sequencing using the two-step amplicon-to-data approach was per-
formed by the Microbial Analysis, Resources, and Services facility at the University of
Connecticut with an Illumina MiSeq system to generate 2� 250-bp reads (14).
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The paired-end demultiplexed sequences were imported using QIIME2 v2020.6 (15),
and the DADA2 plugin (16) was used to denoise the sequences and to remove phiX
and chimeric sequences. Based on the quality plot generated, 10 bp was trimmed from
the beginning of each sequence and reads were truncated at 220 bp. The numbers of
reads before and after use of the DADA2 pipeline are listed in Table 1. Taxonomy was
assigned using the Silva v138 database (17–19). Data were exported using qiime2R
v0.99.34 (https://github.com/jbisanz/qiime2R) for analysis with phyloseq v1.28.0 (20),

TABLE 1 Sample information for sequencing reads (final length of 251 bp)

Samplea Host species
Ecological
status

Site on sunflower in reference
to haustorium attachment

No. of raw
sequencing
reads

No. of
quality-filtered
reads

SRA
accession
no.

DodderB1 Cuscuta campestris Parasite NAb 6,309 3,775 SRR12442295
DodderB2 Cuscuta campestris Parasite NA 4,605 3,358 SRR12442294
DodderB3 Cuscuta campestris Parasite NA 5,973 3,763 SRR12442283
DodderB4 Cuscuta campestris Parasite NA 10,660 6,479 SRR12442272
DodderB5 Cuscuta campestris Parasite NA 4,580 2,291 SRR12442262
DodderB6 Cuscuta campestris Parasite NA 780 419 SRR12442261
DodderB7 Cuscuta campestris Parasite NA 6,369 4,421 SRR12442260
DodderB8 Cuscuta campestris Parasite NA 1,059 637 SRR12442259
InfectedAbove1 Helianthus annuus Parasitized Above attachment site 7,577 4,932 SRR12442258
InfectedAbove10 Helianthus annuus Parasitized Above attachment site 6,336 5,024 SRR12442257
InfectedAbove11 Helianthus annuus Parasitized Above attachment site 8,562 5,338 SRR12442293
InfectedAbove2 Helianthus annuus Parasitized Above attachment site 15,006 8,254 SRR12442292
InfectedAbove3 Helianthus annuus Parasitized Above attachment site 13,149 7,045 SRR12442291
InfectedAbove4 Helianthus annuus Parasitized Above attachment site 14,382 7793 SRR12442290
InfectedAbove6 Helianthus annuus Parasitized Above attachment site 21,060 11,832 SRR12442289
InfectedAbove7 Helianthus annuus Parasitized Above attachment site 9,685 5,773 SRR12442288
InfectedAbove8 Helianthus annuus Parasitized Above attachment site 7,644 5,098 SRR12442287
InfectedAbove9 Helianthus annuus Parasitized Above attachment site 9,195 5,537 SRR12442286
InfectedDown1 Helianthus annuus Parasitized At attachment site 209 87 SRR12442285
InfectedDown10 Helianthus annuus Parasitized At attachment site 22,916 13,033 SRR12442284
InfectedDown11 Helianthus annuus Parasitized At attachment site 287 129 SRR12442282
InfectedDown2 Helianthus annuus Parasitized At attachment site 420 168 SRR12442281
InfectedDown3 Helianthus annuus Parasitized At attachment site 287 134 SRR12442280
InfectedDown4 Helianthus annuus Parasitized At attachment site 246 117 SRR12442279
InfectedDown6 Helianthus annuus Parasitized At attachment site 395 182 SRR12442278
InfectedDown7 Helianthus annuus Parasitized At attachment site 333 174 SRR12442277
InfectedDown8 Helianthus annuus Parasitized At attachment site 971 517 SRR12442276
InfectedDown9 Helianthus annuus Parasitized At attachment site 20,661 11,716 SRR12442275
UninfectedDown1 Helianthus annuus Unparasitized At attachment site (if haustoria

had been present)
23,047 18,520 SRR12442274

UninfectedDown10 Helianthus annuus Unparasitized At attachment site (if haustoria
had been present)

14,840 6,883 SRR12442273

UninfectedDown11 Helianthus annuus Unparasitized At attachment site (if haustoria
had been present)

25,432 16,125 SRR12442271

UninfectedDown12 Helianthus annuus Unparasitized At attachment site (if haustoria
had been present)

10,675 5,634 SRR12442270

UninfectedDown13 Helianthus annuus Unparasitized At attachment site (if haustoria
had been present)

12,185 6,183 SRR12442269

UninfectedDown2 Helianthus annuus Unparasitized At attachment site (if haustoria
had been present)

23,781 19,594 SRR12442268

UninfectedDown3 Helianthus annuus Unparasitized At attachment site (if haustoria
had been present)

19,725 14,828 SRR12442267

UninfectedDown4 Helianthus annuus Unparasitized At attachment site (if haustoria
had been present)

29,750 22,466 SRR12442266

UninfectedDown6 Helianthus annuus Unparasitized At attachment site (if haustoria
had been present)

17,491 8,438 SRR12442265

UninfectedDown7 Helianthus annuus Unparasitized At attachment site (if haustoria
had been present)

8,759 4,875 SRR12442264

UninfectedDown8 Helianthus annuus Unparasitized At attachment site (if haustoria
had been present)

10,046 5,408 SRR12442263

aAll samples were collected from the north side of Mount Whitney Avenue in the town of Huron, Fresno County, California (36°2594900N, 120°1095300W), on 12 August 2017.
bNA, not applicable.
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FIG 1 (A) Nonmetric multidimensional scaling (NMDS) based on Bray-Curtis distances. Shapes correspond to sample species, and colors correspond to
sample status (parasite, parasitized, or unparasitized). (B) Relative abundance of phyla obtained from 16S rRNA sequencing of dodder (parasite), parasitized
sunflower, and unparasitized sunflower samples. Phyla with a relative abundance of less than 1% and unassigned amplicon sequence variants were
grouped together in their own category.
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vegan v2.5.6 (https://cran.r-project.org/package=vegan), and ggplot2 v3.3.2 (21). Using
Bray-Curtis distances, there were significant differences between endophyte commun-
ities in parasitized and unparasitized sunflowers (permutational multivariate analysis of
variance [PERMANOVA], P=0.001) and between endophyte communities in dodder
and sunflowers (PERMANOVA, P=0.001) (Fig. 1A). The predominant phyla in all sam-
ples were Proteobacteria, Firmicutes, Bacteroidota, and Actinobacteria (Fig. 1B).

Data availability. The 16S rRNA gene amplicon sequence data have been depos-
ited in the GenBank Sequence Read Archive (SRA) under the BioProject accession num-
ber PRJNA656591 (Table 1).
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