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Diabetes mellitus is a chronic progressive metabolic disease,
resulting from both insulin resistance and the dysfunction
of beta-cells. Beta-cell apoptosis is a crucial pathophysiology
leading to diabetes [1]. Aberrant immune system leads to
destroying of beta-cells occurring in type 1 diabetes. Infiltra-
tion of immune cells around beta-cells and attack of beta-
cells by cytokines or chemokines through upregulating the
proapoptotic molecule Bid and subsequently the release of
cytochrome c from mitochondria contributed to apoptosis.
Fas/FasL and TNF pathways also elicit the same downstream
molecules as the above-mentioned apoptotic pathway [2].
Unlike type 1 diabetes, metabolic disorders mainly cause type
2 diabetes, such as chronic glucotoxicity, lipotoxicity, and
endoplasmic reticulum (ER) stress [3, 4]. Apoptosis in pan-
creatic beta-cells is observed in response to various stimuli
such as glucose, cytokines, free fatty acids, leptin, islet amy-
loid polypeptide, ER stress, and sulfonylureas [4, 5]. Regard-
less of the underlying cause of the disease, insufficient beta-
cell mass leads to dependence on exogenous insulin for blood
glucose regulation. The morbidities associated with diabetes
are significant. The knowledge about pancreas or islets trans-
plantation and factors attributing to changing the secretory
function and/or mass of islet beta-cells might help to develop
a novel treatment to diabetes.

The past 15–20 years has seen a dramatic increase in the
prevalence of T2D in children and adolescents [6–8]. Type 2
diabetes is generally believed to be a polygenic disorder, with
disease development being influenced by both hereditary and
environmental factors [9]. Support for the role of genetic
factors comes from epidemiological evidence that type 2

diabetes in youth is most common in individuals from racial
groups with a high prevalence of diabetes and in individuals
with a strong family history [10]. A search for the contribution
of certain candidate genes in the early onset type 2 diabetes is
mandatory for further understanding of pathogenesis of type
2 diabetes in childhood. In this issue, Y.-D. Jiang et al.
reported that E23K polymorphism of the KCNJ11 gene con-
tributed to an increased risk for type 2 diabetes in school-
aged child and adolescence. K23-allele-containing genotypes
conferring increased plasma insulin level during OGTT in
normal subjects. However, the diabetic subjects with the K23-
allele-containing genotypes had lower fasting plasma insulin
levels after adjustment of age and BMI percentiles.

T2DM is a multifactorial metabolic disease mainly char-
acterized by hyperglycemia [11], but before the occurrence
of overt hyperglycemia, peripheral insulin resistance leads to
compensatory insulin hypersecretion by pancreatic islets [12].
A. P. O. Protzek et al. reported that augmented𝛽-cell function
and increased 𝛽-cell mass developed in response to the
glucocorticoid-induced insulin resistance involve inhibition
of the islet AS160 protein activity.

Recently, human islet transplantation has achieved insu-
lin independence in type 1 diabetes and the success rates have
beenmarkedly improved [13].However,most successful cases
need 2 or more implants and the long-term follow-up shows
their insulin independence declines with time [14, 15].There-
fore, the critical issue in clinical islet transplantation is to
further improve and maintain its successful rate. J.-H. Juang
et al. reported that posttransplantDPP-4 inhibitionwithMK-
0431 in the diabetic recipient with amarginal number of islets
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is not beneficial to transplantation outcome or islet grafts.
We cannot exclude the possibility that higher dose of MK-
0431 or more islets graft may have beneficial effects on the
outcome of islet transplantation. M. A. Kanak et al. reviewed
recent advances in understanding the role of inflammation in
islet transplantation and development of strategies to prevent
damage to islets from inflammation. Details on cell signal-
ing pathways in islets triggered by cytokines and harmful
inflammatory events during pancreas procurement, pancreas
preservation, islet isolation, and islet infusion are presented.
The authors also discussed several potent anti-inflammatory
strategies that show promise for improving islet engraftment.

Type 1 diabetes is characterized by the progressive loss
of pancreatic beta-cells caused by autoimmune attack [16].
Although beta-cell mass is markedly diminished in long-
standing type 1 diabetics, residual beta-cells can be detected
and new beta-cell formation may occur in these patients sev-
eral decades after the disease onset [17]. This observation has
led to researches to induce remission of diabetes by targeting
beta-cell autoimmunity and regeneration. J.-H. Juang et al.
reported that before the onset of autoimmune diabetes, all-
trans-retinoid acid (ATRA) and exendin-4 treatment alone
preserves pancreatic beta-cells; ATRA and ATRA plus exen-
din-4 treatment delays the onset of autoimmune diabetes.
However, after the onset of autoimmune diabetes, ATRA
and/or exendin-4 treatment is unable to reverse hyper-
glycemia or improve survival.
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