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Diagnosis of fusion genes using targeted RNA
sequencing
Erin E. Heyer 1, Ira W. Deveson 1,2, Danson Wooi1,2, Christina I. Selinger3, Ruth J. Lyons1,

Vanessa M. Hayes1,2,4,5,6, Sandra A. O’Toole2,3,6,7,8, Mandy L. Ballinger7, Devinder Gill9, David M. Thomas 7,

Tim R. Mercer1,2,10 & James Blackburn 1,2

Fusion genes are a major cause of cancer. Their rapid and accurate diagnosis can inform

clinical action, but current molecular diagnostic assays are restricted in resolution and

throughput. Here, we show that targeted RNA sequencing (RNAseq) can overcome these

limitations. First, we establish that fusion gene detection with targeted RNAseq is both

sensitive and quantitative by optimising laboratory and bioinformatic variables using spike-in

standards and cell lines. Next, we analyse a clinical patient cohort and improve the overall

fusion gene diagnostic rate from 63% with conventional approaches to 76% with targeted

RNAseq while demonstrating high concordance for patient samples with previous diagnoses.

Finally, we show that targeted RNAseq offers additional advantages by simultaneously

measuring gene expression levels and profiling the immune-receptor repertoire. We antici-

pate that targeted RNAseq will improve clinical fusion gene detection, and its increasing use

will provide a deeper understanding of fusion gene biology.
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Chromosomal rearrangements that juxtapose two different
genes together can form a fusion gene. Fusion genes play a
causal role in tumorigenesis, accounting for ~20% of

human cancer morbidity1. However, the prevalence of fusion
genes varies widely across different cancers, and many fusion
genes are specific to certain cancer sub-types1–3. Accordingly, the
rapid and accurate identification of fusion genes can characterise
and stratify cancer diagnoses.

Precise fusion gene diagnosis can also inform subsequent
therapeutic treatment, with several drugs having been successfully
developed to inhibit fusion genes, including imatinib mesylate for
treating BCR-ABL1 and crizotinib for treating EML4-ALK fusion
genes4,5. Fusion gene diagnosis can also predict prognosis, patient
survival and treatment response1,6,7.

Fluorescence in situ hybridisation (FISH) and quantitative real-
time polymerase chain reaction (RT-PCR) methods have been
predominantly used for fusion gene diagnosis. Though highly
sensitive, these methods typically only test for the presence of a
single fusion gene, often resulting in a lengthy, iterative and costly
path to diagnosis. Furthermore, these methods are unable to
identify novel fusion gene partners or resolve complex structural
rearrangements. As a result, false-negative results attributed to
non-tested or novel fusion genes and isoforms are a leading cause
of misdiagnosis of haematological cancers8.

RNA sequencing (RNAseq) can address many of these lim-
itations by providing genome-wide surveillance of fusion genes
with nucleotide-level resolution of fusion junctions. However, due
to the sheer size of the transcriptome, RNAseq suffers from poor
sensitivity for detecting fusion genes that are lowly expressed or
diluted by accompanying non-cancerous cells within a sample9,10.

We recently developed a targeted RNAseq method that uses
biotinylated oligonucleotide probes to enrich for RNA transcripts
of interest11,12. This method enhances sequencing coverage by
targeting and capturing hundreds of genes within a single assay,
enabling the sensitive detection of rare or lowly expressed tran-
scripts. Given these advantages, targeted RNAseq has been pro-
posed as a fusion gene diagnostic in solid tumours and lung
cancer13,14 (Fig. 1a).

Here, we evaluate the diagnostic power of targeted RNAseq for
fusion gene detection. In this analysis, we demonstrate its ability
to identify different fusion genes in a variety of sample types and
measure the influence of different laboratory and bioinformatic
variables on performance. We show that in a cohort of clinical
patient samples, targeted RNAseq increases the diagnostic rate
from 63 to 76% compared to FISH and RT-PCR methods. Finally,
we explore the supplementary use of targeted RNAseq to profile
the immune-receptor repertoire within a sample, measure
expression of marker genes and identify novel exons.

Results
Design of panel to capture fusion genes. We first designed an
expansive panel of capture probes targeting almost all known
fusion genes in cancer as manually curated from literature and
publically available databases1,3,15–33. However, since the overall
sensitivity of targeted RNAseq is inversely proportional to the
sum of captured gene expression, we split the design into two
panels to maintain high sensitivity while targeting all annotated
exons for all genes. We created one panel for haematological
malignancies (including leukaemia, lymphoma and myeloma)
that targeted 188 fusion-related genes and one panel for solid
tumours (including prostate, lung, sarcoma, ovarian and bladder)
that targeted 241 fusion-related genes, with 43 genes targeted by
both panels (Supplementary Fig. 1a and Supplementary Data 1,
2). Given their involvement in a range of fusion events in blood
cancers, we also included the T-cell receptor (TCRA/D, TCRB and

TCRG) and immunoglobulin (IGH, IGL and IGK) loci on the
blood panel (Supplementary Fig. 1a, b). Notably, the capture of
these genes also allowed the simultaneous profiling of immune-
repertoire expression within each sample. Although these designs
were more expansive than those typically used in a diagnostic
context, they facilitated a comprehensive investigation of clini-
cally relevant fusion genes.

We also considered whether targeted RNAseq could simulta-
neously profile additional genes with prognostic and analytical
value. Therefore, we included probes for 2 additional core
transcription factors (5 also fusion-involved), 5 cell-type markers
and 10 splicing factors on the blood panel34–40 (Supplementary
Fig. 1a, b). Similarly, the solid panel covered 14 immune genes
that infer potential avenues of treatment (Supplementary Fig. 1a,
c; personal communication with Australasian Sarcoma Study
Group).

Finally, we added probes for sequencing spike-in controls. Both
panels included probes for the External RNA Controls Consortium
(ERCC) RNA spike-in controls, with the solid panel additionally
containing probes for RNA spike-in controls that represent fusion
genes (fusion sequins;41 Supplementary Fig. 1a-c).

Evaluation of targeted sequencing enrichment. We initially
evaluated the performance of the two panels by comparing tar-
geted RNAseq to conventional RNAseq using matched RNA
extracted from the K562 and RDES cell lines. We employed a
double-capture approach to increase the on-target capture rate,
achieving a mean 93% of reads aligning to targeted regions
(compared to 4% of matched RNASeq libraries; Table 1). We also
compared the abundance of ERCC RNA spike-ins between tar-
geted and conventional RNAseq to precisely quantify the
enrichment rate achieved by the capture, finding that targeted
RNAseq achieved a mean 59-fold enrichment for the blood panel
and 33-fold enrichment for the solid panel whilst maintaining
quantitative accuracy and reliable detection down to 3pM input
(Fig. 1b, c, Supplementary Fig. 2a, b). Notably, we detected
minimal read coverage for the non-targeted ERCCs, indicating a
lack of off-target contamination in our libraries (Fig. 1b, Sup-
plementary Fig. 2a).

We next investigated the fraction of genes represented on the
panel that were reliably tested using targeted RNAseq. Within
both cell lines, we measured over 70% of targeted genes with
expression above 15 transcripts per kilobase million (TPM;
Supplementary Fig. 2c), observing broad and uniform read
coverage across the full length of these expressed genes (Fig. 1d,
Supplementary Fig. 2d). Furthermore, we found that splice-
junction reads encompassed 77.8% of annotated introns on the
blood panel and 84.6% of annotated introns on the solid panel
(Supplementary Fig. 2e). Collectively, these findings suggest that
translocations interrupting the majority of genes represented on
the two panels would be detected with targeted RNAseq.

Evaluation of fusion gene detection. Following the successful
validation of the targeted RNAseq panels, we next assessed our
ability to diagnose fusion genes, utilising six cell lines (K562,
RDES, 143B, GOT3, KARPAS45 and MLS1765-92) that harbour
known fusion genes (Fig. 2a, Table 1). As reliable fusion gene
detection with short-read sequencing is computationally difficult
and relies on the identification of paired-end reads that span or
overlap the fusion junction (Fig. 2a), we assessed a wide range of
bioinformatic tools for fusion gene identification (reviewed in
refs. 42–44). Ultimately, we implemented a fusion analysis pipeline
using STARfusion and FusionCatcher45,46 (Supplementary Fig. 3).
Due to the presence of numerous false positive fusion events, we
required fusion genes to be detected by both algorithms. Using
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this computational approach, we successfully detected known
fusion genes in all cell lines (Table 1).

To measure the capture enrichment of fusion genes, we
compared fusion junction read counts between targeted and
conventional RNAseq. Although the BCR-ABL1 fusion gene was
easily detected in K562 RNASeq libraries (where the fusion gene
is expressed from 8-24 DNA copies), the single-copy EWSR1-
FLI1 fusion gene was barely detected in the RDES cell line using
standard RNASeq, illustrating the advantage of targeted RNAseq
in fusion gene detection (Fig. 2b and Supplementary Fig. 4a, b).

Next, to assess the sensitivity of the capture panels for fusion gene
detection, we prepared serial dilutions of K562 RNA from 1:10 to
1:10,000 against a GM12878 RNA background. Although we
confidently detected the BCR-ABL1 transcript in all samples through

to the 1:1000 dilution, it was only detectable with STARfusion in the
1:10,000 sample (Fig. 2c). Notably, this sensitivity is dependent on
library depth, the number of genes captured and the fusion gene
expression level, so may vary for different fusion genes.

Finally, to provide an absolute quantification of targeted
RNAseq sensitivity in detecting fusion genes, we measured the
detectable range of fusion sequins spiked into RNA extracted
from the RDES cell line. We achieved 50% detection of fusion
sequins at 2 pM input and 100% detection of all fusion sequins at
their expected relative abundances between 8 pM and 31 nM
input (Fig. 2d). Notably, this positive identification was
independent of whether the panel targeted one or both fusion
partners, demonstrating the ability of targeted RNAseq to capture
and identify novel non-targeted fusion partners (Fig. 2d).

Table 1 Summary of cell line fusion genes and mapping statistics

Panel Cancer type Sample Detected fusion genes Uniquely mapped reads
(million)

On-target capture rate
(%)

Blood Bone marrow K562 RNASeq BCR-ABL1, NUP214-XKR3 46.0 3
K562 BCR-ABL1, NUP214-XKR3 10.7 98
K562 1:10 BCR-ABL1, NUP214-XKR3 49.7 72
K562 1:100 BCR-ABL1, NUP214-XKR3 4.9 91
K562 1:1000 BCR-ABL1, NUP214-XKR3a 29.0 81
K562 1:10,000 BCR-ABL1a 11.4 87

T-cell KARPAS45 KMT2A-FOXO4 16.9 97
WT GM12878 – 10.4 98

Solid Sarcoma 143B EXOC2-MET, PAFAH1B2-FOXR1, ERG-
LINC00240

27.5 92

GOT3 GPC6-WIF1, WNK1-ERC1, PPARD-IRF2BP2 27.1 93
MLS1765-92 FUS-DDIT3, CREB1-METTL21A 20.1 93
RDES RNAseq EWSR1-FLI1 31.0 5
RDES EWSR1-FLI1, SMC04-EWSR1, FUS-DDIT3 30.4 88

aIndicates fusion gene identified by either STARfusion or FusionCatcher, but not both

Identify novel fusion partners
not targeted by probes

1. Probe design 3. Sequencing 4. Analysis2. Enrichment
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Validation of fusion gene detection in clinical samples. Fol-
lowing successful validation in cell lines, we next evaluated tar-
geted RNAseq for fusion gene diagnosis in patient tumour
samples. Initially, we assessed fusion gene detection in two lung
cancer tumour biopsies previously diagnosed by FISH cytoge-
netics with break-apart probes (Fig. 3a, b). For each sample,
library preparation and capture hybridisation were performed
under clinical conditions within the St. Vincent’s Hospital
Research Precinct. In both cases, targeted RNAseq not only
confirmed the previously identified ROS1 and ALK rearrange-
ments, but also ascertained both the fusion gene partners (EZR
and EML4, respectively) and the precise fusion junction locations
(Fig. 3d, e, and Supplementary Data 3).

We then expanded our analysis to test for the presence of
fusion genes in a clinical cohort representing a broad range of
cancer samples. In total, we profiled 72 samples encompassing
40 solid tumours using the solid panel and 32 haematological
malignancies using the blood panel, as described above (Fig. 3d,
Table 2). Patient-consented samples were collected by clinicians
at St. Vincent’s and Royal Prince Alfred Hospitals (Sydney), the
Australian arm of the International Sarcoma Kindred Study
(ISKS), the Kinghorn Cancer Centre Molecular Screening and
Therapeutics (MoST) study and the Australasian Leukaemia and
Lymphoma Group (ALLG) Discovery Centre.

Across the total cohort of 72 clinical patient samples, targeted
RNAseq detected fusion genes in 55 samples (76%), a subset of
which were validated by Sanger sequencing (Fig. 3d, Table 2,
Supplementary Fig. 5f–k). In comparison, fusion genes were
detected in only 39 out of 62 (63%) samples with prior molecular
analyses (Fig. 3d, Table 2 and Supplementary Data 3). To
specifically assess the overall concordance of these targeted
RNAseq findings with previous diagnoses (ex. Figure 3a–c,
Supplementary Fig. 5a–e), we compared the fusion genes

identified by both approaches. Targeted RNAseq correctly
detected fusion genes in 33 out of 39 (85%) samples with previous
fusion gene diagnoses, identifying both fusion gene partners in six
samples where only one gene was previously identified (Fig. 3d
and Supplementary Data 3). Of the six missed diagnoses, targeted
RNAseq detected the inverse fusion gene in one sample and
another was likely due to a promoter fusion event (see below). For
the remaining 23 patient samples where previous molecular
analyses reported no fusion genes, targeted RNAseq detected
fusion genes in 12 samples (52%; Fig. 3d, Table 2 and
Supplementary Data 3). Finally, targeted RNAseq identified fusion
genes in 6 out of 10 (60%) patient samples where prior molecular
testing reports were unavailable (Supplementary Data 3).

To measure the reproducibility of fusion gene diagnosis using
targeted RNAseq in patient samples, we selected three samples –
two with detected fusion genes, one without – and prepared
targeted RNAseq libraries in triplicate to assess intra-run
variability. These nine samples were also captured in triplicate
and sequenced independently on three lanes to assess inter-run
variability. We detected the expected fusion genes in all replicates
of the two positive samples, whilst no fusion genes were detected
in any of the negative sample replicates (Supplementary Data 4).

We next compared fusion junction read coverage between
inter-run and intra-run replicates (Supplementary Fig. 6a, b). We
observed low variability between inter-run and intra-run
replicates with mean coefficient of variations of 0.073 and
0.071, respectively (Supplementary Data 4). In addition, we
quantified the read coverage for every canonical gene on the
capture panel and performed hierarchical clustering to illustrate
the high reproducibility in gene expression measurements
(Supplementary Fig. 6c).

We next assessed fusion gene diagnosis in these samples
according to cancer type. Of the 20 prostate cancer samples
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within the cohort, we confirmed all 10 (100%) samples previously
diagnosed by RT-PCR and found fusion genes in an additional
four samples (Fig. 3d, Supplementary Fig. 7a–c and Supplemen-
tary Data 3). The cohort also included 17 sarcoma patient
samples with a prior molecular diagnosis, of which we confirmed
seven (44%) samples with high-confidence fusion genes and six
(38%) samples with fusion genes identified by a single fusion-
finding algorithm, finding one (6%) sample where we identified
the inverse of the fusion gene previously identified and one
sample (6%) where we detected a novel fusion gene (Fig. 3d and
Supplementary Data 3). In addition, we identified a novel fusion
gene in one sarcoma sample lacking a previous molecular
diagnosis (Fig. 3d and Supplementary Data 3).

Using the blood panel, we applied targeted RNAseq to analyse
five acute lymphoblastic leukaemia (ALL) samples. This con-
firmed prior analyses in one out of two (50%) samples and
detected fusion genes in two samples (100%) where prior testing
identified no fusion genes and one sample (100%) with no prior
testing information. In the ALL sample where previous RT-PCR
detected an AFF1-KMT2A fusion gene, targeted RNAseq
identified the KMT2A-AFF1 fusion gene in addition to a
previously unknown AFF1-MYC fusion gene (Fig. 3d, Supple-
mentary Figs. 5j, 7d and Supplementary Data 3). As all three
genes reside on separate chromosomes, these two fusion genes
likely result from a complex genomic rearrangement. Of the 15
acute myeloid leukaemia (AML) samples analysed, we confirmed
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previously reported fusion genes in 1 out of 2 (50%) samples and
identified a novel gene in the other sample with a previously
reported fusion gene. Additionally, targeted RNAseq identified
fusion genes in 3 out of 7 (43%) samples where prior testing
identified no fusion genes and 4 out of 6 (67%) samples with no
information on prior molecular analyses. We confirmed pre-
viously detected fusion genes in all three (100%) chronic myeloid
leukaemia (CML) samples and identified fusion genes in 1 CML
sample where prior testing identified no fusion genes and one
sample with no analysis history available. Similarly, we confirmed
all three (100%) lymphoma samples with prior fusion gene
identification. Finally, we detected a novel fusion gene in one
uncategorised blood cancer sample.

Across the solid and blood panels, there were 23 patient
samples where previous analysis identified no fusion genes. Of
these, we reported fusion genes in 12 (52%) samples. In eight of
these samples, the identities of the genes partners in the fusion
gene were different from those previously analysed with FISH or
RT-PCR. However, in the remaining four samples targeted
RNAseq identified fusion genes that were previously tested for
but not reported by either FISH or RT-PCR. This could be due to
the additional sensitivity of targeted RNAseq or a discrepancy
between the isoforms detected by targeted RNAseq and those
analysed by FISH or RT-PCR; for example, in one instance (AML
patient 36EW), unusual RT-PCR banding prevented the fusion
gene from being reported (Supplementary Data 3). Both the
issues of incorrect gene choice and varying isoform usage
demonstrate the benefit of interrogating hundreds of genes at
once in a manner independent of fusion junction location.

In total, 37 unique fusion genes were identified across our
clinical cohort (Table 2). The 72 clinical samples in this cohort
were prepared from a variety of sources, including both solid
tissue (fresh-frozen and FFPE) and liquid samples (bone marrow
and peripheral blood), with samples representing a range of RNA
qualities. Despite this variability in sample type and quality, we
observed only small differences in alignment performance. All
double-capture samples reported ≥89% of reads mapping to
capture panel regions (Supplementary Fig. 8a). The capture of
targeted regions was slightly higher for liquid samples than tissue
samples (median 99.3 v 94.7, p= 5.8 × 10−16, Wilcoxon rank sum
test). However, there was no significant difference in capture
efficiency between FFPE and fresh-frozen tissue, indicating that
even challenging FFPE tissue can be effectively analysed using
targeted RNAseq (median 94.5v 95.4, p= 0.50, Wilcoxon rank
sum test; Supplementary Fig. 8b).

A unique advantage of targeted RNAseq is the ability to resolve
alternative fusion gene isoforms that may inform clinical action.

For example, across the five CML patients, we identified two
previously described BCR-ABL1 isoforms that were associated
with disparate responses to imatinib treatment47,48 (Fig. 4a). The
presence of multiple fusion transcript isoforms was most notable
in the prostate cancer samples, where 10 out of 11 (91%)
TMPRSS2-ERG positive samples expressed two or more alter-
native isoforms (Supplementary Fig. 9a). In total, we identified 10
distinct TMPRSS2-ERG fusion isoforms, with the majority
exhibiting complex 5′ end diversity from alternative TMPRSS2
transcription start sites (Fig. 4b). We also detected multiple fusion
gene isoforms that resulted from different translocations upstream
or downstream of ERG exon 3, though these alternative isoforms
had no effect on expression level (Supplementary Fig. 9a, b).

Across the entire clinical patient cohort, 24 out of 54 (44%)
patient samples harboured fusion genes whose diagnosis would
inform subsequent clinical action (Supplementary Data 3). Six
(25%) of the actionable fusion genes were not previously
identified using alternative methods (Supplementary Data 3).
While some fusion genes, such as SS18-SSX1 and MYC-IGH,
constitute prognostic factors, other fusion genes, such as EML4-
ALK and PML-RARA are directly targetable.

Measuring gene and exon expression with targeted RNAseq. In
addition to identifying fusion genes, targeted RNAseq simulta-
neously measures the expression of all captured genes within each
sample11. Initially, we quantified read coverage for each exon and
found that abrupt changes in read coverage corresponded to
fusion junction locations (Fig. 4c, d). This likely represents the
difference in overall expression levels between the fusion gene
and the non-fused, canonical alleles, though observed expression
levels will depend on the sum of expression of the fusion gene, the
inverse fusion gene (in the case of balanced rearrangements), and
any non-rearranged alleles. For the majority of patient samples,
high fusion gene expression contrasted with little or no expres-
sion from the non-rearranged alleles, suggesting the existence of
additional factors that lead to enhanced expression. For example,
the EZR-ROS1 fusion gene was highly expressed compared to the
corresponding, non-fused EZR and ROS1 genes (Fig. 4c). How-
ever, in a minority of cases, the endogenous expression of the 5′
fusion gene drives fusion gene expression. For example, the
ACSL3-ETV1 fusion gene exhibited similar expression to the
corresponding ACSL3 gene, which likely results from the trans-
location of the ACSL3 promoter and its regulatory activity
(Fig. 4d).

Notably, for one sarcoma sample, targeted RNAseq was unable
to identify a fusion gene, despite previous FISH analysis reporting

Table 2 Fusion genes found within the clinical cohort

Panel Cancer type Fusion genes detected with targeted RNAseq FISH & RT-
PCR

Targeted
RNAseq

Blood Acute lymphoblastic
leukaemia

KMT2A-AFF1, AFF1-KMT2A, RUNX1-RUNX1T1, TCF3-PBX1, AFF1-MYC,
TAF15-ZNF384, ZNF384-TAF15

2/4 5/5

Acute myeloid leukaemia CBFB-MYH11, NSD1-NUP98, RUNX1-RUNX1T1, RUNX1T1-RUNX1, KMT2A-
MLLT3, DEK-NUP214, NUP214-DEK, MN1-ETV6, ETV6-MN1, DDX3X-
MLLT10, KMT2A-SEPT9, SEPT9-KMT2A, PML-RARA, RARA-PML

2/9 9/15

Chronic myeloid leukaemia BCR-ABL1, RUNX1-RUNX1T1 3/4 5/5
Lymphoma MYC-IGH, IGH-BCL6 3/4 3/4
Other blood cancers FGFR1-ZMYM2 0/1 1/3

Solid Lung EZR-ROS1, EML4-ALK 2/2 2/2
Prostate TMPRSS2-ERG, ACSL3-ETV1, SP3-CTU2, SLC45A3-SKIL 10/20 14/20
Sarcoma SS18-SSX1, SS18-SSX2/2B, FUS-DDIT3, DDIT3-FUS, EWSR1-ERG, EWSR1-

FLI1, PATZ1-EWSR1
17/18 16/18

Columns on the right indicate the number of patient samples with a positive fusion gene diagnosis from prior clinical assessment or targeted RNAseq; discrepancies in total sample number reflect the
lack of available clinical data
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a chromosomal rearrangement involving ROS1 (Supplementary
Data 3). Subsequent analysis of this sample showed ROS1
expression to be 50-fold higher than the median of all sarcoma
samples, supporting the existence of a promoter fusion that
deregulated ROS1 expression (Supplementary Fig. 10a, b). This
suggests that whilst targeted RNAseq is unable to directly detect
chromosomal rearrangements that fuse a promoter upstream of a
different gene, it may still detect the resulting change in gene
expression.

Finally, we expanded the gene expression analysis to the
targeted genes that can yield cell marker or prognostic
information. Whilst expression of these genes varied across
samples, we nevertheless detected suggestive gene expression
patterns. This was exemplified by high GATA2 expression in
some AML and CML patients, which is a known marker of poor
prognosis in AML49 (Supplementary Fig. 11, 12).

Immune repertoire profiling. As deregulated V(D)J recombina-
tion can create fusion genes involving IG/TCR receptor loci in a

range of blood cancers, our blood panel targeted the V, J and C
exons at these loci (Fig. 5a). Accordingly, we identified three lym-
phoma patients within our patient cohort harbouring IGH-MYC or
IGH-BCL6 fusion genes. However, in addition to fusion genes, these
probes also captured all RNA transcripts expressed from the
immune receptor loci (Fig. 5a). Therefore, we next assessed our
ability to resolve the immune repertoire profile within each sample.

We first captured RNA from B- (Daudi, Raji, Ramos) and T-
(KARPAS45, Jurkat) cell lines with known V(D)J recombination
events, as described above. We then used both MiXCR and
IMSEQ to profile the clonotype population within each
sample50,51 (Supplementary Fig. 3). For each cell line, we detected
1–3 dominant clonotypes supported by the majority of immune
reads, as expected for clonal cell lines (Fig. 5b and Supplementary
Data 5). False-positive clonotypes were supported by only a small
fraction of reads and predominantly derived from the same
immune receptor loci.

Next, we extended this immune analysis to the 32 haemato-
logical patient samples (29 cancerous and 3 healthy) within the
clinical cohort. In contrast to the cell lines, the majority of the
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cancerous and healthy samples expressed hundreds of different
immune receptor clonotypes, with each clone represented by a
small number of reads (Fig. 5b and Supplementary Data 6). As
expected for bone marrow aspirates, more IG clones were
identified in each sample than TCR clones, reflecting the diversity
of B-cells maturing in bone marrow (Fig. 5b). Notably, in 2 of the
29 cancerous samples, a set of T/BCR clones were ~10x and 100x
more abundant than all other samples, possibly reflecting the
presence of malignant T- and B-cell clonal populations (Fig. 5b
and Supplementary Data 6).

Novel transcriptomic features. The enriched sequence coverage
achieved by targeted RNAseq also enables the discovery of novel

exons and isoforms11. Given the clinical value of the genes tar-
geted by our panels, newly discovered exons could become novel
therapeutic targets. Therefore, we performed genome-guided
transcript assembly to build an expansive annotation based on the
clinical patient cohort. In total, we identified 528 novel exons
within targeted genes, of which 256 were novel 5′ exons, 89 were
novel internal exons and 183 were novel 3′ exons (ex. Fig. 5c).

To assess the validity of these novel exons, we investigated the
flanking nucleotide composition for evidence of poly-pyrimidine
tracts and 3′ splice site motifs. We found the flanking nucleotide
profile of novel exons was similar to high-confidence exons
annotated in GENCODE v2752 and miTranscriptome53 (Supple-
mentary Fig. 13a). Additionally, novel exons exhibited a similar
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size range to these previously annotated exons (Supplementary
Fig. 13b). Although most (83%) novel exons encode alternative
first or last exons, which may influence gene expression, we found
that 70% of novel internal exons are predicted to modify the open
reading frame (Supplementary Fig. 13c).

Discussion
Chromosomal translocations that generate fusion genes are a
major cause of cancer, and their accurate diagnosis is critical to
effective treatment. However, previous methods such as FISH and
RT-PCR rely on prior annotations, are low-throughput and
limited in resolution. As a result, typically only the most common
fusion genes are iteratively tested during diagnosis. Unfortu-
nately, misdiagnosis in haematological malignancies can lead to
delayed or unsuitable treatment54.

In contrast to previous techniques, targeted RNAseq delivers
high-resolution fusion gene detection whilst assessing hundreds
of genes in a single test, identifying both known and novel fusion
genes. This breadth can reduce time to diagnosis while improving
diagnostic yield, exemplified by the novel fusion genes detected
by targeted RNAseq that went undetected by prior molecular
testing. The ability of targeted RNAseq to simultaneously identify
multiple fusion genes in a single sample enables molecular stra-
tification into cancer subtypes, while its use will also likely
increase the catalogue of fusion genes – including rare fusion
genes and novel gene partners – that are known to occur in
cancer. Given these advantages, targeted RNAseq is increasingly
being used for the diagnosis of fusion genes14.

However, whilst the high-throughput nature of targeted
RNAseq offers a broader path to diagnosis, it can also increase the
false-positive rate at which fusion genes are detected. Indeed, this
was a major challenge we faced, and our bioinformatic pipeline
required supervision, manual curation and nuanced interpreta-
tion. This challenge may be offset by the development of high
quality enterprise software or simultaneous analysis of matched-
normal samples, which would indicate the prevalence of erro-
neous fusion gene calls and detect non-driver fusion events55. In
addition, long-read sequencing can better resolve alternative
fusion isoforms and would likely reduce spurious alignments that
are a major source of erroneous fusion gene calls56.

Targeted RNAseq also provides greater resolution of fusion
gene loci. This includes the detection of chromosomal rearran-
gements that are complex and can only be ambiguously detected
with other techniques. Furthermore, targeted RNAseq can resolve
alternative fusion gene isoforms with distinct functional roles
during disease development and treatment response. Indeed, we
anticipate that isoform-level resolution of fusion genes using
targeted RNAseq will ultimately provide more nuanced prog-
nostic measures and better patient care47,57.

Targeted RNAseq can also provide many supplementary ben-
efits beyond fusion gene diagnosis. This includes the measure-
ment of fusion gene expression and splicing that can predict
treatment-resistance and variant detection to reveal the presence
of treatment-resistant or cooperating mutations in signalling
pathways58. The further measurement of gene expression sig-
natures and markers can contribute additional prognostic infor-
mation59, whilst the ability to simultaneously resolve
immunoglobulin and T-cell receptor clonotypes can detect the
presence of B- and T-cell populations within a sample. We
anticipate that this diversity of diagnostic features will be ulti-
mately combined into a single unified targeted RNAseq test.

Although the spectrum of transcriptomic features that can be
tested with targeted RNAseq will improve the breadth and value
of diagnosis, this increased information will require careful
interpretation to offset a greater risk for false-positive detection.

Nevertheless, such broad diagnostic measures will increase the
likelihood of identifying treatable mutations for precision
oncology. Accordingly, we anticipate that targeted RNAseq will
be increasingly used - and eventually dominate current methods -
for the diagnosis of fusion genes, leading to the improved diag-
nosis of cancer patients and further advancing our understanding
of fusion gene biology.

Methods
Capture panel design. Fusion gene content of the capture panels was based on
extensive literature searches and through consultation with clinicians and pathol-
ogists; final gene lists are included in Supplementary Data 1 and 2. To ensure
complete coverage of the T-cell receptor and immunoglobulin loci on the blood
panel, we used previous PCR work as a reference60 for mining all annotated IG and
TR genes in both hg19 and hg38, including pseudogenes. Once the candidate target
list was assembled and supplemented with ERCC and fusion sequin sequences, this
was sent to Roche for proprietary SeqCap EZ design layout. For the canonical
protein-coding genes, biotinylated DNA probes were tiled across all hg38-
annotated exons from all isoforms with limited trimming of regions containing
repetitive sequences or strong homology to other genes to minimise off-target
results. Panels were assessed in silico against pre-existing RNAseq datasets prior to
manufacture to ensure good coverage of all targets.

Cell lines. GM12878, K562 and KARPAS45 cell lines were sourced through the
Coriell Institute, ATCC, and CellBank Australia, respectively. All were tested for
mycoplasma and cultured according to standard growth protocols for each cell line.
Cell lines were not independently verified. RNA was extracted from these samples
following standard Trizol (Invitrogen) procedures. RDES, GOT3, 143B and MLS
cell pellets were kindly provided by Maya Kansara for standard RNA extraction
with Trizol. Total RNA from Daudi, Raji, Ramos and Jurkat cell lines was kindly
provided by Joanne Reed.

Patient samples. Collection of patient samples was ethically approved: RPA X15-
0103 and LNR/15/RPAH/143, ISKS Peter MacCallum Cancer Centre HREC Pro-
ject Number 09/11, and MoST St Vincent’s Hospital Sydney HREC/16/SVH/23.
Additional patient samples were collected for this study under local Medical/
Human Research Ethics Committee (MREC or HREC) approvals granted from the
University of Limpopo’s Medunsa Campus (MREC/H/28/2009) and the University
of Pretoria’s Faculty of Health Sciences (HREC#43/2010). Samples were shipped to
the Garvan Institute of Medical Research under the Republic of South Africa
Department of Health Export Permit, in accordance with the National Health Act
2003 (J1/2/4/2 #1/12). Analysis of the samples was performed in accordance with St
Vincent’s Hospital (SVH) HREC site-specific approval (#SVH15/227).

De-identified, patient-derived bone marrow aspirate and peripheral blood
samples, frozen in Trizol, were sourced from the Australasian Leukaemia and
Lymphoma Group (ALLG) Discovery Centre Melbourne. These samples were
subject to ALLG Tissue Bank committee approval and accompanied by informed
patient consent. The RNA was extracted according to Trizol manufacturers
instructions, treated with TURBO DNA-free Kit (Thermo Fisher #AM1907) and
purified using RNA Clean and Concentrator-25 columns (Zymo #R1017).

For all lung, prostate, SP-# sarcoma samples and all cell lines, Garvan Molecular
Genetics (Sydney, Australia) extracted the RNA using the Qiagen QiaSymphony
robot with associated reagents. For the remaining sarcoma samples, the FFPE
samples were deparaffinised using Deparaffinization Solution (Qiagen, #939018),
after which the RNA was extracted using the AllPrep DNA/RNA FFPE kit (Qiagen,
#80234).

Library construction. Canonical RNASeq libraries were prepared using the
Stranded mRNA-Seq Kit from Roche KAPA Biosystems (#07962193001) with
inputs of 4 µg of RNA samples pooled with 1 µl of ERCC Mix 1 (Thermo Fisher
#4456740). CaptureSeq libraries were prepared using the Stranded RNA-Seq
Library Preparation Kit (#07277261001) with 100–1000 ng of RNA input plus 1 µl
of ERCC Mix1 (except for the lymphoma samples and the Jurkat cell line, which
were mixed with 1 µl of ERCC Mix2). Some solid samples contained additional 1 µl
spike-ins of 1:50 dilution of fusion sequins41. Library construction followed
manufacturers instructions using supplied reagents and Roche SeqCap adapters
(#07141530001 and #07141548001) prior to 8–12 PCR amplification cycles,
depending on RNA input. In some instances, homemade Y-adapters containing 1
out of 96 unique molecular identifier (UMI) barcodes were ligated to each end of
dsDNA fragments following second-strand synthesis. These 8 nt UMIs were gen-
erated with the EDITTAG suite61 using a Levenschtein editing distance of 4 and
passed filters to remove homopolymers, 40% < GC-content < 60%, and sequences
with complementarity to Roche adapters or indexing sequences.

cDNA capture. After library preparation with the Stranded RNA-Seq Library
Preparation Kit (described above), samples were processed on the capture panels
following the Roche-NimbleGen standard double-capture protocol (except for four
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samples – 3x FFPE lymphoma and Jurkat, where a single-capture approach was
used), as described in the SeqCap EZ Library support literature (“NimbleGen
SeqCap EZ User’s Guide [http://netdocs.roche.com/PPM/SeqCapEZLibrarySR_
Guide_v3p0_Nov_2011.pdf]” and “Double Capture Technical Note [http://netdocs.
roche.com/PPM/Double_Capture_Technical_Note_August_2012.pdf]”. In brief,
libraries, probes and Roche hybridisation reagents (SeqCap EZ Accessory Kit v2
#07 145 594 001; SeqCap EZ Developer Enrichment Kit #06 471 684 001; SeqCap
EZ Hybridisation and Wash Kit #05 634 261 001; SeqCap HE-Oligo Kit A #06 777
287 001; SeqCap HE-Oligo Kit B #06 777 317 001) were incubated overnight at
47 °C. Libraries were washed and then re-hybridised for an additional overnight
step to further enrich the subsequent capture libraries.

Sequencing. All libraries were sequenced on an Illumina HiSeq 2500 v4.0 platform
at the Kinghorn Centre for Clinical Genomics (KCCG) in Sydney, Australia using a
paired-end, standard depth 125 nt run.

Panel validation. Reads were barcode sorted by the sequencing facility to separate
individual samples. When UMI-containing adaptors were used, paired-end FASTQ
files were processed with Tally62 to remove PCR duplicates, after which the UMIs
were removed with cutadapt v1.1463. All reads were trimmed of Illumina adaptor
sequences using cutadapt.

Sequencing reads were mapped to hg38 with STAR 2.4.2a_modified64 using the
default parameters with the following modifications: ‘--twopassMode Basic
--outSAMstrandField intronMotif --outFilterMultimapNmax 100
--outFilterMismatchNmax 33 --seedSearchStartLmax 12 --alignSJoverhangMin 15
--outFilterMatchNminOverLread 0 --outFilterScoreMinOverLread 0.3
--outFilterType BySJout --outFilterIntronMotifs
RemoveNoncanonicalUnannotated --chimSegmentMin 15
--chimJunctionOverhangMin 15 --alignMatesGapMax 200000 --alignIntronMax
200000’. All further panel validation analysis was limited to uniquely mapping
reads, filtering for a mapping score of 255 using SAMtools65.

On-target reads were identified using BEDTools66 pairToBed to select the reads
where at least one of each paired reads overlapped with the capture panel. Then,
these on-target reads were normalised to the total number of uniquely mapping
reads to calculate on-target capture rate.

TPM abundance and relative enrichments of each gene and spike-in were
calculated using RSEM67, while read counts per gene were calculating with htseq-
count68 version 0.6.0 using parameters ‘--stranded= reverse --type= exon --idattr
= gene_id --mode= union’.

To calculate splice-junction reads covering annotated introns, we first isolated
the mapped reads spanning introns by filtering for reads with a ‘N’ in the CIGAR
string. These BAM entries were converted to BED format retaining the intronic
region and then overlapped with existing intron annotations using BEDTools
intersect with parameters ‘-s -F 1’.

Fusion detection. Trimmed and de-duplicated reads were used to identify fusion
genes. FusionCatcher version 0.99.6a beta46 was used with standard settings. Reads
aligned with STAR (as above) were input to STARfusion45. As STARfusion and
FusionCatcher often reported multiple fusion genes per sample, many of which
were false positives, we added a number of filtering steps to increase our confidence
in the fusion calls. First, we restricted the fusion candidate list to those where are
least one of the fusion gene partners overlapped with the capture panel. Second,
fusion gene calls were removed if they matched a manually curated blacklist
(Supplementary Data 7) of fusion genes found in every sample (we noted that the
identity of the false-positive fusion calls were predominantly software-specific and
that these fusion genes were often specific to sample type). Third, we required each
fusion gene to be supported by at least 2 reads, and the fusion junctions to be at
least 10,000 nts apart if both genes were located on the same chromosome. Fourth,
we filtered the STARfusion and FusionCatcher lists to select the fusion genes found
by both programs, searching for overlapping fusion chromosomal coordinates.
Finally, we manually curated these lists to separate high-confidence fusion genes
(Supplementary Data 3) from false positive fusion genes (Supplementary Data 8),
influenced by fusion genes with strong number of supporting reads and genes
known to be active in the cancer subtype specific to each sample. For those samples
where no overlapping fusion genes were identified, we manually searched through
the output from both algorithms for known fusion genes, paying specific attention
to fusion genes reported in the specific tumour type, to ensure that no fusion genes
were overlooked.

In-gene coverage change. For each gene, the GTF entry for the main transcript
isoform was extracted from the hg38 GTF file using grep and then converted to a
BED file. The number of read 5′ ends falling within each exon were counted using
BEDTools coverage and normalised to exon length to calculate expression.

Transcriptome assembly and novel exon identification. Following STAR
mapping, as described above, only on-panel, uniquely mapping reads were input to
Stringtie v1.3.3b69 using parameters ‘--rf -f 0.05 -a 20 -j 3’, guiding the assembly
with a custom annotation file combining the latest annotations - GENCODE v27
GRCh38.p1052 and miTranscriptome53. After transcript assembly for each patient

sample, the resulting transcriptomes were first combined with ‘stringtie --merge’ by
cancer type and then merged across cancer types into a single representative cancer
transcriptome. All further analysis was limited to multi-exon transcripts.

Exons were classified as novel if there was no genomic overlap with the
GENCODE+miTranscriptome annotations, identified using BEDTools
intersectBed with the ‘intersectBed -v’ option. Novel exons within targeted
transcripts were identified using BEDTools intersectBed to select for any assembled
transcript that overlapped with the annotated target gene.

Immune receptor analysis. After initial read trimming and removal of PCR
duplicates, as described above, immune clonotypes were determined with IMSEQ
v1.1.051 using standard parameters and MiXCR v2.1.350 using standard para-
meters, except for using ‘-OvParameters.geneFeatureToAlign=VRegion’ during
the initial alignment step.

FISH. FISH was performed on interphase nuclei on 3 μm formalin‐fixed paraffin‐
embedded (FFPE) tissue sections using Vysis break‐apart FISH probe kits (Abbott
Molecular, Abbott Park, IL, USA). The FISH protocol was performed following the
manufacturers’ instructions, except that Invitrogen pretreatment solution (Life
Technologies, Carlsbad, CA, USA) was used at 98–102 °C for 20 min. Image was
cropped from larger image for publication with no alteration of signal levels.

RT-PCR and Sanger sequencing. TMPRSS2-ERG was detected by RT-PCR using
a forward primer located in exon 1 of TMPRSS2 and a reverse primer located in
exon 6 of ERG (TMPRSS2_RT-f: 5′-CAGGAGGCGGAGGCGGA-3′; TMPRSS2:
ERG_RT-r: 5′-GGCGTTGTAGCTGGGGGTGAG-3′), analysed on an agarose gel
and detected with GelRed (Biotium, #41033). Positive control is VCap cell line;
negative control is PC3 cell line. An uncropped gel image is available in the Source
Data file.

For fusion gene validation, cDNA was prepared from 1 µg total RNA using
standard SuperScript II (Invitrogen # 18064014) reaction conditions. PCR from 1
µl of cDNA was performed with standard reaction conditions using 300 nM each
primer and KAPA HiFi HotStart ReadyMix (KAPA Biosystems #KK2602). PCR
bands were analysed on a 2% agarose gel stained with GelRed, isolated and
extracted using the Zymoclean Gel DNA Recovery kit (Zymo Research #D4001).
Sanger sequencing was performed with PCR amplification primers by Garvan
Molecular Genetics at the Garvan Institute of Medical Research, Sydney, Australia.

Graphics. Metagene plots were created using the ngsplot package70 with genome-
mapping reads and parameters ‘-G hg38 -R genebody -F rnaseq -SS same -L 100’.
Gene structure figures are based on screenshots from the UCSC Genome Brow-
ser71. Nucleotide frequency plots were created using “WebLogo 3 [http://weblogo.
threeplusone.com/]”, plotting probability on the y-axis. Dendrograms and heatmap
were generated using pheatmap version 1.0.1272. All other plots were created in
RStudio73 using ggplot274 and cowplot75 packages. All plots representing the
number of fusion reads were prepared using spanning and junction read counts
from STARfusion.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Sequencing data have been deposited in the NCBI Sequence Read Archive (SRA) with the
BioProject code “PRJNA484669”. Data for the figures presented are available in the
Supplementary Data files and the Source Data file. All other data are available from the
authors upon reasonable request.
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