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ABSTRACT

Nipah virus (NiV) is a member of the genus Henipavirus of the family Paramyxoviridae,
characterized by high pathogenicity and endemic in South Asia. It is classified as a
Biosafety Level-4 (BSL-4) agent. The case-fatality varies from 40% to 70% depending on
the severity of the disease and on the availability of adequate healthcare facilities. At
present no antiviral drugs are available for NiV disease and the treatment is just sup-
portive. Phylogenetic and evolutionary analyses can be used to help in understanding the
epidemiology and the temporal origin of this virus. This review provides an overview of
evolutionary studies performed on Nipah viruses circulating in different countries. Thirty
phylogenetic studies have been published from 2000 to 2015 years, searching on pub-
med using the key words ‘Nipah virus AND phylogeny’ and twenty-eight molecular
epidemiological studies from 2006 to 2015 have been performed, typing the key words
‘Nipah virus AND molecular epidemiology’. Overall data from the published study
demonstrated as phylogenetic and evolutionary analysis represent promising tools to
evidence NiV epidemics, to study their origin and evolution and finally to act with
effective preventive measure.
1. Introduction

Nipah virus (NiV) is member of the genus Henipavirus in the
family Paramyxoviridae. Due to its highly pathogenicity and
relative new finding, it is classified as a Biosafety Level-4 (BSL-
4) agent. Moreover, the Centers for Disease Control and Pre-
vention (CDC) and the National Institute of Allergy and Infec-
tious Diseases (NIAID) have classified NiV as a Category C
priority pathogen.

Nipah virus disease is a recently discovered zoonotic disease
characterized by fever, constitutional symptoms, and encepha-
litis, sometimes accompanied by respiratory illness. NiV has an
envelope with filamentous nucleocapsids [1], the genome
consists of a single-stranded negative-sense RNA of approxi-
mately 18.2 kb. The genome encodes for six major structural
proteins: nucleocapsid (N), phosphoprotein (P), ma-trix protein
(M), fusion protein (F), glycoprotein (G), and large protein or
RNA polymerase (L) [2].

The name ‘Nipah virus’ originated from Sungai Nipah
(Nipah River Village), where the first isolates were obtained [3–

5]. Bats of the genus Pteropus appear to be the natural reservoir
of the virus. Nipah virus swept through numerous piggeries in
Malaysia and killed 1100 people during the period from 1998
through 1999.

NiV was identified as the etiological agent responsible of an
outbreak, in pigs and humans, in Malaysia and Singapore.
Transmission may be from consumption of contaminated food by
bats secretion, or contact with infected pigs. Another way can be
human-to-human spread. Since 1998 there have been several cases
of infections in Bangladesh and India [6–18]. The case-fatality
varies from 40% to 70% depending on whether encephalitic or
severe manifestations are noted and whether adequate healthcare
facilities are available. At present there is no antiviral drug avail-
able for Nipah virus disease and the treatment is supportive.
Ribavirin has been used in few patients but its efficacy for Nipah
virus disease has not yet been determined. Because of the lack of
effective vaccines or therapies and the fact that NiV can infects
animals such as pigs, NiV infection can be considered an emerging
disease and a public health issue [12,14].
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Figure 1. Number of publications on phylogeny of NiV by year of pub-
lication.
A, key words: ‘Nipah virus AND phylogeny’; B, key words: ‘Nipah virus
AND molecular epidemiology’.
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Since NiV is considered an important pathogen, especially in
South Eastern regions, phylogenetic, and evolutionary analyses
can be used to help in understanding the epidemiology and the
temporal origin of this virus. This review provides an overview
of evolutionary studies performed on Nipah viruses circulating
in different countries.

2. Phylogenetic analysis

Evolutionary analysis, over the last three decades, has
increasingly been applied to the study of microbial pathogens.
Phylogenetic and phylodinamic analysis are the fundamental
tools to investigate how the genealogy of a pathogen population
is influenced by the interaction between pathogen's demographic
history and environmental, ecological and host immunological
factors [19,20]. Phylogenetics and phylodinamics are a branch of
molecular biology evaluating taxonomy and species evolution
[21]. These methodologies are used as a complement to the
‘classical epidemiology’ [22] and represent powerful tools
widely used to analyze epidemics especially, in particular
settings such as in case of nosocomial outbreaks. By
phylogenetic and evolutionary analysis, factors contributing to
the evolution of novel and emerging microbial variants can be
identified. In recent years, a number of methods that infer
phylogenetic trees based on genetic distances, evolutionary
parsimony, Maximum-likelihood and Bayesian theory, have
been introduced [23–26]. Genetic distances and phylogenetic
trees (coupled with a correct epidemiological design i.e., cross
sectional studies), inferred via different sequence evolutionary
models and model selection criteria, are normally used to
assign the genotype [27]. Coalescent theory and the molecular
clock hypothesis are instead used to study the ancestral
relationships of individuals sampled from a population (i.e.,
longitudinal studies) which can be inferred from a gene
genealogy (phylogenetic tree) [22,28–32].

A deductive and normally used cycle in phylogenetic anal-
ysis was started with microorganism isolation and sequencing,
and an appropriate data set have to be built. The alignment with
reference sequences, manual editing to delete ‘indels’ (in-
sertions/deletions), and the determination of the phylogenetic
signal is required. Phylogenetic and/or phylodinamic analyses
represent the ‘core’ of the data analysis and hypothesis testing.
To test for the best substitution model, to infer phylogeny using
different algorithms (e.g., genetic distance, Maximum-likeli-
hood, Bayesian methods), to test the trees reliability (e.g., by
bootstrapping and posterior probability), are essential steps for
evolutionary analyses [30].

The analytical power of the phylogenetic and Bayesian
methods available today should prompt the researchers to use
dataset as large as possible to monitor the epidemiological
changes of the microorganism over the time. Performing phylo-
genetic analyses on the gene region and sometimes, when avail-
able, on the whole genome, may result in a better identification of
novel subtypes or recombinants. Moreover, whenever it is
possible, combined sequencing and phylogenetic analysis should
always be used in order to gain information about the starting of
the epidemic, its spread and the dynamics of viral strains.

Finally, phylogeographic methods can provide information
about the spread of viral strains between different geographic
regions. Phylogenetic analysis, can also be applied to define and
characterize the possible viral vector, as it was identifying NiV
in bats so as in other hosts [33].
Monitoring the genetic evolution of NiV represents an
essential strategy to control the local as well as global epidemic
and to develop efficient preventive and therapeutic strategies
with a great impact in clinical practice.

3. Phylogenetic studies

About thirty phylogenetic studies on NiV have been pub-
lished from 2000 to 2015 years, with weak peak in 2012, typing
on pub-med the key words ‘Nipah virus AND phylogeny’, as
reported in Figure 1. About twenty-eight molecular epidemio-
logical studies from 2006 to 2015 have been performed, with
weak peak in 2010, typing the key words ‘Nipah virus AND
molecular epidemiology’, as in Figure 1.

The first phylogenetic studies were performed to investigate
the similarity between NiV and Hendra virus, another member
of the family Paramyxoviridae [12,30,34,35]. These studies
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demonstrated the strong similarity between the two viruses,
encouraging authors to include a new genus in the family
Paramyxoviridae, named Henipavirus, consisting only of NiV
and Hendra viruses. Phylogenetic studies were performed to
follow and characterize the first important epidemics, the
Malaysia in the 1999 and the Bangladesh one in 2004.
Interestingly, some authors sequenced the whole NiV genome
from strains isolated in the Malaysian outbreak of the year
1999. NiV genome, although 12 nucleotide longer than the
Hendra virus genome, was identical within the regulatory
genetic regions and the predicted aminoacid sequence of
structural proteins and RNA polymerase [36].

Advances from these studies gave the opportunity to evi-
dence that, during the Malaysian epidemic, at least two major
strains of NiV were circulating in pigs, one strain from the initial
outbreak in the north and the other strain from the subsequent
outbreak, approximately 4 months later in the south. The isolates
from the south had identical sequences to those detected from
human infections, which confirmed that infections occurred in
humans during the southern outbreak originated from infected
pigs. This finding implied that the 1998 Malaysia outbreak was
probably due at least to two different origins of Nipah virus
infections [37]. The genome of NiV from the outbreak of
Bangladesh was 6 nucleotide longer than the prototype
Malaysian strain and the phylogenetic analysis demonstrated
that this virus should represent a new strain of NiV, strictly
correlated to the Malaysian strain, but exhibiting a higher
interstrain nucleotide heterogeneity [38]. These findings could
suggest differences in the way of transmission of the virus
between the two countries: in Malaysia, the phylogenetic
analysis suggested that at least two introductions of NiV into
pigs have been occurred, whereas in Bangladesh the sequence
heterogeneity observed should indicate multiple introductions
of the virus in humans from different colonies of fruit bats.
From this study emerged that NiV circulating in different
areas have specific genetic characteristics and may have
coevolved with the local natural reservoirs. This coevolution
was further supported by Halpin et al. in 2007. These authors
demonstrated the phylogenetic relationship between bats and
their associated virus suggesting an important role of bats as
the reservoir hosts of newly emergent viruses, such as Nipah
virus, Hendra virus, and severe acute respiratory syndrome-
like coronaviruses [39].

In the year 2010, Rahaman et al. [40] demonstrated that the
putative reservoir for the 1998 NiV outbreak occurred in
Malaysia was Pteropus vampyrus (P. vampyrus) bat. The virus
isolated in bats resulted monophyletic with previous NiV and
the phylogenetic analysis enforced the hypothesis that similar
strains were co-circulating in sympatric reservoir species.

In 2011, an intra-familial NiV outbreak in West Bengal re-
gion of India, was described by Arankalle et al. [41]. The full-
genome sequence of the virus showed 99.2% of nucleotide
and 99.8% aminoacid similarity with the Bangladesh-2004
isolate, suggesting a probable common source of the virus.
Phylogenetic analysis, interestingly, showed that viruses from
Bangladesh and India clustered and diverged from the viruses of
Malaysia.

Lo et al. [42] in the year 2012 reported the molecular
phylogenetic analysis of available complete NiV gene
sequences including those from the outbreaks in Bangladesh
during 2008 and 2010. These authors proposed a genotyping
scheme based on a 729-nt sequence window, localized in the
N terminal region of the genome, but with a sequence
variability comparable to that observed using the complete
genome. This genotyping method produced a phylogenetic
tree with high bootstrap values and proved to be a relatively
accurate indicator of overall nucleotide variability useful for
NiV sequences classification.

One of the most recent phylogenetic study on NiV infection,
was performed by Lo Presti et al. [43] to investigate the genetic
diversity of the virus, to estimate the date of origin and the
spread of the infection. For the first time, these authors
demonstrated, using the time-scaled phylogenetic analysis,
with the root of the tree originated in 1947 when the virus
entered in south eastern Asiatic regions. At the phylogenetic
analysis the nucleocapsid gene sequences segregated in two
main clades, indicating two different introductions: one in 1995
corresponding and the other in 1985. The phylogeographic
reconstruction indicated that the epidemic followed two different
routes spreading to the other locations facilitated by bats of the
Pteropus genus that are able to travel to long distances. The
molecular evolutionary approach was used by these authors to
investigate also the presence of sites under positive and negative
selection, using a selective pressure analysis method [43]. Only
negatively selected sites were detected confirming the stability
of the viral protein studied. Interestingly, some of these
negatively selected sites were found in positions previously
described as important interaction sites [44]. Even if a large
proportion of amino acids are invariable, the occurrence of
adaptive at certain sites of the genome, over the time, cannot
be excluded, especially if infected pigs trade and bats
migration are not adequately monitored. This situation is in
analogy with Chikungunya virus where only one nutation
determined a change of vector from Aedes aegypti to Aedes
albopictus [45].

4. Nipah virus reservoirs

Paramyxoviruses are characterized by broad host range and
for this reason they show an important zoonotic potential, like
Hendra and Nipah viruses originating from bats. Bats represent
the most successful mammals on earth including about 1200
chiropteran species distributed worldwide. In the last decades
Hendra virus, Nipah virus and other zoonotic viruses like Ebola,
Marburg, and SARS virus, have been identified in various
Pteropus spp. fruit bats [46–50].

The route of infection of NiV from bats to humans is by
ingestion and consumption of NiV-contaminated or partially
eaten fruits, or by contact with infected animals such as pigs,
cattle and goats.

Rahman et al. in 2010 [40], reported the results of a
prospective cohort study focused on a group of P. vampyrus
flying foxes captured in two different locations in Malaysia.
Authors showed that NiV detected in P. vampyrus differs
from all known isolates from Malaysia for the amino acid
changes at 44 positions. The phylogenetic analyses
unequivocally showed that NiV P. vampyrus forms a
monophyletic clade with other NiV isolates from Malaysia,
but it differs from human, pig, and Pteropus hypomelanus
bat isolates. When 56 NiV sequences from Pteropus lylei
bats isolated in Thailand were included, NiV P. vampyrus
phylogenetically grouped most closely with NiV P. lylei, and
the monophyly of NiV sequences from Malaysia was lost.
This close homology suggested that NiV is naturally
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transmitted between these two species. From this study, the
presence of NiV diversity in isolates from P. lylei bats has
also emerged. This diversity demonstrated that multiple
strains co-circulate within populations and that the ecology
and sympatry of Pteropus spp., not coevolutionary patterns, are
determinant for the NiV strain diversity observed in reservoir
hosts.

In 2012, Yadav et al. [51] have surveyed the Indian states of
Maharashtra and West Bengal to evaluate the presence of viral
RNA and IgG against NiV in different bat populations
belonging to the species Pteropus giganteus, Cynopterus
sphinx and Megaderma lyra. Authors found NiV RNA in
Pteropus bat thus suggesting it may be a reservoir for NiV in
India. Furthermore, the phylogenetic analysis demonstrated
that two phylogenetic lineages were formed for NiV
sequences, one including Bangladesh and India sequences and
the other Malaysia and Cambodia sequences. By phylogenetic
analysis it was unmistakable confirmed that the same NiV
strain circulates in India and Bangladesh and that it was
different from that circulating in Malaysia and Cambodia. In
the same period, a similar study was performed on free-
ranging European insectivorous bats to assess the presence of
paramyxovirus infection in these animals [52]. The study
involved 120 deceased bats of 15 different European species.
Bayesian reconstruction of phylogenetic trees was performed
in concordance with the current proposals of Paramyxoviridae
taxonomy. Interestingly, the phylogenetic analysis confirmed
the presence of the first three paramyxoviruses in European
insectivorous bats. The genetic distance between these three
novel paramyxoviruses and the closest related member
resulted higher than that observed in other members within the
paramyxovirus genera. This data suggested that all three
viruses might be considered as new paramyxoviruses. Since,
infected bats were found in close proximity to heavily
populated human areas, a potential risk for a zoonotic
paramyxovirus infection in Europe cannot be excluded.

Recently, the occurrence of Henipaviruses in fruit bat pop-
ulations in the north of Australia was explored [53]. In particular,
these authors evaluated the possibility that NiV were restricted
to the west of Wallace's Line. This line represents the
biogeographic barrier existing between the Australo-Papuan
and Wallacean region on the one hand, and Southeast Asia on
the other, with different distribution of vertebrates and in-
vertebrates. Data from this study demonstrated the presence of
Nipah virus in both P. vampyrus and Rousettus amplexicaudatus
the fruit bat populations localized on the eastern side of Wal-
lace's Line.

5. Conclusions

Nipah virus causes a recently discovered zoonotic disease
endemic in South Asia, where sporadic outbreaks have been
reported in Malaysia, Singapore, India, and Bangladesh. The
case-fatality varies from 40% to 70% depending on the severity
of the clinical manifestations, such as encephalitis, and on the
availability of adequate healthcare facilities. At present there is
no antiviral drug available for Nipah virus disease and the
treatment is just supportive. NiV infection can be considered an
emerging disease and a public health problem [12,13] as a
consequence of the lack of effective vaccines and therapies
and of the evidence that NiV can infect pigs [12,13].
Phylogenetic and evolutionary analyses can represent very
useful tools to elucidate the epidemiology and the temporal
origin of this virus. Moreover, these analyses, especially the
evolutionary analysis, could be advantageous to develop new
therapy, vaccine and prevention strategies.

The circulation of NiV may be influenced by the presence of
genetic polymorphisms along the virus genome. As a conse-
quence, the antigenic variability is possible and may play an
important role in the ability of the virus to escape the host im-
mune response [42]. On this basis, monitoring will be important
to implement possible intervention strategies. In Asiatic
countries, there is a close contact between animals and
humans, especially in rural settings. This aspect represents a
vulnerability of Asia for outbreaks caused by zoonotic
infections. This vulnerability is further increased by
sociocultural beliefs and weak public health infrastructure [54].

Consequently, the need of a multidisciplinary approach to
prevent and control zoonotic infections in this country is evident.
Phylogenetic and evolutionary analysis represent promising
tools to evidence epidemics, to study their origin and evolution
and finally to act with effective preventive measure.
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