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Abstract
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Introduction

Colorectal cancer (CRC), also known as colon cancer, is due 
to the abnormal growth of cells proliferating throughout the 
colon.[1] The American Cancer Society estimates that almost 
136,830 people will be diagnosed and 50,310 will die due to 
CRC in 2016,[2] and that the average lifetime risk of developing 
this type of cancer is one in 20 (5%). As with most types of 
cancer, the early detection of CRC is key to improving the 
chances of a successful treatment. CRC is typically diagnosed 
through the microscopic analysis of colon biopsy images. 
However, this process can be time consuming and subjective, 
often leading to significant inter/intraobserver variability. As a 
result, many efforts have been made toward the development 
of reliable techniques for the automated detection of CRC.

A number of studies have investigated the development of 
automated methods for the assessment and classification 
of CRC tissue. In   Fu et  al.,[3] a computer‑aided diagnostic 
system was developed to classify colorectal polyp types 
using sequential image feature selection and support vector 

machine (SVM) classification. A processing pipeline, including 
microscopic image segmentation, feature extraction, and 
classification, was also proposed in Kumar et  al.[4] for the 
automated detection of cancer from biopsy images. In Jass,[5] 
a study based on clinical, morphological, and molecular 
features showed the usefulness of using such features for the 
diagnosis and treatment of CRC. A combination of geometric, 
morphological, texture, and scale invariant features was also 
investigated in Rathore et al.,[6] classifying colon biopsy images 
with an accuracy of 99.18%. In Rathore et al.,[7] a similar set of 
hybrid features was used with an ensemble classifier to enhance 
the classification accuracy. In Rathore et  al.,[8] structural 
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features based on the white run length and percentage cluster 
area were also shown to be useful for the classification of 
biopsy images. A few studies have also focused on the detection 
of CRC using multispectral microscopy images. One such 
work, presented in Chaddad et al.,[9] uses three‑dimensional 
gray‑level co‑occurrence matrix features to classify CRC tissue 
types in multispectral biopsy images.

Recently, convolution neural network  (CNN) models have 
resulted in state of the art performance on a broad range of 
computer vision tasks such as face recognition,[10] large‑scale 
object classification,[11] and document analysis.[12] Unlike 
methods based on handcrafted features, such models have the 
ability to build high‑level features from low‑level ones in a 
data‑driven fashion.[13] In medical image analysis, CNNs have 
shown great potential for various applications such as medical 
image pattern recognition,[14] abnormal tissue detection,[15] and 
tissue classification.[16,17]

In this paper, we propose a new approach for assessing 
CRC progression that applies CNNs to multispectral 
biopsy images. In this approach, the progression of CRC is 
modeled using three types of pathological tissues: (1) benign 
hyperplasia  (BH) representing an abnormal increase in the 
number of noncancerous cells, (2) intraepithelial neoplasia (IN) 
corresponding to an abnormal growth of tissue that can form a 
mass (tumor), and (3) carcinoma (Ca), in which the abnormal 
tissue develops into cancer. A  CNN is used to determine 
the tissue type of biopsy images acquired with an optical 
microscope at different wavelengths. By identifying this tissue 
type, our approach can determine and track the progression of 
CRC, thereby facilitating the selection of an optimal treatment 
plan. To the best of our knowledge, this work is the first to 
use CNNs to model the progression of CRC tissues based on 
multispectral microscopy images.

The rest of this paper is organized as follows: Section 2 
describes the data used in this study, the preprocessing steps, 
and the proposed CNN‑based model. Section 3 then presents 
the experimental methodology and results, highlighting the 
performance of our model. In section 4, we discuss the main 
results and limitations of this study. Finally, we conclude by 
summarizing the contributions of this work and proposing 
some potential extensions.

Methods

Figure  1 presents the pipeline of the proposed approach. 
Multispectral CRC biopsy images are first acquired using 
an optical microscope system with a charge‑coupled 
device (CCD) camera and a liquid crystal tunable filter (LCTF). 
These images are then used as input to the CNN classifier, 
both for training the model and classifying the tissue type of 
a new image. Alternatively, a segmentation technique based 
on active contours can be used to extract regions of interest 
corresponding to pathological tissues, before the classification 
step. In section 3, we show that presegmenting images can 

improve the classification accuracy of the proposed approach. 
Individual steps of the pipeline are detailed in the following 
subsections.

Data acquisition
Histological CRC data are obtained from anatomical pathology 
at the CHU Nancy Brabois Hospital. Part of these data was used 
in a previous study for classifying the abnormal PT from texture 
features.[9] Tissue samples were obtained from sequential colon 
resections of thirty patients with CRC. Sections of 5 μm 
thickness were extracted and stained using hematoxylin and 
eosin to reduce image processing requirements. Multispectral 
images of 512 × 512 pixels were then acquired using a CCD 
camera integrated with a LCTF in an optical microscopy 
system.[18] For each tissue sample, the LCTF was used to 
provide 16 multispectral images sampled uniformly across 
the wavelength range of 500–650 nm.[19] Since multispectral 
imaging considers a broader range of wavelengths, it can 
capture physiological characteristics of tissues beyond those 
provided by standard grayscale or trichromatic photography.

As mentioned before, the progression of CRC was modeled 
by considering three types of pathological tissues: BH, IN, 
and Ca. Each of the thirty biopsy samples used in this study 
was labeled by a senior histopathologist, for a total of ten BH 
samples, ten IN samples, and ten Ca samples.

Pathological tissue segmentation
Although unsegmented images can also be used directly, a 
segmentation step is added in the proposed pipeline to isolate 
the CRC tissues from nonrelevant tissues and structures 
such as lumen. For this step, we used a semi‑automatic 
segmentation technique based on the active contour algorithm, 
which can accurately delineate the boundaries of irregularly 
shapes and has been shown to perform well for tissue 
segmentation.[20] Briefly, the active contour model can be 
described as a self‑adaptive search for a minimal energy state 
EAC, defined as the sum of an internal energy and an external 
energy Eext.

[21] The segmentation contour in an image I (x, y) 
is represented as a parametric function P (s) = (x (s), y (s)), 
s [0, 1] and is updated iteratively to minimize EAC. The internal 
energy is defined as

2 2
int

1 '( )  '' ( )
2

E p s p s= α +β � (1)

Figure 1: Flowchart of the proposed pipeline. Convolutional neural 
network classification of colorectal cancer tissues based on multispectral 
biopsy images
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Where p’ (s) and p’’ (s) represent the first and second derivatives 
of P (s), respectively, and α and β are constants weighting the 
relative importance of the derivatives. Intuitively, the internal 
energy favors short and smooth contour configurations. 
Likewise, the external energy is defined as:

( )( ) 2

ext  , * ( , )E G x y I x y=− ∇ � (2)

Where Gσ (x, y) is the 2D Gaussian function with standard 
deviation σ and ∇ is the gradient operator. The external energy 
ensures agreement between the contour and image gradient 
information arising from tissue boundaries. Segmentation 
contours were initialized as centered rectangles of 508 × 508 
pixels.

As shown in Figure 2, the segmentation algorithm partitions 
the image in two nonoverlapping regions, containing pixels that 
are on one side or the other of the segmentation contour. In a 
postprocessing step, a trained user (e.g., a pathologist) is asked 
to select the region of interest as one of the two segmented 
regions [Figure 2c]. Although outside the scope of this paper, a 
supervised learning model such as SVM could also be trained 
to select the region of interest automatically.

To evaluate the performance of our segmentation model, we 
used manually annotated ground truth provided by the CHU 
Nancy‑Brabois Hospital. The Jaccard similarity coefficient (JSC), 
dice similarity coefficient (DSC),[22,23] false positive rate (FPR),[24] 
and false negative rate (FNR)[25] were considered as performance 
metrics. The JSC and DSC metrics evaluate the degree of the 
correspondence between two segmentations (i.e., segmentation 
output and ground truth) and are defined as:

( ) TPJSC ,   
TP FP FN

A B =
+ +

� (3)

( ) 2TPDSC ,   
2TP FP FN

A B =
+ + � (4)

Where A and B represent the compared segmentations, TP/TN 
is the number of correctly classified foreground/background 
pixels (i.e., true positives/negatives) and FP/FN is the number 
of incorrectly labels foreground/background pixels  (i.e.,  false 
positives/negatives). Moreover, FPR/FNR is the ratio between the 
number of pixels incorrectly labeled as foreground/background 
and the total number of background/foreground pixels:

( ) FPFPR   
TF FP

A,B =
+

� (5)

( ) FNFNR ,   
TP FN

A B =
+

� (6)

We compared the performance of our active contour model with 
two standard segmentation approaches: Otsu’s thresholding 
method[26] and edge detection.[27]

Convolutional neural network‑based classification
As in most CNN‑based classification approaches, we 
adopted an architecture consisting of three types of layers: 

convolution layers, subsampling  (max‑pooling) layers, and 
a fully‑connected output layer.[28] These types of layer can be 
described as follows:

Convolution layer
This layer type receives as input either the image to classify 
or the output or the previous layer and applies a set of Nl 
convolution filters to this input. The output of the layer 
corresponds to Nl feature maps, each one the result of a 
convolution filter and some additive bias. The parameters 
learned during training correspond to the convolution filter and 
bias weights. Note that the convolution process trims output 
maps by a border of Ml − 1 pixels, where Ml × Ml is the size 
of convolution filters.

Subsampling (pooling) layer
This parameter‑less type of layer reduces the size of input 
feature maps through subsampling, thereby supporting local 
spatial invariance. It divides the input maps into nonoverlapping 
subregions and applies a specific pooling function to each one 
of them. In our architecture, we considered the max‑pooling 
strategy, which outputs the maximum value of each subregion. 
Note that the pooling process reduces the feature maps by a 
factor of Ml, where Ml × Ml is the size of pooling subregions.

Output (fully‑connected) layer
This type of layer captures the relationship between the final 
layer feature maps and class labels. The output of the layer is 
a vector of K elements, each one representing the score of a 
class (e.g., K = 3 in our network). Fully‑connected layers can 
be seen as convolution operations, in which filters have the 
same size as their input maps.

Figure  3 shows the proposed CNN architecture. This 
architecture is composed of two convolution layers (C1 and C3), 
each one followed by max‑pooling layers (S2 and S4), and an 
output layer  (F6). Although not represented in the figure, a 
layer of Rectified Linear Units (ReLUs) is added after each 
max‑pooling layer to improve the convergence of the learning 

Figure 2: Example of tissue segmentation.(a) Original image, 
(b) segmentation obtained by the active contour model, (c) selected 
region of interest

c

ba
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process, which is based on the stochastic gradient descent 
algorithm. Further details on implementing CNNs may be 
obtained from.[28]

For training and evaluating the CNN, the data were split based on 
the patients. We randomly selected the data of 21 patients (7 BH, 
7 IN and 7 Ca) for training and used the data of the remaining 
9 patients  (3 BH, 3 IN, and 3 Ca) for testing. Furthermore, 
the biopsy images of three training patients were held out in 
a validation set and used to determine the optimal network 
architecture and number of training epochs. For each patient in 
the training, validation, and testing sets, we obtained multiple 
examples by running a 60 × 60 × 16 sliding window across the 
original 512 × 512 × 16 multispectral images. These examples 
were given the same label as the original image and used as 
input to the CNN. For segmented images, only examples whose 
center is within the region of interest were kept. Thus, training 
examples obtained from segmented images contain more relevant 
information for the target classification problem. Accuracy, which 
corresponds to the percentage of correctly classified examples, 
was used as a measure of classification performance.

Results

In this section, we evaluate the performance of our CRC tissue 
classification method. Since this method uses segmentation 
as preprocessing step, we first assess the ability of the 
proposed segmentation algorithm to extract regions of interest 
corresponding to CRC tissues.

Table  1 gives the average performance of the three tested 
segmentation methods (Otsu’s thresholding, edge detection, 
and active contour) on tissue samples corresponding to BH, IN, 
and Ca. We observe that our active contour method outperforms 
the other two approaches, for all performance metrics and 
tissue types (with P < 0.01 in a paired t‑test). With respect to 
tissue types, the best performance of our method is obtained 
for Ca, with a JSC of 0.86, compared to 0.80 and 0.82 for 
BH and IN, respectively. Examples of segmentation results, 
for each tissue type, are shown in Figure 4. We see that the 
active contour method finds more consistent regions that better 
delineate the CRC tissues in the image.

Classification results are summarized in Table 2, showing 
the accuracy obtained on examples of the test set by 

our proposed CNN model, with and without the image 
segmentation step. For comparison, we also report 
accuracy values obtained by various tissue classification 
approaches on the same data. These approaches are 
categorized according to the type of texture or shape features 
used  (e.g.,  gray‑level co‑occurrence matrix  [GLCM], 
and statistical moments), classifier model  (e.g.,  SVM 
and nearest‑neighbors), and whether image segmentation 
is required or not. Note that these approaches work by 
quantifying a region (segmented or the whole image) with 
generic features and using these features as input to a 
classifier. In contrast, our proposed CNN method learns the 
features from training data, providing a better representation 
of the different CRC tissue types.

From these results, we observe that extracting regions of 
interest through segmentation enhances the accuracy of our 
method. Thus, while an accuracy of 79.23% is obtained 
without segmentation, the accuracy of our method reaches 
99.17% on presegmented images. While this could be due 
to various other factors, extracting regions corresponding 
to CRC tissues provide more discriminative examples to 
train the CNN. In comparison to other tissue segmentation 
approaches, our CNN method with segmentation provides the 
highest accuracy (i.e., 99.17% vs. 98.92% for Chaddad et al.). 
Although relatively small, such improvement in accuracy 
can have a significant impact considering that the problem is 
cancer detection.

To illustrate the convergence of the parameter optimization 
phase (i.e.,  stochastic gradient optimization), Figure  5 
shows the mean squared error  (MSE) measured after 
each training epoch, corresponding to the mean squared 
difference between the network output Yi’ and target label 
vector Yi:

n
' 2

i i
i=1

1MSE  Y Y
n

= −∑ � (7)

We see that the optimization converges after 500 epochs 
and that the MSE upon convergence is nearly 0. This shows 
that the proposed architecture is complex enough to learn 
a discriminative representation of tissue types and that the 
learning rate is adequate. In practice, the best number of epochs 
is selected based on the validation accuracy.

Figure 3: Proposed convolutional neural network architecture with two convolution layers (C1 and C3), two max-pooling layers (S2 and S4), and one 
fully-connected layer (F5). For each layer, the filter size and number of output features are given
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Figure 5: Variation of mean squared error across training epochsFigure 4: Examples of results obtained by the segmentation methods for 
the benign hyperplasia, intraepithelial neoplasia, and carcinoma tissue 
types. (a) Original image, (b) Otsu’s thresholding, (c) edge detection, 
(d) active contour

dcba

Table 1: Average performance obtained by three tissue segmentation methods on BH, IN and Ca tissue samples

Metrics Otsu’s thresholding Edge detection Active contour

BH IN Ca BH IN Ca BH IN Ca
JSC 0.57 0.59 0.62 0.45 0.46 0.48 0.80 0.82 0.86

(0.05) (0.04) (0.05) (0.08) (0.06) (0.07) (0.07) (0.05) (0.04)
DSC 0.51 0.56 0.58 0.42 0.39 0.41 0.82 0.86 0.90

(0.05) (0.06) (0.04) (0.13) (0.15) (0.04) (0.18) (0.06) (0.01)
FPR 0.24 0.21 0.18 0.19 0.26 0.15 0.21 0.13 0.08

(0.04) (0.03) (0.02) (0.07) (0.05) (0.02) (0.04) (0.31) (0.01)
FNR 0.21 0.23 0.24 0.26 0.31 0.34 0.01 0.15 0.14

(0.05) (0.07) (0.05) (0.08) (0.09) (0.08) (0.01) (0.06) (0.04)
Standard deviation values are in parenthesis

Table 2: Comparison of tissue classification methods on the same data

Accuracy (%) Feature types Classifier models Segmentation
Chaddad et al. [9] 98.92 Laplacian of Gaussian filter

Discrete wavelets
GLCM

LDA
Decision trees
Nearest neighbors

Yes

Peyret et al.[29] 91.30 Local binary patterns
GLCM
Local intensity order patterns

SVM
Random forest

No

Kumar et al. [4] 92.19 Clinically significant
biologically features

Nearest neighbors
SVM

Yes

Rathore et al. [7] 98.85 Statistical moments
GLCM

SVM No

Elgamal et al. [30] 97.50 Discrete wavelets Nearest neighbors
Neural Networks

Yes

Ours (unsegmented) 79.23 CNN CNN No
Ours (segmented) 99.17 CNN CNN Yes

However, eight segmented images were tested, and the 
performance metrics were increased with MSE and accuracy 
value of 0.0001 and 99.168%, respectively.

Discussion

The CRC tissue classification approaches presented in 
Table 2 are based on the assumption that such tissues can be 
effectively described using a generic texture or morphological 
features.[4,7,9,29,30] For example, Chaddad et  al. used texture 
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features derived from GLCMs, discrete wavelet transforms, 
and Laplacian of Gaussian filters, computed on presegmented 
regions, to classify the same images with an accuracy of 
98.92%.[9] Likewise, Peyret et al. computed texture features 
such as local binary and local intensity order patterns, on 
unsegmented to images, obtaining an accuracy of 91.3%.[29] In 
contrast, we proposed a data‑driven method, based on CNNs, 
to learn an optimal representation of tissues from training data. 
Our experiments showed this method outperforms existing 
approaches, even with a small number of tissue samples, with 
an accuracy of 99.17%. Results have also shown the usefulness 
of using presegmented images, which significantly improves 
the accuracy by focusing computation on relevant tissue 
regions within the image.

While results are promising, this study also has several 
limitations. First, it is based on a single small cohort of thirty 
patients. Having a larger set of biopsy images from different 
patients would help capture the full variability of tissues 
in the progression of CRC. Moreover, to obtain an optimal 
accuracy, our method currently requires the pathologist to 
select the region of interest from a segmented image. To have 
a fully automated pipeline, this step should be replaced by a 
supervised learning model which would determine the region 
of interest from training data.

Conclusions

We have presented a method for the classification of CRC tissues 
from multispectral biopsy images, based on active contour 
segmentation and CNNs. Unlike traditional approaches, which 
extract generic texture or shape features from the image, our 
method learns a discriminative representation directly from the 
data. Experiments on multispectral images of thirty patients 
show our method to outperform traditional approaches when 
using presegmented images. In future work, we will extend 
this study by including a larger number of patients and using 
a fully automated segmentation step.
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