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Gastric cancer (GC) is one of the most common malignant tumors with a high mortality
rate worldwide and lacks effective methods for prognosis prediction. Postoperative
adjuvant chemotherapy is the first-line treatment for advanced gastric cancer, but only
a subgroup of patients benefits from it. Here, we used 833 formalin-fixed, paraffin-
embedded resected tumor samples from patients with TNM stage II/III GC and
established a proteomic subtyping workflow using 100 deep-learned features. Two
proteomic subtypes (S-I and S-II) with overall survival differences were identified. S-I
has a better survival rate and is sensitive to chemotherapy. Patients in the S-I who received
adjuvant chemotherapy had a significant improvement in the 5-year overall survival rate
compared with patients who received surgery alone (65.3% vs 52.6%; log-rank P =
0.014), but no improvement was observed in the S-II (54% vs 51%; log-rank P = 0.96).
These results were verified in an independent validation set. Furthermore, we also
evaluated the superiority and scalability of the deep learning-based workflow in cancer
molecular subtyping, exhibiting its great utility and potential in prognosis prediction and
therapeutic decision-making.

Keywords: proteomics, gastric cancer, deep learning, autoencoder, molecular subtyping, chemotherapy benefit
INTRODUCTION

Gastric cancer (GC) is one of the most common malignant tumors in humans and is the fourth
leading cause of cancer death in the world, especially in Asia (1). According to the World Health
Organization (WHO) statistics, the global morbidity of GC in 2020 was 6.6%, and mortality was
7.7% (2), making it an important global health issue (3, 4).

The high morbidity and mortality rates of GC reflect the insufficiency of diagnosis and treatment.
Although immunotherapy has been approved for first-line treatment of GC, only a small percentage
of patients benefit from it. Trastuzumab remains the only approved first-line therapy for HER2-
positive GC (5–8), but the HER2-positive rate for GC is only 10.4 to 20.2% globally (9).
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Chemotherapy is still the main treatment for HER2-negative GC
patients (10–15). However, a GC phase II clinical trial reported
that about 60% of patients responded to chemotherapy, most
patients developed drug resistance within a few months (16). The
overall benefit of chemotherapy in GC is limited (10, 17–19).
Therefore, it is crucial to identify the chemotherapy benefit
groups for advanced HER2-negative GC patients.

With the advancement of omics technology, recent studies
have focused on molecular subtyping while considering the
conventional pathological classification. For example, the
molecular subtyping of GC has provided an opportunity for
individualized treatment (20–23). The Cancer Genome Atlas
(TCGA) proposed four GC molecular subtypes: chromosomal
instability (CIN), microsatellite instability (MSI), genome
stability (GS), and Epstein–Barr virus (EBV) positivity. Of
these, EBV and MSI might benefit from immunotherapy, while
CIN and GS were less likely to respond to immunotherapy.
These results indicate that molecular subtyping can guide
immunotherapy. Likewise, the Asian Cancer Research Group
(ACRG) has also defined four GC molecular subtypes based on
the epithelial-to-mesenchymal transition (EMT), microsatellite
instability (MSI), and TP53 activity: MSI, microsatellite stable
(MSS)/EMT, MSS/TP53+ and MSS/TP53− (24, 25). These
subtypes have different survival outcomes, suggesting that
molecular subtyping can imply prognosis. While clearly
representing milestones in the field, these studies did not reveal
the relationship between GC subtypes and chemotherapy. More
recent molecular subtyping studies have indeed established a
correlation with the clinical characteristics (26–28). For example,
Oh et al. identified two subtypes based on genomic data of GC:
mesenchymal phenotype (MP) and epithelial phenotype (EP),
which are linked to distinct patterns of molecular alterations,
disease progression, and prognosis (29). The MP subtype was
associated with poor prognosis and resistance to chemotherapy,
while the EP subtype was associated with good prognosis and
benefit from chemotherapy. Due to the limited number of
patients receiving chemotherapy, the relationship between
subtypes and chemotherapy has not been verified in
independent cohorts. These studies indicated that molecular
subtyping can identify which GC patients are most likely to
benefit from adjuvant chemotherapy.

Recently, Ge et al. analyzed the proteomic of diffuse-type
gastric cancer (DGC) with 84 pairs of tumors and their nearby
tissues and obtained three molecular subtypes: cell cycle (PX1),
EMT (PX2), and immunological process enrichment subtype
(PX3) (30). These subtypes are strongly associated with survival
outcomes and chemotherapy sensitivity. However, due to the
limited amount of data, this result needs to be further verified. In
a subsequent proteomic subtyping of GC, a workflow based on
non-negative matrix factorization (NMF) consensus clustering
was applied on 1,020 formalin-fixed, paraffin-embedded (FFPE)
GC samples (31). While this workflow could identify
chemotherapy benefit for patients, there was no significant
difference in prognosis between the two molecular subtypes.

Recently, deep learning (DL) has gained increasing attraction
and has been widely applied in various aspects of biological
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research (32, 33), namely, in biomedicine (34), clinical diagnosis
(35), bioinformatics (36), and other life science related fields (37,
38). For example, a preoperative computed tomography (CT)
image-based signature constructed by a deep neural network can
predict overall survival (OS) and chemotherapy benefit in GC
(39). A study based on breast cancer genomic data described how
a single nonlinear hidden node extracted by an autoencoder (AE)
framework can characterize survival differences (40). Moreover,
a recent study using an AE framework combined with multi-
omics data to extract nonlinear features from hepatocellular
carcinoma can discover survival-sensitive molecular subtypes
(41). These achievements suggest the potential for DL in GC
prognosis studies with proteomics data.

In this study, we developed a DL-based workflow that embeds
the AE framework and applied it to the proteomic profile
collected on resected FFPE tumor samples from 833 patients
with TNM stage II/III GC. Patients were classified into two
subgroups (S-I and S-II) with OS differences. S-I has a better
survival rate and is sensitive to chemotherapy. Moreover, we
compared the prognostic predictive ability of the features
extracted from AE with two alternative methods. Finally, we
further test the scalability of the workflow in two external
validation sets.
MATERIALS AND METHODS

Study Design and Patient Cohorts
In this study, we used FFPE surgical resection samples from 833
GC patients with TNM stage II/III from previous work (31).
These samples were collected between 2004 and 2016 and came
from five hospitals, namely, the Peking University Cancer
Hospital & Institute (PKUCH, N = 387), the Fourth Medical
Center of PLA General Hospital/304 Hospital (304H, N = 210),
the Xijing Hospital of Digestive Diseases (XJH, N = 112), the
Medical School of Chinese PLA/301 Hospital (301H, N = 71),
and the Shanxi Cancer Hospital (SXCH, N = 53). Patients had
provided written informed consent and had complete follow-up
records with adequate clinical annotations. The median follow-
up time was 3.7 years (a range of 0.08 to 10.4 years).

We used the data in three steps: The first step is to split the
data into a discovery set (PKUCH and XJH) and an independent
validation set (304H, 301H, and SXCH). The features extracted
from the whole discovery set by AE were used for consensus
clustering to obtain labels of survival-risk subtypes. The second
step is to train the classifier model by dividing the discovery set
into training and test sets at a ratio of 7:3. The third step uses data
from an independent validation set to evaluate the prediction
accuracy of the DL-based prognosis model.
Features Extraction Using a
DL Framework
We use proteomic data from 499 samples from the discovery set
as the input for the AE framework to feature transformation.
May 2022 | Volume 12 | Article 847706
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AE consists of an encoder and a decoder (42), which is a feed-
forward and non-recursive neural network commonly used in
semi-supervised and unsupervised learning (33, 43). Given an
input layer with an input x = (x1, x2,…… xn) of dimension n, the
objective of an AE is to reconstruct x with the output x’ (x and x’
have the same dimension) via transforming x through successive
hidden layers.

For the hidden network layer, we use Relu as the activation
function between the input layer x and the output layer y. That is:

y=f(x)=max (0, x Þ
We use Sigmoid as the activation function for the

reconstructed layer. That is:

y=f(x)=
1

1+e−x

However, the bottleneck layer does not use any
activation functions.

The objective of AE training is to find the different weight
vectors Wi, minimizing a specific objective function. We chose
mean-square error (MSE) as the objective function, which
measures the error between the input x and the output x’.

MSE(x,x0)=
1
no

n

i=1
(xi−x

0
i)
2

Here, n refers to the sample number, xi and xi’ refer to the
input and output values of the current sample, respectively.

We constructed the AE with three hidden layers (500, 100,
and 500 nodes, respectively) using Python’s Keras library
(https://github.com/fchollet/keras). The bottleneck layer of the
AE was used to generate novel features. Finally, the AE was
trained with the Adam optimizer as the optimization function
and 0.001 as the learning rate. A gradient descent algorithm with
80 epochs was used. Epoch here refers to the iteration of the
learning algorithm on the whole training data set.
Consensus Clustering
The AE reduced the original features to 100 new features obtained
from the bottleneck layer. For these transformation features
generated by AE, we use the R package ConsensusClusterPlus
(44) to perform consensus clustering. We determined the optimal
number of clusters with two metrics: (1) Silhouette index and (2)
log-rank P-value. The clustering algorithm was k-means using
Euclidean distance. The proportion of samples selected was 80% in
each resampling, and the number of clusters considered was 2 to 5.
Among them, a consensus matrix with k = 2 appeared to have the
clearest cut between clusters and showed a significant association
with the survival of the patients.
Supervised Classification
After obtaining the labels through consensus clustering, we built
three supervised classification models, namely, random forest
(RF), logistic regression (LR), and support vector machines
(SVM). Using the univariate Cox proportional hazards (Cox-
Frontiers in Oncology | www.frontiersin.org 3
PH) model, we identified 56 prognosis-related proteins (log-rank
P <0.01) used for training classifiers.

The expression values of these 56 proteins on the training and
test sets first standardized with Z-Score before being entered into
classifiers. The average areas under the curve (AUC) of models
were evaluated on the training set combined with 10-fold cross-
validation (CV), and then these models were further determined
based on their performance on the test set.

We built three classifiers using Python’s scikit-learn package
that could be used for performing grid search to find the best
hyperparameters of the three models. Finally, a RF model
containing 10 trees was determined.
Alternative Approaches to the
AE Framework
To verify the advantages of features transformed from AE, we
compared the performance of AE with traditional machine
learning methods. Here, Principal Component Analysis (PCA),
a traditional linear dimension reduction method, and Uniform
Manifold Approximation and Projection (UMAP) (45), a new
nonlinear dimension reduction algorithm, were used to find the
optimal number of retained features, respectively. The samples
were then clustered using the same consensus clustering
procedure (Figure 1).
Differential Expression Analysis
A differential expression analysis was performed to identify the
differentially expressed proteins between the two survival
subtypes. The Mann-Whitney U test was used to identify
proteins with significantly different expression between the two
subtypes, and the Benjamini–Hochberg method was used to
adjust the P-values.
Enriched Pathway Analysis
We used the Reactome pathway database (https://reactome.org/)
(46) to perform functional enrichment analysis for the
differentially expressed proteins of the two subtypes.
RESULTS

Study Design and Clinical Characteristics
A total of 833 FFPE GC samples from five hospitals were used in
this study. There were 309 (37%) TNM stage II patients and 524
(63%) TNM stage III patients, 582 (70%) of whom received
adjuvant chemotherapy.

The median of protein detection in the five hospitals was
between 1,273 and 1,543 (Supplementary Figure 1A).
Moreover, the PCA showed no clear boundaries in the five
hospitals, suggesting that there was no batch effect caused by
the source of samples (Supplementary Figure 1B). We
combined two hospitals as discovery sets and randomly
divided them into the training and test sets at a ratio of 7:3.
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The remaining three hospitals were combined as an independent
validation set. As shown in Supplementary Figures 1C, D, the
sample distribution of the three data sets is relatively balanced.
Table 1 lists detailed clinicopathological information for patients
in the training set (n = 349), the test set (n = 150), and the
independent validation set n = 334.

We established a workflow based on the AE framework, with
the structure highlighted in Figure 1A. We used the 100 nodes
from the bottleneck-hidden layer of AE as new features, and then
Frontiers in Oncology | www.frontiersin.org 4
conducted consensus clustering for the hidden features. The
silhouette index and log-rank P-value were used to judge the
quality of clustering and to obtain the optimal number of clusters
on the discovery set. Next, we used a univariate Cox-PHmodel to
obtain prognosis-related proteins, which were used as features to
establish a classifier. We trained the classifier with a 10-fold CV
in the training set and tested it in the test set, then further
validated it in an independent validation set. The workflow is
shown in Figure 1B.

Two Subtypes With Differential Overall
Survival Were Identified in the
Discovery Set
For the discovery set, we retained proteins detected in one-tenth
(n = 49) of all samples, resulting in 2,058 proteins that were used
for further analysis. These 2,058 proteins were transformed by
the AE, and 100 nonlinear features were retained for consensus
clustering. When K = 2, the consensus matrix exhibited the
clearest cut among clusters (Figure 2A), with an average
silhouette index of 0.97 (Supplementary Figure 2A).

The association between prognosis and chemotherapy within
each subtype was analyzed. Significant differences in OS were
found between the two subtypes: S-I with good prognosis (n =
217, 43%) and S-II with poor prognosis (n = 282, 57%) (log-rank
P = 0.024, Figure 2B). Additionally, we found that the 5-year OS
rate of the S-I patients who received adjuvant chemotherapy was
65.3%, which is a significantly increased 12% compared with
52.6% for patients who received surgery only (Figure 2C). While
no significant differences were observed in the 5-year OS rate for
S-II between patients who received adjuvant chemotherapy
TABLE 1 | Clinical information of patients in this study.

Discovery dataset Validation dataset

Training set Test set

Patients
Total 349 150 334
Phase II 129 53 127
Phase III 220 97 207
Age (year)
Mean ± SD 59.6 ± 12.1 59.3 ± 12.2 61.6 ± 11.1
Median 60.0 60.0 62.0
Range 25–87 20–81 27–89
Gender
Male 257 106 270
Female 92 44 64
Chemotherapy
Yes 249 104 229
No 73 35 95
Overall Survival
Death 168 71 142
Live 181 79 192
BA

FIGURE 1 | The overall workflow for GC proteomic molecular subtyping based on DL AE framework features extraction. (A) AE framework. (B) Workflow combining
DL and machine learning (ML) methods to predict GC survival-risk subtypes. The workflow includes two steps: step 1, inferring survival-risk subtypes in the
discovery set; and step 2, predicting survival-risk labels for samples in the independent validation set.
May 2022 | Volume 12 | Article 847706
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(54%) and those who did not receive chemotherapy
(51%) (Figure 2D).

We adopted the Mann–Whitney U test to perform
differential expression analysis in two subtypes. Of the 884
differentially expressed proteins obtained (FDR <0.05 & fold
change >2), 783 proteins were upregulated in S-I, and
101 proteins were upregulated in S-II (Figure 2E and
Supplementary Figure 2B). Using the differentially expressed
proteins above, we performed pathway enrichment analysis in
the Reactome pathway database (46) to determine the pathways
enriched in the two subtypes. S-I showed the characteristics of
cell proliferation, mainly enriched in DNA replication, cell
cycle, and programmed cell death. S-II showed the
characteristics of the tumor microenvironment (TME), which
was mainly enriched in the extracellular matrix (ECM)-related
pathways (Figure 2F).

The Overall Survival Subtypes were
Validated in an Independent Validation Set
To evaluate the prognostic prediction accuracy of the DL-
based workflow, we established a classifier using the two
subtypes identified above as labels. Using a Cox-PH model,
we obtained 56 prognosis-related proteins as features to train
the classifier. The heat map of 56 proteins is shown in
Supplementary Figure 3A. To build the classifier, we
evaluated three commonly used machine learning (ML)
models, namely, RF, LR, and SVM. The three models
resulted in an average AUC of 0.92, 0.91, and 0.89 on the
training set with a 10-fold CV, and 0.91, 0.93, and 0.92 on the
test set, respectively (Figures 3A, B and Supplementary
Figures 3B, C).

Based on the performance on the training and test sets, we
observed that the three ML models performed equally well. To
determine the robustness of the classifiers in predicting OS
outcomes, we applied the three models to an independent
validation set containing 334 patients. Subtypes of the
validation set were predicted by the three models, followed by
an association analysis between prognosis and chemotherapy
within each subgroup. We discovered that there was a
difference in OS between the two subtypes predicted by RF
on the validation set (log-rank P = 0.026). Among the predicted
S-I with good prognosis (n = 150, 45%), the 5-year OS rate of
patients receiving adjuvant chemotherapy was increased by
25% compared to patients receiving surgery alone (70.5% vs
45.8%), consistent with the characteristics of the S-I in the
discovery set. The predicted S-II with poor prognosis (n = 184,
55%) also showed similar characteristics as the S-II in the
discovery set, and there was no significant difference in the 5-
year OS rate between the chemotherapy group and the non-
chemotherapy group (50% vs 46%, log-rank P = 0.026)
(Figures 3C, D and Supplementary Figure 3D). In contrast,
LR and SVM can only predict chemotherapy benefit, but not
prognosis (Figures 3E–H and Supplementary Figures 3E, F).
Collectively, the results show that the two subtypes were
verified on the independent validation set through the
RF classifier.
Frontiers in Oncology | www.frontiersin.org 5
The DL-Based Methodology Outperforms
Two Alternative Approaches
To verify the advantages of features transformed from AE in
predicting prognosis and chemotherapy benefit, we compared
them with two alternative approaches: PCA and UMAP (45).

In the first approach, we reserved the optimal 44 principal
components for consensus clustering. Although the consensus
matrix did not have a clear boundary (Figure 4A), this approach
could detect survival subtypes with a significant log-rank p value
(log-rank P = 0.045, Figure 4B). Additionally, the two subtypes
also exhibited similar characteristics in terms of prognosis and
chemotherapy benefit with S-I (log-rank P = 0.05, Figure 4C)
and S-II (log-rank P = 0.66, Supplementary Figure 4A).
However, compared with the clustering results obtained from
the AE, the silhouette index of clustering obtained from PCA is
only 0.73 (Supplementary Figure 4B), with less significant
survival differences.

In the second approach, we used optimal 90 features extracted
from UMAP for consensus clustering, obtaining two subtypes
with a silhouette index of 0.99. However, there was no difference
in OS or chemosensitivity (log-rank P = 0.47, S-I: log-rank P =
0.28, S-II: log-rank P = 0.28, Figures 4D–F and Supplementary
Figures 4C, D).

Compared with PCA and UMAP, hidden features extracted
by AE could better distinguish the OS differences between S-I
and S-II (Table 2). Further, we found that when the number of
hidden layers was greater than three, the learning ability of the
AE was decreased. However, with only one hidden layer, the
features extracted by AE do not have the ability to predict
prognosis. When only three hidden layers were set, too few
nodes of hidden layers could also lead to the decline of network
learning ability. Therefore, when the network with three hidden
layers and learning ability was similar, we still chose the network
with relatively few nodes (Table 3).

The Scalability of the Workflow Was
Verified in External Validation Sets
To test the scalability of the DL-based GC subtyping workflow,
we used two sets of public clinical GC data for verification,
namely, proteome data obtained from frozen tissues of 75 TNM
stage II/III DGC patients (30) and RNA-seq data of 247 TNM
stage II/III GC patients (47). Of the 247 GC patients, 124 were
treated with Uracil-Tegafur (UFT) and 123 were treated with a
combination of paclitaxel and UFT (PacUFT), and all
received chemotherapy.

Based on the above workflow, we found that the prognosis of
frozen samples of DGC could also be distinguished (log-rank P =
0.012, Figures 5A, B). The subtype with a good prognosis
exhibited a chemo-benefit trend, which was consistent with
that of the S-I identified in FFPE samples, although the p-value
of the S-I was not significant (log-rank P = 0.15, Figure 5C),
likely due to the limited data. Whereas the subtype with poor
prognosis showed the same characteristics as the S-II identified
in FFPE samples (log-rank P = 0.81, Figure 5D). This indicates
that our deep learning-based GC subtyping workflow not only
has good prognosis prediction and screening ability for
May 2022 | Volume 12 | Article 847706
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BA

DC

FE

FIGURE 2 | Clinical outcomes and differentially expressed proteins with their enriched pathways of the molecular subtypes in the discovery set. (A) The discovery
set was clustered using the ConsensusClusterPlus method based on the protein features transformed from AE. (B) The OS of S-I and S-II. (C, D) The OS by
chemotherapy status for S-I and S-II. (E) Differentially expressed proteins in the two subtypes. (F) Reactome revealed the pathways that were significantly enriched in
the proteomic subtypes.
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BA

DC

FE

HG

FIGURE 3 | Classifiers were established to predict survival-risk labels for samples in the independent set. (A) The receiver operating characteristic (ROC) curve of RF
on training set with 10-fold CV. (B) The ROC curve of three classifiers on test set. (C, D) The Kaplan–Meier (K–M) curves of the subtypes in independent set predict
by RF: OS (left) and OS by chemotherapy status of S-I (right). (E, F) The K–M curves of the subtypes in independent set predict by LR: OS (left) and OS by
chemotherapy status of S-I (right). (G, H) The K–M curves of the subtypes in independent set predict by SVM: OS (left) and OS by chemotherapy status of S-I (right).
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chemotherapy benefit in FFPE but can also be applied to
frozen tissues.

Similarly, our workflow was used to classify 124 GC patients
treated with UFT and 123 GC patients treated with PacUFT,
respectively. We obtained two subtypes with OS differences from
each of the two groups (UFT: log-rank P = 0.057; PacUFT: log-
Frontiers in Oncology | www.frontiersin.org 8
rank P = 0.026; Figures 5E, F). Among them, patients with a
subtype with a better prognosis benefited from chemotherapy,
whereas patients with a subtype with a poor prognosis
resisted chemotherapy.

These results demonstrated that our DL-based GC subtyping
workflow was scalable to some extent, and that it could predict
DA

EB

FC

FIGURE 4 | The clinical outcomes of molecular subtypes obtained from two alternative approaches in the discovery set. (A) The clustering results, (B) the OS of S-I
and S-II, and (C) the OS by chemotherapy status for S-I, obtained from PCA. (D) The clustering results, (E) the OS of S-I and S-II, and (F) the OS by chemotherapy
status for S-I, obtained from UMAP.
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prognosis and screen for the chemotherapy benefit on GC
samples from various sources such as proteomes and
transcriptomes. This workflow may provide a new clinically
applicable strategy for determining which patients are more
likely to benefit from adjuvant chemotherapy.
DISCUSSION

Accurate prediction of prognosis and treatment response is
crucial for risk stratification and management of cancer
patients (39). In this study, we established a workflow for
molecular subtyping of GC based on AE framework feature
extraction. This workflow, which could not only predict the OS
outcomes for GC patients but also identify the chemotherapy
benefit, was validated on two independent clinical GC datasets.

The diagnosis and treatment of GC have been advanced
over the past few decades, but most GC patients are still
diagnosed at an advanced stage (48) and the targeted therapies
are not sufficient. For HER2-negative advanced GC patients, the
primary treatment is still limited to platinum, fluoropyrimidine,
and paclitaxel chemotherapeutic drugs (15). Furthermore, there
are significant individual differences in prognosis even among
patients at the same stage receiving the same treatment (10, 18,
49–51). Some patients clearly benefit from chemotherapy,
while some patients do not and may have a worse prognosis
due to the toxic effects of chemotherapy (10, 16, 17). Since
the overall benefit of adjuvant chemotherapy for GC is limited
(17–19), predicting which specific patients will benefit
from chemotherapy is critical. Studies have been conducted on
the benefits of chemotherapy for GC (10, 52, 53), but
Frontiers in Oncology | www.frontiersin.org 9
relevant work is still lacking. Therefore, it is urgent to find
biomarkers or features to better predict prognosis and guide
treatment strategies.

We conducted a retrospective proteomic analysis of 833
clinically-ready FFPE GC samples from 5 independent centers.
In this study, we proposed a DL-based proteomic subtyping
workflow to predict the prognosis of GC patients with stage II/
III and chemotherapy benefit. We found that approximately 43%
of patients in the discovery set benefited from adjuvant
chemotherapy, and this group had a better prognosis than those
who did not benefit from chemotherapy. Pathway enrichment
analysis of the S-I and S-II showed that they had different active
pathways. S-I exhibited the characteristics of cell proliferation,
while S-II was a TME. The S-II was mainly enriched in ECM-
related pathways. Interestingly, it has been reported in relevant
studies that ECM can form a physical barrier to anticancer drugs
(54, 55) and prevent the effects of chemotherapy and
immunotherapy, so the deposition of ECM is associated with
poor prognosis of various tumors (49). One of the representative
ECM genes, FBN1, is up-regulated in S-II. Relevant studies have
verified that knocking out this gene can make cancer cells sensitive
to chemotherapy drugs (49). Therefore, determining the
characteristics of the ECM microenvironment in patients with
chemotherapy insensitivity can help predict prognosis and
chemotherapy response and provide indications for treatment.

Additionally, we proved the superiority of using AE over PCA
and UMAP to extract features and perform consensus clustering
in predicting prognosis and chemotherapy benefit. The
superiority may result from the ability of AE to capture
complex relationships between analytes through multi-layer
neural network transformation.
TABLE 2 | Performance of AE and two alternative approaches.

Method Components (n) Average Silhouette Index P-value (S-I vs S-II) P-value (S-I) P-value (S-II)

AE 100 0.97 0.024 0.014 0.96
PCA 30 0.69 0.69 0.21 0.48

44 0.73 0.045 0.05 0.66
50 0.66 0.032 0.14 0.39
60 0.72 0.27 0.051 0.73

UMAP 30 0.87 0.32 0.36 0.2
60 0.97 0.45 0.31 0.24
90 0.99 0.47 0.28 0.28
120 0.94 0.98 0.25 0.29
May 2022 | Volume 12 |
TABLE 3 | Performance of AE with different hidden layers and nodes in discovery set.

Hidden layers (N) Nodes (N) Average Silhouette Index P-value (S-I vs S-II) P-value (S-I) P-value (S-II)

1 100 0.98 0.99 0.033 0.47
1 500 0.98 0.13 0.034 0.5
1 1,000 0.97 0.13 0.034 0.5
3 100, 50, 100 0.64 0.027 0.017 0.89
3 500, 100, 500 0.97 0.024 0.014 0.96
3 1,500, 500, 1,500 0.95 0.026 0.015 0.82
5 500, 100, 50, 100, 500 0.87 0.0096 0.05 0.51
5 1,000, 500, 100, 500, 1,000 0.96 0.024 0.0086 0.69
5 2,000, 1,200, 500, 1,200, 2,000 0.95 0.057 0.048 0.65
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Despite this, it has several limitations in this study. First, this
is a retrospective study, and these results need to be verified in
future randomized clinical trials. Second, there was a lack of
further in-depth examination of chemotherapy benefits or
chemotherapy resistance mechanisms for the two subtypes.
Frontiers in Oncology | www.frontiersin.org 10
In conclusion, we established and verified a workflow for GC
proteomic molecular subtyping based on features extracted from
AE, which can provide prognostic value for GC patients and
distinguish chemotherapy benefit groups. Additionally, we also
demonstrated the superiority and scalability of the DL-based
BA

DC

FE

FIGURE 5 | The clinical outcomes of molecular subtypes obtained by the protein features transformed from AE in the external validation set. (A) The clustering result of DGC.
(B) The OS of S-I and S-II. (C, D) The OS by chemotherapy status for S-I and S-II. (E) The OS of molecular subtypes for UFT-treated and. (F) PacUFT-treated patients in the
external validation set.
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workflow in cancer molecular subtyping, exhibiting its great
application potential in therapeutic decision making and
prognosis prediction. Further validation of these findings in a
multicenter prospective study is warranted.
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LR, and SVM, respectively.

Supplementary Figure 4 | The clustering results obtained from two alternative
approaches in discovery set. (A) The silhouette plot of clustering results and (B) the
OS by chemotherapy status for S-II obtained from PCA. (C) The silhouette plot of
clustering results and (D) the OS by chemotherapy status for S-II obtained from
UMAP.

Supplementary Figure 5 | The clustering results obtained by the protein features
transformed from AE in the external validation set. (A) The silhouette plot of
clustering results in DGC. (B, C) The clustering results for UFT-treated and (D, E)
PacUFT-treated patients in the external validation set.
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