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Abstract

Inequity aversion (negative feelings induced by outcome differences between the self and

other) plays a key role in human social behaviors. The neurotransmitters oxytocin and

GABA have been implicated in neural responses to inequity. However, it remains poorly

understood not only how individual genetic factors related to oxytocin and GABA affect the

neural mechanisms behind inequity aversion, but also how these genes interact. To address

these issues, we examined relationships between genotypes, behavioral decisions and

brain activities during the ultimatum game. We identified interactive effects between the

polymorphisms of the oxytocin receptor gene (OXTR) and glutamate decarboxylase 1 gene

for GABA synthesis (GAD1) on envy aversion (i.e., disadvantageous inequity aversion) and

on envy-induced activity in the dorsal ACC (dACC). Thus, our integrated approach sug-

gested interactive genetic effects between OXTR and GAD1 on envy aversion and the

underlying neural substrates.

Introduction

Inequity aversion plays a key role in human social behaviors, such as cooperation and dona-

tion. Using economic games, functional magnetic resonance imaging (fMRI) studies have

established that many brain regions, including the anterior cingulate cortex (ACC) [1–4],

medial prefrontal cortex (mPFC) [1,5,6], dorsolateral prefrontal cortex (dlPFC) [1,3,7–9],

insula [1,9], amygdala [2,10–11] and striatum [6–7,11], are involved in inequity aversion.

Over the last decade, the neuromodulator oxytocin has gained attention as an influencer on

human social behaviors [12–24] and human emotional brain networks [25]. Oxytocin is a pep-

tide hormone and neuropeptide produced in the hypothalamus. The axons of hypothalamic

oxytocin neurons project to several regions associated with inequity aversion, including the

amygdala, hippocampus, ACC and mPFC [26]. Several reports have investigated the effect of

oxytocin on prosocial behaviors related to inequity aversion [27]. The administration of oxyto-

cin was found to alter the subjective evaluation of unfairness [28] and money allocation with
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others in economic games such as the trust game and ultimatum game [13,17,24,29]. It is also

reported that intranasal oxytocin increases envy (i.e., disadvantageous inequity) aversion and

guilt (i.e., advantageous inequity) aversion [30]. In addition, relationships between the poly-

morphisms of the oxytocin receptor gene (OXTR) and social behaviors have been reported,

including correlations of OXTR polymorphisms with trust and altruism [31] and with mental

disorders such as autism [32–35]. However, the effects of OXTR polymorphisms on behaviors

and brain activities associated with inequity aversion remain poorly understood [13,36].

GABA is the primary inhibitory neurotransmitter in the central nervous system and is also

important for inequity aversion. One study using the ultimatum game found the administra-

tion of benzodiazepine, which increases the efficacy of GABA at the GABA A receptor, reduces

the rejection ratio and activity in the amygdala, dACC and mPFC in response to unfair offers

[2]. Like OXTR, polymorphisms of the genes coding the subunits of the GABA A receptor

were reported to be correlated with altruism [37] and autism [38]. It was also shown that a

polymorphism on the promoter region of the enzyme for GABA synthesis modulates ACC

activity in humans [39]. On the other hand, many GWAS (Genome Wide Association Studies)

have shown that the influence of each single nucleotide polymorphism is small and that most

reported genetic associations could be false positives [40–41]. However, some GWAS indicated

that there is an association between social traits and genetic variants [42]. In particular, Linnér

and colleagues [43] suggested that the genes involved in GABAergic neurotransmission influ-

ence personality traits.

In addition, the influence of the GABA A receptor on oxytocin was recently reported in

rodents. Blockage of the receptor suppressed the effects of oxytocin on freezing behavior as

well as amygdala activity in fear conditioning [26,44]. Sabihi and colleagues [45] showed that

the administration of oxytocin to the mPFC was accompanied by increased activation of

GABA neurons through the GABA A receptor in the mPFC and altered neuronal activation of

the amygdala following the anxiety test [45].

Based on these previous studies, we hypothesized that GABA may also interact with the

function of oxytocin in inequity aversion. To address this issue, we conducted a model-based

fMRI study of the ultimatum game, a widely-used task in inequity-aversion literature, and

quantified the effects of single nucleotide polymorphisms (SNPs) and interactions of oxytocin

receptor gene (OXTR) and GABA-related genes on human behaviors and brain activities in

inequity aversion. We focused on the genes for OXTR, GABAA receptor gene clusters (GABA

A receptor subunit clusters on chromosomes 5q34-q35, 4p12, 6q14-16 and 15q11-q13), and

enzymes for GABA synthesis. In addition, for our analysis, we conducted the Triple-Domi-

nance measure task, which measures a participant’s egalitarianism in resource allocation [46].

Materials and methods

Participants

The ethical committees of the National Institute of Information and Communication Technol-

ogy (NICT), Japan, Tamagawa University, Japan, and University of Tokyo approved this

study, and written informed consent to the behavioral, saliva collection and MRI experiments

was obtained from all participants before the experiments were done. The individual in this

manuscript has given written informed consent to publish the face image (PLOS consent

form).

Two hundred and fourteen Japanese students (111 males, age = 19.5±0.12; 103 females,

age = 19.6±0.12) who did not declare any history of neurological or psychiatric disorders par-

ticipated in the first saliva sample collection for the SNP analysis and the Triple-Dominance

measure task to identify their social value orientation (i.e., prosocial, individualistic or

GAD1-OXTR interactive effects on envy aversion
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competitor). All participants were invited to the fMRI experiments. Adjusting for the availabil-

ity of the participants and MRI scanning slots, 97 participants (56 males, age = 19.3±0.17; 41

females, age = 19.4±0.22) took part in the fMRI experiments.

Tasks

Triple-Dominance measure task: Day1. The Triple-Dominance measure task is a forced

three-choice form of money distribution between the self and an unknown other, and has

been used to identify a participant’s social value orientation [10–11,46]. Thirteen to forty par-

ticipants in a room received a sheet of paper on which two numbers were written. One number

represented the identity of the participant and the other number the identity of the other par-

ticipant who was randomly paired with the participant. Participants were presented with 8 Tri-

ple-Dominance measure tasks, which asked them to choose the most preferable money

distribution for the self and the other from three options within 10 s (Fig 1A). In this particular

example, one option (A; prosocial) maximizes the sum of outcomes for the self and other and

minimizes the difference of outcomes. It is therefore associated with inequity aversion. A sec-

ond option (B; individualistic) maximizes the outcome for the self. The third option (C; com-

petitive) maximizes the difference between the outcomes for the self and the other. A

participant was assigned a social value orientation (i.e., prosocial, individualist, or competitor)

when the participant made more than six consistent choices out of eight. Participants never

knew who was paired with them and no feedback was given during the task. Participants

received the amount of money based on their choices.

Modified ultimatum game: Day2. We used a modified version of the ultimatum game

[47] to examine brain responses to inequity (Fig 1B). In comparison with the standard ultima-

tum game, both disadvantageous (envy; reward for other was larger than reward for self) and

advantageous (guilt; reward for self was larger than reward for other) conditions were

included. After a short display (1 s) of the name and face of a proposer, the participant was

asked to decide whether to accept or reject the offered division of 500 yen (equivalent to 5 US

dollars) by a button press within 1 s after a beep. Base offers were one of 7:3, 6:4, 5:5, 4:6, 3:7,

2:8 or 1:9 for the participant (responder) and proposer. Each base offer appeared 8 times in

                   self (yen)    other (yen)
 

A  100  100

B   110   90

C  100    20

b, modified ultimatum game

21.0  2.0sec x 56 trials

  

14.5

3.0 (1s)
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Fig 1. Design of tasks. (A,B) Participants make decisions in (A) the Triple-Dominance Measure task and (B) the modified

ultimatum game. Each participant played the role of the responder. The modified ultimatum game contained both

advantageous (guilt) and disadvantageous (envy) proposals unlike the standard ultimatum game, which only contains

disadvantageous offers.

https://doi.org/10.1371/journal.pone.0210493.g001
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one session in pseudo random order. Therefore, one session comprised 56 trials. Uniform ran-

dom numbers ranging from -25 yen to 25 yen were added to the base offer in each trial in

order to maximize the participant’s involvement in the task. Because each name and face was

utilized once, this task was a sequential one-shot game. We instructed the participants that the

faces and offers in the ultimatum game were collected from students at a nearby university

whose rewards would depend on the participants’ choices. In fact, all faces (neutral facial

expressions) were selected from the facial expression database [48] released by the Advanced

Telecommunications Research Institute (ATR), Japan. The total time of a session was 1176 s.

Because the ultimatum game is an asymmetric game for a proposer and a responder, rejec-

tion behaviors by the responder might partly correspond to costly punishment as well as ineq-

uity aversion. Therefore, our SNP analysis considered both the Triple-Dominance measure

task and ultimatum game.

SNP analysis

Saliva sampling was done using the DNA collection kit Oragene�DNA (OG-500) (DNA Geno-

tek Inc.). Using commercially available TaqMan probes and ABI PRISM 7900HT and follow-

ing the protocol recommended by the manufacturer (Thermo Fisher Scientific, Waltham, MA,

USA), we selected and genotyped the SNPs of genes for enzymes involved in GABA synthesis

and major subunits of the GABA A receptor: rs3791878 and rs2236418 (GAD1 and GAD2,

respectively), and rs3811991, rs2617503, rs1912960, rs2351299, rs279858, rs9362632, rs140682

and rs878960 (GABA A receptor subunit genes clusters on chromosomes 5q34-q35, 4p12,

6q14-16 and 15q11-q13). We did the same for the oxytocin-receptor (OXTR) genes: rs237924,

rs75775, rs4686302, rs1042778 and rs53576 (SNPs upstream of the gene, on the protein coding

region, exon and long intron). We divided the genotypes of these SNPs into two groups by

combining heterozygotes and minor allele homozygotes, since the frequencies of some minor

alleles were not sufficiently high.

Statistical analysis

We conducted statistical tests of the genetic effects by using the functions ‘ranksum’ and ‘ano-

van’ in MATLAB R2014a, and the correction for multiple comparisons by using the Benja-

mini-Hochberg method [49] in R version 3.0.2 (https://www.r-project.org). For the analysis of

interactions, a representative SNP on each GABA A receptor cluster was included in ANOVA.

MRI acquisition

MRI scanning was conducted with a Siemens Trio TIM 3T scanner at Tamagawa University

(Japan). The parameters used were: repetition time 2 s, echo time 25 ms, flip angle 90˚, field of

view 192 mm, and resolution 3 × 3 × 3 mm. High-resolution (T1 [1 × 1 × 1 mm] and T2

[0.6 × 0.4 × 3 mm]) structural images were also acquired for each participant. In addition to

the experimental trials, the session contained three initial dummy scans.

GLM analysis

Imaging data were analyzed using standard procedures in Statistical Parametric Mapping

(SPM12 http://www.fil.ion.ucl.ac.uk/spm) on MATLAB R2014a. Before the analysis, we per-

formed motion correction and non-linear transformation into the standard space of the Mon-

treal Neurological Institute (MNI) coordinates using a T2 template. These normalized EPI

images were re-sliced into 2 × 2 × 2 mm voxels and then smoothed with a 6 mm FWHM iso-

tropic Gaussian kernel. The data were high-passed filtered (cut-off frequency, 128 s).

GAD1-OXTR interactive effects on envy aversion
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First-level analysis: In the main analysis, for each participant, eight functional regres-

sors were included in the general linear model analysis of the fMRI data. The standard

event-related regressors were constructed at the time of the proposer’s face presentation,

offer presentation, button press (choice) and feedback presentation. For the offer presen-

tation, four reward-related regressors (parametric modulators) were also included: reward

for self (Rs), reward for proposer (Ro), envious difference (the reward difference when

Rs < Ro), and guilty difference (the reward difference when Ro < Rs). Since the range of

the reward variables is continuous and wide (i.e., between 0 and 450), common logarithm

(base = 10) was used for these four parametric modulators. In addition to these eight

regressors, we included six head movement parameters that were calculated from the

realignment.

Second-level analysis: To contrast neural correlates with envy and guilt aversions for poly-

morphisms, we conducted a second-level group analysis using a multiple-regression for ana-

lyzing the effects of polymorphisims on the OXTR and GABA-related genes, and using a full

factorial design to analyze the interaction between the genotypes of GAD1 rs3791878 (GG,

GT/ TT) and OXTR rs53576 (AA, AG/GG). The neural correlates of envy and guilt aversions

were defined as brain activity correlated with the envious reward difference between other and

self (Ro-Rs > 0) and with the guilty reward difference between self and other (Rs-Ro > 0),

respectively.

Utility function

Three utility functions were considered to analyze envy and guilt aversions as described below.

U ¼ bself � Rs þ benvy � ðmaxðRo � RsÞ; 0Þ þ bguilt � ðmaxðRs � RoÞ; 0Þ Eq: 1

U ¼ bself � Rs þ binequity � absðRo � RsÞ Eq: 2

U ¼ bself � Rs þ bother � Ro þ binequity � absðRo � RsÞ Eq: 3

The weights (β) in the equations were estimated from behaviors during the ultimatum

game by the maximum likelifood estimation (MLE) using the internal point method in

MATLAB R2014a. Eq 1 comes from Fehr & Schmidt [50]. Envious reward differences and

guilty reward differences contribute to judgements separately in this model. Eq 2 and Eq 3

come from the inequity-aversion model, which represents the reward difference (containing

both envious and guilty differences) by a single term. The amount of the reward for others is

considered in Eq 3, but not in Eq 2. βself was set to 1 in all three equations.

ROIs for small volume correction

We used the functional ROIs defined by Shen and colleagues when we conducted small vol-

ume corrections, which were produced from the resting-state fMRI data of 79 healthy partici-

pants and parcellated by group-wise graph theory-based analysis [51]. These ROIs have

functional homogeneity within each node and good parcellation reproducibility across multi-

ple groups of healthy volunteers. To select the ROIs for small volume correction, we defined

two criteria: 1) previous reports showed the importance of the regions for the inequity aversion

or decisions in the ultimatum game (e.g. amygdala and dACC) and 2) the whole brain analysis

detected correlation between activity and the inequity aversion or decision (the statistical

threshold was p< 0.001 uncorrected).

GAD1-OXTR interactive effects on envy aversion
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Results

Genotype distribution

The genotype distributions of the 97 fMRI-experiment participants are shown in S1 Table. The

distributions of all SNPs we examined were not different from the Hardy-Weinberg equilib-

rium (p> 0.01), yielding a result consistent with previous reports [52–53] and datasets, includ-

ing the HapMap (international HapMap Project) and 1000 Genome project for Asian

populations.

Egalitarianism and SNPs on OXTR and GABA-related genes

The effects of oxytocin on prosocial behaviors such as trust and generosity have been previ-

ously reported [13,17,24,29]. For egalitarianism, a previous study reported no significant cor-

relation between the donation money and an OXTR genetic variation in the dictator game

[54]. However, Israel and colleagues [31] reported correlations between SNPs on the long

intron region of OXTR and social value orientation using the Triple-Dominance measure task.

Therefore, we first conducted the Triple-Dominance measure task (Fig 1A) and evaluated the

effects of OXTR SNPs on egalitarianism. As shown in Table 1, rs53576 and rs4686302 was sig-

nificantly associated with the number of prosocial choices (p = 0.0027 and 0.0373, respectively,

N-way ANOVA). We examined the correlation between social value orientation and OXTR
SNPs and found that only rs53576, an SNP located at the long intron, was significantly corre-

lated with the type of social value orientation (prosocial or individualist; Table 2, p = 0.046,

Chi-squared test).

We also examined relationships between the genotypes of SNPs of GABA-related genes and

social value orientation, because a previous study showed that the injection of benzodiazepine,

which facilitates the GABA A receptor, decreased the rejection rates of unfair offers in the ulti-

matum game without changing sensitivity to fairness [2]. However, we found neither a signifi-

cant effect of SNPs of GABA-related genes (S2 Table) nor an interactive effect between SNPs

of GABA-related genes and rs53576 of OXTR on social value orientation. These results sug-

gested that only rs53576 had a main effect on the sensitivity to egalitarianism.

Behaviors in the ultimatum game

In the context of economic games, inequity aversion can be decomposed into envy (disadvan-

tageous; rewards for others are higher than for self) and guilt (advantageous; rewards for self

are higher than for others) aversions [50]. To quantify inequity aversion, the weights for ineq-

uity aversion were estimated and compared. We introduced three models (Eqs1 to 3 in Materi-

als and Methods) and, upon applying the Akaike information criterion (AIC) [55] and the

Bayesian information criterion (BIC) [56] (S3 Table), found that the envy-guilt model (Eq 1)

was most suitable for the present study based on the modified ultimatum game (Fig 1B).

Because -βenvy and -βguilt are indices that correspond to behavioral decisions based on envy

Table 1. Correlation of the SNPs on OXTR and the number of prosocial choices in social value orientation test.

SNP P F test

rs53576 0.0027 9.53 N-way ANOVA

rs4686302 0.037 4.47

rs75775 0.33 0.94

rs237924 0.57 0.33

rs1042778 0.31 1.06

https://doi.org/10.1371/journal.pone.0210493.t001

GAD1-OXTR interactive effects on envy aversion
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and guilt aversions, we defined the Decision Index (DI) for envy and guilt as -βenvy and -βguilt,

respectively, for the following analyses. The ‘minus’ sign of β means that the feeling is negative

(aversive).

Brain activities in the ultimatum game

To identify the brain activities that correlated with the decisions induced by envy and guilt aver-

sions, we conducted second-level GLM analysis of the brain activations that correlated with

envy (Ro> Rs) and guilt (Rs> Rs) using DIenvy and DIguilt as second-level regressors (Fig 2).

DIenvy was found to be correlated with envy-correlated activity in the amygdala (Table 3; p = 2.9

x 10−2, small volume corrected, MNI coordinates -30, -6, -18), consistent with previous studies

[10–11,57]. On the other hand, we did not find any brain activity correlated with DIguilt.

Solitary effects of SNPs on envy aversion

We looked for the effects of SNPs on DIenvy. Neither significant solitary (main) effects of SNPs

nor interactive effects of SNPs with gender [20,58] were identified (Panels A-B in S4 Table;

Table 2. Interactions between Social Value Orientation (SVO) and SNPs on OXTR.

SNP Location Type P

rs53576 3rd intron SNVa 0.046 AA/AG.GG

rs4686302 3rd exon SNV(missense) 0.93 CC/CT.TT

rs75775 Upstream SNV 0.45 GG/GT.TT

rs237924 Upstream SNV 0.45 CC/CT.TT

rs1042778 Downstream 3’-UTRb SNV 0.55 GG/GT.TT

aSNV, single nucleotide variance
bUTR, untranslated region.

https://doi.org/10.1371/journal.pone.0210493.t002

Fig 2. Activation in amygdala correlated with DIenvy. Amygdala responses to disadvantageous inequity (envy) were

correlated with each participant’s DIenvy (PFWE_SVC = 2.9 x 10−2 small volume corrected, peak MNI coordinate -30, -6,

-18).

https://doi.org/10.1371/journal.pone.0210493.g002
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Wilcoxon rank-sum test). However, the envy-induced amygdala activity was affected by

rs53576. More specifically, amygdala activity was found to be larger in A carriers of rs53576

(Fig 3 and Table 4; p = 1.0 x 10−2 at the peak position, small volume corrected, MNI coordi-

nates 24, -2, -22). There were no other significant effects of single SNPs on envy-induced brain

responses.

Effects of GAD1-OXTR interaction on envy aversion

Motivated by reports on oxytocin-GABA interactions in rodents [26,45,59], we investigated

the interactive effects between OXTR and SNPs of GABA-related genes on DIenvy. Because

rs53576 was the only gene correlated with social value orientation and the envy-induced amyg-

dala activity, we chose it as the candidate SNP of OXTR. We found significant interactive

effects of SNPs (rs3791878 (GAD1)-rs53576 (OXTR), rs2236418 (GAD2)-rs140682 (chr 15q),

rs1912960 (chr 4p)-rs53576 (OXTR), rs1912960 (chr 4p)-gender, and rs9362632 (chr 6q)-gen-

der) on DIenvy by using the N-way ANOVA (Table 5). We then compared DIenvy among the

participant groups, which were determined by the SNP subtype in a post-hoc manner (Panels

A-E in S5 Table). We found a significant interactive effect between GAD1 and OXTR (Fig 4

Table 3. The effects of DIenvy on whole brain envy-correlated activity.

Region peak positiona t

score

z

score

Punc
b PFWE_svc

c

x y z

amygdala -30 -6 -18 4.02 3.86 5.8 x 10−5 2.9 x 10−2

aPeak locations are shown as MNI coordinates.
bp values at the peak are shown.
csvc; small volume correction.

https://doi.org/10.1371/journal.pone.0210493.t003

Fig 3. Whole-brain effects of the polymorphisms on OXTR (rs53576) on envy-correlated activity. Regression

analysis showed that amygdala activity induced by inequity was correlated with rs53576 ‘A’. (PFWE_SVC = 1.0 x 10−2,

peak MNI coordinates 24, -2, -22). The cluster was small-volume corrected using the ROI defined by Shen et al. [50],

and the threshold of the image was p< 0.001 and p< 0.005 (uncorrected, yellow and red, respectively) for display

purposes.

https://doi.org/10.1371/journal.pone.0210493.g003
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and Panel A in S5 Table; p = 4.2 x 10−2, Wilcoxon ranksum test, correction for multiple com-

parisons by the number of comparisons in each condition (= 6) was done by the Benjamini

and Hochberg method), but not between any other combination (Panels B-E in S5 Table).

This result indicates that GABA synthesis and oxytocin presence coordinately modulate the

behavioral decisions induced by envy aversion.

We next wished to identify envy-correlated brain activity that paralleled the interactive

effect between GAD1 (GG, GT/TT) and OXTR (AA, AG/GG) by conducting a full factorial

design analysis (see Materials and Methods). We identified a significant interactive effect in

the dACC (Fig 5A and Table 6; F = 17.02, p = 4.3 x 10−2 at the peak position, small volume cor-

rected, MNI coordinates 8, 14, 28). This brain region has been consistently highlighted in ineq-

uity aversion [2,11,60].

We further compared the envy-correlated dACC activity between two groups whose DIenvy

were different (i.e., rs3791878GT/TT-rs53576AG/GG> rs3791878GT/TT-rs53576AA). Whole

brain analysis revealed that dACC activity was higher in the higher DIenvy group (Fig 5B and

5c and Table 6; p = 2.8 x 10−2 at the peak position, small volume corrected, MNI coordinates

10, 14, 28). These results strongly indicated that the genetic interaction between GAD1 and

OXTR had an influence on the envy-induced activation of the dACC.

Discussion

In this study, we reported the interactive effect between GABA- and oxytocin-related genes on

human envy aversion. We found that each participant’s DIenvy calculated from accept/reject

behavior during the ultimatum game was correlated with the interaction effect between GAD1
and OXTR (Fig 4) and that this interactive effect was correlated with the envy-induced activity

of the dACC (Fig 5), which has been implicated to play a crucial role in social information pro-

cessing [61].

The response to unfair offers consists of at least two process: the manipulation of aversive

feelings and the decision-making based on the aversive feelings. In our task, unfair proposals

induced aversive feelings. The aversive feelings were larger in people with prosocial traits. We

confirmed that the correlation between social value orientation and the polymorphism on

OXTR (Table 1 indicated that rs53576 ‘A’ correlated with the prosocial trait). The aversive feel-

ings induced by inequity were previously reported to correlate with the amygdala response to

inequity [10,11], and we found the correlation between the type of OXTR and the amygdala

activity correlated with envy aversion (inequity) (Fig 3). These findings suggested contribu-

tions by oxytocin and the amygdala in the first process.

On the other hand, in the second process, decisions (accept/reject) were made by taking

aversive feelings into consideration. In our procedure, decision indices calculated from the

rejection behaviors in the envy condition correlated with the OXTR-GAD1 interaction (Fig 4).

This observation suggested that envy aversion depends on interactive effects between the sensi-

tivity to inequity (which was related to the type of OXTR) and the function of GABA (which

Table 4. The effects of rs53576 (OXTR) on whole brain envy-correlated activity.

Region peak positiona t

score

z

score

Punc
b PFWE_svc

c

x y z

amygdala 24 -2 -22 4.36 4.15 1.7 x 10−5 1.0 x 10−2

aPeak locations are shown as MNI coordinates.
bp values at the peak are shown.
csvc, small volume correction.

https://doi.org/10.1371/journal.pone.0210493.t004

GAD1-OXTR interactive effects on envy aversion

PLOS ONE | https://doi.org/10.1371/journal.pone.0210493 January 11, 2019 9 / 17

https://doi.org/10.1371/journal.pone.0210493.t004
https://doi.org/10.1371/journal.pone.0210493


was related to the type of GAD1). We also found that this interactive effect was correlated with

envy-related brain activity in the dACC (Fig 5). In this task, participants had to compensate

aversive feelings to accept envious proposals, and this discrepancy between inequity aversion

and the accepted decision was larger in prosocials who disliked inequity (rs53576 ‘A’).

Researchers have repeatedly reported the contribution of the dACC to resolving conflicts

[62,63]. Especially in the context of the ultimatum game, it was suggested that activity in the

dACC decreases when participants forgive unfair partners [64]. Our results may suggest that

the dACC activity controlled by GAD1 has an effect on resolving conflicts between inequity

aversion and the accepted decision. This hypothesis is consistent with a report that shows cor-

relation between the polymorphism of the GAD1 gene and the change in GABA concentration

in human dACC [65].

It was reported that the administration of oxytocin in humans changes the anxiety trait [66]

and that the anxiety trait is related to the microstructural property of the amygdala-ACC path-

way [67]. The GABA concentration in the dACC was reported to correlate with amygdala acti-

vation during the processing of emotional stimuli [68]. Our study may extend these findings

and suggest the possibility that the amygdala activity in social tasks is generally linked with

GABA levels in the dACC.

Table 5. Effects of SNPs or gender on DIenvy.

Interactive effects between SNPs and gender

SNP p F Test

rs3791878 (GAD1) x rs2236418 (GAD2) 0.87 0.03 N-way ANOVA

rs3791878 (GAD1) x rs3811991 (chr5q) 0.79 0.07

rs3791878 (GAD1) x rs1912960 (chr4p) 0.18 1.81

rs3791878 (GAD1) x rs9362632 (chr6q) 0.98 0

rs3791878 (GAD1) x rs140682 (chr15q) 0.99 0

rs3791878 (GAD1) x rs53576 (OXTR) 0.0039 9.05

rs3791878 (GAD1) x gender 0.30 1.1

rs2236418 (GAD2) x rs3811991 (chr5q) 0.52 0.42

rs2236418 (GAD2) x rs1912960 (chr4p) 0.072 3.36

rs2236418 (GAD2) x rs9362632 (chr6q) 0.21 1.62

rs2236418 (GAD2) x rs140682 (chr15q) 0.045 4.2

rs2236418 (GAD2) x rs53576 (OXTR) 0.29 1.13

rs2236418 (GAD2) x gender 0.43 0.64

rs3811991 (chr5q) x rs1912960 (chr4p) 0.64 0.21

rs3811991 (chr5q) x rs9362632 (chr6q) 0.29 1.16

rs3811991 (chr5q) x rs140682 (chr15q) 0.77 0.08

rs3811991 (chr5q) x rs53576 (OXTR) 0.22 1.56

rs3811991 (chr5q) x gender 0.94 0.01

rs1912960 (chr4p) x rs9362632 (chr6q) 0.72 0.13

rs1912960 (chr4p) x rs140682 (chr15q) 0.052 3.95

rs1912960 (chr4p) x rs53576 (OXTR) 0.031 4.92

rs1912960 (chr4p) x gender 0.042 4.35

rs9362632 (chr6q) x rs140682 (chr15q) 0.45 0.57

rs9362632 (chr6q) x rs53576 (OXTR) 0.21 1.60

rs9362632 (chr6q) x gender 0.028 5.08

rs140682 (chr15q) x rs53576 (OXTR) 0.11 2.63

rs140682 (chr15q) x gender 0.13 2.27

rs53576 (OXTR) x gender 0.32 1.00

https://doi.org/10.1371/journal.pone.0210493.t005
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Fig 4. Mean values of the DIenvy. An interaction between the polymorphisms of GAD1 (rs3791878: GG, filled solid;

GT/TT, open dashed) and OXTR (rs53576) was revealed by ANOVA (p = 3.9 x 10−3, Table 5). DIenvy was larger in

rs3791878GT/TT-rs53576AG/GG carriers than in rs3791878GT/TT-rs53576AA carriers (asterisk, p = 4.2 x 10−2, S5

Table). Error bars represent standard errors.
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Fig 5. Whole-brain interactive effects between polymorphisms of GAD1 (rs3791878) and OXTR (rs53576) on

envy-correlated activity. (A,B) An interactive effect was found in the dACC (A, F = 17.02, PFWE_SVC = 4.3 x 10−2, MNI

coordinates 8, 14, 28). More specifically, the response to envy in the dACC was larger in rs3791878GT/TT-rs53576AG/

GG carriers and rs3791878GG-rs53576AA carriers (B, PFWE_SVC = 2.8 x 10−2). Peak locations in the MNI coordinates

are shown in Table 6. Each cluster was small-volume corrected using the ROI defined by Shen et al. [50], and the

threshold of the image was p< 0.001 and p< 0.005 (uncorrected, yellow and red respectively) for display purposes.

The envy-correlated activity at the peak location in B (MNI coordinates 10, 14, 28) is displayed separately for the

different groups shown in Fig 4 (rs3791878GT/TT-rs53576AG/GG> rs3791878GT/TT-rs53576AA). (C) Mean envy-

induced activities in the rs3791878GG and rs3791878 GT/TT groups are shown in blue and red, respectively.

https://doi.org/10.1371/journal.pone.0210493.g005
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Animal studies have indicated that oxytocin neurons project to both the amygdala and

ACC [26]. OXTR is also expressed in both the amygdala and ACC in humans [69].

Although it is difficult for the present study to clarify whether oxytocin works on the ACC

directly or indirectly through the amygdala, we found that oxytocin contributes to the aver-

sive feelings to inequity that are mainly expressed in the amygdala, while the interaction

between oxytocin and GABA synthesis affects the decision-making that is based on inequity

aversion, which is principally represented in the dACC. This observation is comparable

with a previous report that showed rejection behavior was not influenced by oxytocin

administration [24].

Several studies have reported that the GABA A receptor is essential for oxytocin function

in fear and anxiety conditions [26,45]. In the present study, no SNPs of GABA A receptor-

related genes had an interactive effect with the SNP of OXTR, but the SNP of GAD1 did.

One potential explanation for this observation is that the GABA A receptor consists of five

subunits, each encoded by a distinct gene. SNPs of the individual subunit genes might have

only a small effect, as Benjamin and colleagues [40] stated, while GAD1 encodes the enzyme

that synthesizes GABA and has a direct effect on the amount of GABA that could control

neural activities.

With respect to the SNPs of OXTR, several contradictory results have been reported

between Asian and Caucasian populations regarding the long intron region [32–34]. We

reported here that the ‘A’ allele of rs53576 was correlated with the prosocial trait in Japanese,

but the ‘A’ allele was correlated with the antisocial trait in Caucasians [70]. Therefore, the SNP

itself may not be the real cause of the phenotype variation. Differences in social culture or

physical environment might account for the opposite effects of the same allele type between

different populations. Since all participants in our experiments were Japanese university stu-

dents, we could not assess regional or age differences. Regarding gender differences, we did

not find a gender difference in the present study (neither social value orientation nor decision

indices in the envy condition) despite contradictory evidence regarding the effects of intrana-

sal oxytocin injection and OXTR polymorphisms in social contexts [20,71–74]. However, we

did find a significant correlation between the guilt decision index and the type of OXTR in

females (p = 0.025, Wilcoxon ranksum test, correction for multiple comparisons by the num-

ber of comparisons in each condition was done by the Benjamini and Hochberg method). This

finding may indicate not only that the effect of oxytocin on inequity aversion is different for

envy and guilt conditions, but also that the effect of oxytocin on guilty feelings is different

between males and females. Further studies are necessary to validate this hypothesis.

Table 6. Interactive effects between GAD1 and OXTR on whole brain envy-correlated activity.

All groups

Region peak positiona F z

score

Punc
b PFWE_svc

c

x y z

dACC 8 14 30 17.02 3.77 8.0 x 10−5 4.3 x 10−2

rs3791878GT/TT-rs53576AG/GG > rs3791878GT/TT-rs53576AA

Region peak positiona t

score

z

score

Punc
b PFWE_svc

c

x y z

dACC 10 14 28 4.04 3.87 5.4 x 10−5 2.8 x 10−2

aPeak locations are shown as MNI coordinates.
bp values at the peak are shown.
csvc, small volume correction.

https://doi.org/10.1371/journal.pone.0210493.t006
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