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Abstract

Background: Taxonomic profiling of ribosomal RNA (rRNA) sequences has been the accepted norm for inferring the
composition of complex microbial ecosystems. Quantitative Insights Into Microbial Ecology (QIIME) and mothur have been
the most widely used taxonomic analysis tools for this purpose, with MAPseq and QIIME 2 being two recently released
alternatives. However, no independent and direct comparison between these four main tools has been performed. Here, we
compared the default classifiers of MAPseq, mothur, QIIME, and QIIME 2 using synthetic simulated datasets comprised of
some of the most abundant genera found in the human gut, ocean, and soil environments. We evaluate their accuracy
when paired with both different reference databases and variable sub-regions of the 16S rRNA gene. Findings: We show
that QIIME 2 provided the best recall and F-scores at genus and family levels, together with the lowest distance estimates
between the observed and simulated samples. However, MAPseq showed the highest precision, with miscall rates
consistently <2%. Notably, QIIME 2 was the most computationally expensive tool, with CPU time and memory usage almost
2 and 30 times higher than MAPseq, respectively. Using the SILVA database generally yielded a higher recall than using
Greengenes, while assignment results of different 16S rRNA variable sub-regions varied up to 40% between samples
analysed with the same pipeline. Conclusions: Our results support the use of either QIIME 2 or MAPseq for optimal 16S
rRNA gene profiling, and we suggest that the choice between the two should be based on the level of recall, precision,
and/or computational performance required.
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Findings
Background

Genome sequencing has provided an unprecedented view of the
microbial diversity of ecosystems from wide-ranging environ-
ments. For example, the commensal flora of the human gut has
been extensively explored for potential associations with the
onset of many human diseases [1-3]. Similarly, the rich micro-

bial diversity of environments such as soil and oceans has been
studied in depth, yielding important ecological inferences [4-6].
There are now a substantial number of such microbial commu-
nity datasets deposited in sequence archives (e.g., the European
Nucleotide Archive currently holds over 600,000 environmental
samples [7]),and the rate of deposition is increasing. Drawing
relevant biological correlations from this vast amount of data
requires accurate and reliable tools and methods.
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2 Benchmarking taxonomic assignments

One of the crucial steps in almost all microbiome-based anal-
yses is inference of community composition through taxonomic
classification. For a few decades now [8], the common approach
for taxonomic assignment of microbial species has been the
classification of ribosomal RNA (rRNA) sequences. Currently, the
most widely used tools for this purpose are the mothur [9] and
Quantitative Insights Into Microbial Ecology (QIIME) software
packages [10]. These correspond to large toolsets that are able to
process, classify, and perform downstream analyses on individ-
ual genetic markers (e.g., the 16S rRNA gene, conserved across
the prokaryotic domains). For taxonomic classification, each tool
compares a set of queried sequences against a defined refer-
ence database, such as Greengenes [11], NCBI [12], RDP [13], or
SILVA [14], assigning the most likely taxonomic lineages. Ulti-
mately, the success of these analyses is not only dependent on
the breadth and diversity of annotated sequences available in
public repositories, but also on the accuracy of the classification
algorithms used by each of the tools. By default, QIIME makes
use of the UCLUST clustering method [15] to assign biological
sequences to a reference database, while mothur reimplements
the naı̈ve Bayesian RDP classifier, developed by Wang et al. [16].
Two other tools, MAPseq [17] and QIIME 2 [18], have recently been
released, the latter of which has officially replaced QIIME as of
January 2018. QIIME 2 also makes use of a naı̈ve Bayes classifier
[19], and MAPseq is a k-mer search approach that outputs confi-
dence estimates at different taxonomic ranks.

A community-driven initiative known as the “Critical Assess-
ment of Metagenome Interpretation” benchmarked a range of
software tools for the analysis of shotgun metagenomic datasets
[20]. In regard to amplicon-based approaches, previous stud-
ies have mainly evaluated the classification methods of QIIME
and mothur, highlighting some of their advantages and pitfalls
[21-23]. The recent publication of QIIME 2 also included the as-
sessment of a number of different commonly used classifiers
and marker gene regions [19]. However, until now, no indepen-
dent study has compared the accuracy of MAPseq, mothur, QI-
IME, and QIIME 2 whilst also taking into account potential dif-
ferences arising from the use of distinct reference databases.
Furthermore, for genotyping the 16S rRNA gene there is also
much debate within the scientific community on the most in-
formative variable sub-region to target [24]. Strong arguments
have been made towards sequencing specific or combined sub-
regions, such as the V4 [25] and V3-V4 [26], while difficulty in
amplifying bacterial species, such as those from the Actinobac-
teria group, has prompted the development of more special-
ized primers [27, 28]. The impact of variable region choice on
the taxonomic classification performance of different tools or
databases is therefore also important to assess.

The use of mock communities in microbiome studies has re-
vealed that different experimental conditions and methods dra-
matically affect the quality of the results [29-32]. In contrast, in
silico benchmarking approaches provide an agnostic view on the
efficiency of the computational pipelines—independently of ex-
perimental variation and technical biases—but may require fur-
ther validation in real-world datasets. Hence, for a holistic as-
sessment of the validity of different methodological strategies,
using both mock communities and in silico simulations is es-
sential to understand the biases and limitations present at each
stage of analysis.

In this work we have leveraged a set of simulated 16S rRNA
gene sequences representative of genera commonly found in the
human gut, ocean, and soil environments to evaluate the ac-
curacy of the default taxonomic classifiers of MAPseq, mothur,
QIIME, and QIIME 2. We tested these methods with different

reference databases and according to some of the most com-
monly targeted sub-regions of the 16S rRNA gene. Our results
showed that, regardless of the database used, QIIME 2 outper-
formed all other tools in terms of overall recall at both genus and
family levels as well as in distance estimations between the ob-
served and predicted samples. Considerable performance differ-
ences were observed between using distinct 16S rRNA gene sub-
regions, while limited software-dependent variation was seen
between different reference databases. We believe this work will
help inform microbial ecologists about important decisions to
take when designing new 16S rRNA-based community studies.

Composition of the simulated datasets

The microbiota colonizing the human gut, ocean, and soil en-
vironments are some of the most frequently studied microbial
communities. Hence, to provide data with direct practical appli-
cations, we focused on simulating datasets containing a diverse
set of genera commonly found in these three ecosystems (Ad-
ditional file: Fig. S1). Representative genera were selected after
identifying the 80 most abundant genera across publicly avail-
able metagenomes from human gut, ocean, and soil [7]. Then,
for each biome, four different communities were generated with
two levels of diversity: samples A100 and B100 with a random
set of 100 species belonging to these genera, and A500 and B500
with 500 species. Final datasets comprised a total of 66, 66, and
76 different genera from the human gut, oceanic, and soil envi-
ronments, respectively. For the purpose of this benchmarking,
we simulated the datasets with a similar relative abundance per
genus to avoid introducing any taxon-specific biases (Additional
file: Fig. S1).

To simulate a realistic scenario, where variation can arbitrar-
ily occur and sequences may not have an exact representative
in public databases, we randomly mutated 2% of the positions
of each 16S rRNA sequence retrieved after extracting each sub-
region using commonly used primer sequences [26, 27, 33-35]
(Additional file: Table S1). Notably, the percentage of sequences
retrieved from the Greengenes, NCBI, RDP, and SILVA databases
matching the primers selected for V1-V2 was dramatically lower
(30.3%) than that of V3-V4 (90%), V4 (90.9%),and V4-V5 (87.8%)
(Additional file: Fig. S2). The 16S rRNA V1 sub-region had been
previously found to be truncated in a substantial number of ref-
erence sequences [24]. Our results confirm this observation and
again raise caution at the use of the 16S V1-V2 rRNA primer se-
quences for complex and diverse samples due to the reduced
number of reference sequences available. Interestingly, the rel-
ative number of sequences retrieved from RDP was lower than
that of the remaining databases (Additional file: Fig. S2), likely
suggesting an overrepresentation of more divergent taxa that
did not meet the mismatch threshold used in our in silico PCR.

Taxonomic assignment
Microbiome studies frequently strive to associate microbial di-
versity signatures with a phenotype of interest. However, fo-
cusing solely on high-level taxonomic ranks can severely un-
derestimate the degree of variation observed between sample
groups. To circumvent this, highly discriminative approaches
are needed to be able to pinpoint the most significant taxa
warranting further validation. For assessing the performance of
MAPseq, mothur, QIIME, and QIIME 2 with different reference
databases (Additional file: Fig. S3), we limited our analyses to
classification at the lineage level instead of operational taxo-
nomic units, as it allows a more consistent and easier interpre-
tation of the results. Species assignment of every queried se-
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Table 1: Global metrics averaged across the analyses of simulated samples from human gut, ocean, and soil

Family Genus

Software Database Recall Miscalled Recall Miscalled Sub-regiona Mean DS Bray-Curtis Jaccard

MAPseq Greengenes 88.3 2.4 58.9 2.4 V3-V4 0.434 0.282 0.440
MAPseq NCBI 81.7 1.3 51.7 2.0 V3-V4 0.522 0.330 0.495
MAPseq SILVA 67.2 0.7 46.5 1.0 V3-V4 0.482 0.373 0.540
mothur RDP 85.4 3.2 50.5 5.0 V3-V4 0.419 0.356 0.523
mothur SILVA 82.9 2.4 40.8 5.2 V3-V4 0.492 0.446 0.613
QIIME 2 Greengenes 93.2 1.6 69.2 3.4 V3-V4 0.367 0.210 0.342
QIIME 2 SILVA 93.6 1.9 69.0 4.3 V3-V4 0.331 0.211 0.348
QIIME Greengenes 59.4 1.6 45.1 2.5 V4 0.585 0.394 0.564
QIIME SILVA 66.4 2.1 57.5 6.5 V4 0.432 0.309 0.470

Values in bold denote the best score.
a Sub-region with the highest F-score, excluding V1-V2.

quence would be the desired outcome, but as was previously
shown [21], the limited resolution of the 16S rRNA locus pre-
cludes an accurate classification at this level. Furthermore, there
is significant inconsistency in species nomenclature across all
reference databases (e.g., RDP does not report taxon names be-
low genus). In this work, we calculated the degree of recall and
precision at the genus and family ranks, as in our opinion they
provide the best compromise between classification accuracy
and resolution.

By comparing the level of recall across all software tools,
we found that QIIME 2 recovered the largest proportion of se-
quences from the expected genera (Table 1, Fig. 1, and Additional
files: Tables S2–S4). Combined with the SILVA database, this re-
sulted in the highest recall (sensitivity) for human gut (67.0%)
and soil samples (68.3%), while the Greengenes database out-
performed in the case of the oceanic microbiome (79.5%). In fact,
all tools except QIIME saw a decrease in recall when using SILVA
specifically for the classification of the oceanic dataset. Globally,
however, SILVA most frequently provided a better genus recall
than Greengenes (five out of nine comparisons across MAPseq,
QIIME, and QIIME 2; Fig. 1). In terms of correctly identified taxa,
MAPseq in conjunction with SILVA detected the greatest num-
ber of expected genera in all three biomes (Fig. 1). At the family
level, all tools presented a substantially higher recall (Table 1),
with QIIME 2 reaching 94.3% in the human gut sample, 96.2%
with the ocean set, and 91.7% with the soil sample (Additional
files: Tables S2–S4).

Although the level of recall is a crucial metric in choosing the
most appropriate taxonomic classification pipeline, it is equally
important to ensure a low frequency of false-positive assign-
ments. We evaluated the degree of precision (specificity) by the
percentage of sequences assigned to the wrong taxon (Addi-
tional files: Tables S5–S7) out of all the detected taxa. Accuracy
was high for all the tools, with precision estimates of at least
84% across all analysis pipelines (Fig. 2A). In terms of total num-
ber of sequences, this translated to <10% of the reads misas-
signed at the genus level (Additional files: Tables S2–S4 and Fig.
S4). MAPseq with the SILVA database consistently outperformed
all other tools, with a precision >96% for the three tested biomes
(Fig. 2A), equating to <2% of miscalled sequences.

To combine both recall and precision into a single metric, we
calculated the F-score for all taxonomic assignments ( Figs 2A
and S5). At both genus and family levels, we found that QIIME 2
had the highest score across the samples representative of the
three different biomes, with the SILVA database coming out on
top for the human gut (genus: 78.9%, family: 96.8%; Additional

file: Table S2) and soil (genus: 78.5%, family: 94.3%; Additional
file: Table S4) environments in particular, but the Greengenes
database performing better with the oceanic dataset (genus:
87.4%, family: 97.4%; Additional file: Table S3). After fractioning
the data according to different sub-regions of the 16S rRNA gene,
we then repeated the same analysis (Fig. 2B). This revealed that
the performance of each tool varied up to 40% depending on the
16S rRNA sub-region targeted. Notably, the V1-V2 or V3-V4 sub-
regions performed the best across most of the pipelines (Fig. 2B).
In our study, each synthetic species had a genetically close full-
length 16S rRNA sequence represented in the databases, so our
tests were probably not significantly affected by the reduced
number of V1-V2 reference sequences available.

The ongoing surge in genome sequencing is producing thou-
sands of novel sequences each year. Therefore, efficient tools
that can scale up to provide analysis of tens of thousands of
samples is increasingly important. With this in mind, we com-
pared the computational performance of MAPseq, mothur, QI-
IME, and QIIME 2 throughout the whole classification pipeline
of our simulated datasets. We analysed average memory us-
age and CPU time across the three biomes for the processing
and assignment of 3 million quality-filtered sequences against
the SILVA 128 database (Fig. 3). MAPseq was the most memory-
efficient tool, with mothur, QIIME, and QIIME 2 requiring more
than 72, 15, and 27 times more memory resources, respectively
(Fig. 3A). CPU time of QIIME 2 was the highest, close to twice that
of MAPseq, and almost 100 times longer than QIIME, which was
the fastest (Fig. 3B). Of note is that each pipeline has its own
processing procedure; both the mothur and QIIME 2 pipelines
included a de-replication step of the query sequences prior to
taxonomic assignment, which substantially reduced the num-
ber of sequences used for classification.

Relative quantification and beta diversity

One of the main aspects of any microbiome-based analysis is
the assessment of the differential abundance and beta diversity
across a set of sample groups. In this respect, accurate estima-
tion of the relative abundance of each taxon is essential to find
statistically significant patterns. To assess how accurately each
tool was able to predict taxa relative abundances in each sam-
ple, we calculated dissimilarity scores for each genus present in
the simulated dataset (Fig. 4). Interestingly, QIIME 2 showed the
most accurate prediction in relation to the true genera compo-
sition, with an average dissimilarity score of 0.33 when used in
conjunction with the SILVA database (Table1). In terms of the ref-
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Human gut Ocean Soil

Genus

Abiotrophia

Acholeplasma

Acidaminococcus

Akkermansia

Alistipes

Alloprevotella

Anaerococcus

Anaerostipes

Atopobium

Bacillus

Bacteroides

Barnesiella

Bifidobacterium

Blautia

Butyricicoccus

Butyricimonas

Butyrivibrio

Candidatus

Citrobacter

Clostridium

Coprobacter

Coprococcus

Corynebacterium

Desulfovibrio

Dialister

Dorea

Enterobacter

Enterococcus

Erysipelatoclostridium

Escherichia

Eubacterium

Faecalibacterium

Fusobacterium

Haemophilus

Holdemanella

Intestinibacter

Klebsiella

Lachnoclostridium

Lactobacillus

Leuconostoc

Megamonas

Megasphaera

Neisseria

Oceanobacillus

Odoribacter

Oscillibacter

Parabacteroides

Paraprevotella

Parasutterella

Pectobacterium

Peptoniphilus

Phascolarctobacterium

Porphyromonas

Prevotella

Propionibacterium

Pseudoramibacter

Roseburia

Ruminiclostridium

Ruminococcus

Sporobacter

Stomatobaculum

Streptococcus

Sutterella

Turicibacter

Tyzzerella

Veillonella

Genus

Alcanivorax

Alteromonas

Arcobacter

Bacillus

Brevibacillus

Brumimicrobium

Burkholderia

Citromicrobium

Colwellia

Delftia

Desulfococcus

Erythrobacter

Flavobacterium

Fluviicola

Formosa

Geobacter

Glaciecola

Halomonas

Hyphomicrobium

Lewinella

Loktanella

Maribacter

Marinimicrobium

Marinobacter

Marinomonas

Moritella

Mycobacterium

Nitrospina

Novosphingobium

Oceanicaulis

Octadecabacter

Oleispira

Olleya

Paracoccus

Parvibaculum

Phaeobacter

Photobacterium

Planctomyces

Polaribacter

Prochlorococcus

Pseudoalteromonas

Pseudomonas

Pseudoruegeria

Psychroflexus

Psychromonas

Psychroserpens

Robiginitalea

Saccharospirillum

Sediminicola

Shewanella

Sphingomonas

Spirulina

Staphylococcus

Sulfurimonas

Synechococcus

Tenacibaculum

Tepidibacter

Thalassobacter

Thalassomonas

Thalassospira

Thiobacillus

Ulvibacter

Verrucomicrobium

Vibrio

Winogradskyella

Yonghaparkia

Genus

Acinetobacter

Actinomyces

Actinoplanes

Adhaeribacter

Aeromicrobium

Afifella

Agrobacterium

Alcaligenes

Alicyclobacillus

Arthrobacter

Bacillus

Bdellovibrio

Bosea

Bradyrhizobium

Burkholderia

Caulobacter

Cellulomonas

Cellvibrio

Chitinophaga

Chryseobacterium

Clostridium

Cryocola

Desulfococcus

Desulfomicrobium

Desulfosporosinus

Devosia

Edaphobacter

Flavisolibacter

Flavobacterium

Gallionella

Gemmata

Geobacter

Geodermatophilus

Geothrix

Halothiobacillus

Herbiconiux

Hyphomicrobium

Janthinobacterium

Kribbella

Limnohabitans

Lysinibacillus

Mesorhizobium

Microbacterium

Modestobacter

Mycobacterium

Mycoplana

Nitrospira

Nocardioides

Novosphingobium

Ochrobactrum

Paenibacillus

Pedobacter

Pedomicrobium

Pelotomaculum

Phenylobacterium

Pilimelia

Pirellula

Planctomyces

Pseudomonas

Pseudonocardia

Ramlibacter

Rhizobium

Rhodococcus

Rhodoferax

Rhodoplanes

Robiginitalea

Salinibacterium

Shewanella

Sphingobium

Sphingomonas

Sphingopyxis

Sporosarcina

Streptomyces

Syntrophus

Treponema

Variovorax
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Figure 1: Level of recall at the genus level, represented as taxa relative abundances, obtained with each analysis pipeline for the three different biomes (human gut,

ocean, and soil). The number of genera correctly identified by each pipeline is indicated above the graph.

erence database used, analyses carried out with SILVA yielded
more accurate predictions than with the Greengenes database
(Additional files: Tables S2–S4). Substantial differences in ac-
curacy were observed across different genera, with sequences
from the Paraprevotella genus—frequently present in human gut
samples—more accurately predicted, in contrast to those from
Coprobacter, Hyphomicrobium, and Thalassobacter, which had the
worst results (Fig. 4). These genera might either be underrepre-
sented in the reference databases or have a high degree of con-
servation with other closely related taxa, making accurate taxo-
nomic assignments more challenging.

For a global assessment of the beta diversity across sam-
ples, we performed a principal coordinates analysis (PCoA) and
calculated both Bray-Curtis and Jaccard distances between the
observed and expected results. Both distance methods repre-
sent complementary approaches, as the Bray-Curtis metric cor-
responds to a quantitative evaluation of the dissimilarity across
samples, whereas the Jaccard index is a qualitative measure of
community similarity. We found that samples analysed with QI-
IME 2 were the closest (i.e., had the lowest distance estimate) to
the true simulated datasets, with minor differences between the
use of SILVA or Greengenes with both the Bray-Curtis and Jaccard
methods (Table 1; Fig. 5).

Discussion

With the number of tools, databases, and options available for
taxonomic classification of marker sequences, it can be a daunt-
ing task to decide the optimal approach for analysis of a spe-

cific dataset. In this work, we have strived to help guide this
decision-making process by independently assessing the per-
formance of the most commonly used taxonomic assignment
strategies with simulated samples comprised of genera found
in frequently sampled environments.

Overall, we show that all tools we tested performed moder-
ately well, with high precision and modest-to-high recall rates at
the genus level. QIIME 2 presents significant improvements over
the other tools, particularly over the preceding version of QI-
IME, in regard to detection sensitivity at both family and genus
levels. It should be emphasized that as of January 2018, QIIME
has been replaced by QIIME 2 and the former tool is no longer
supported by the developers. The superiority of QIIME 2 also
held true for the prediction of sample composition, as beta di-
versity estimates between the analysed and simulated commu-
nities were the closest using this method. Therefore, these data
support the use of QIIME 2 to obtain the largest proportion of
classified sequences at the most accurate relative abundances.
Nevertheless, the results also showed MAPseq to be a more con-
servative and precise approach, meaning that fewer genera were
misassigned. In addition, this tool showed considerably better
computational performance than QIIME 2, requiring approxi-
mately 30 times less memory and almost one-half the CPU time
to process the same dataset (even though QIIME 2 classifies sub-
stantially fewer query sequences due to a prior de-replication
step). These results show that MAPseq provides a credible op-
tion if precision and computational performance or scale are a
priority.
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Figure 2: A) Recall, precision, and F-score estimates at the genus level for each tool and database tested. B) F-scores calculated for some of the most commonly tested
sub-regions of the 16S rRNA gene: V1-V2, V3-V4, V4, and V4-V5.

Selecting a single best software package is not a straightfor-
ward affair, and we expect that further differences in perfor-
mance will be observed with different real-world datasets. Ad-
ditionally, mothur and QIIME 2 also provide the option of using
multiple taxonomic classifiers, so improvements in overall recall
and/or precision metrics might be possible with the other avail-
able methods, combined with further parameter optimization.
We should also stress that, aside from the software packages we
tested, other web-based tools such as BioMaS [23] are also avail-
able. However, they are usually restricted to the use of specific
reference databases, making individual customizations and ac-
curate comparisons more challenging.

In addition to choosing the right tool, combining that with
the appropriate reference database is equally important to
ensure the best classification performance. Greengenes and
SILVA have been the most widely used and readily supported
databases. Generally, the SILVA 128 database performed better
than Greengenes 13 8 in terms of recall at both genus and fam-
ily levels as well as in predicting the true taxa composition of
the simulated communities. Conversely, there was an almost

universal decrease in its performance in the detection of ocean-
specific taxa, so special care should be taken in the analysis of
datasets sampled from this particular environment. Nonethe-
less, there are additional advantages to the use of SILVA: it is
more frequently updated (Greengenes was last updated in May
2013); it includes rRNA sequences of eukaryotic organisms in
addition to archaea and bacterial species; and has been shown
to be more easily comparable and mapped to other taxonomies
such as the NCBI [36]. In the case of MAPseq and mothur, the
NCBI and RDP databases also performed well, with higher recall
but slightly lower precision scores compared to SILVA. Therefore,
the SILVA, RDP, or NCBI databases are all appropriate choices for
a comprehensive and accurate taxonomic analysis.

The choice of primer sequences for taxonomic profiling of the
16S rRNA gene has been a matter of frequent debate. In common
with previously reported observations [28], we show that target-
ing different sub-regions can considerably influence the taxo-
nomic assignment performance (by up to 40% in our analyses).
Overall, the V1-V2 and V3-V4 sub-regions performed the best
across most of the tools. However, the V1-V2 primers did not
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Figure 3: Computational cost of each taxonomy assignment tool, estimated as
the total memory usage (A) and CPU time (B) required for the processing and
classification of ∼3 million sequences against the SILVA 128 database. Error bars

denote standard deviation across the three biomes tested (human gut, ocean,
and soil).

match almost 70% of the sequences across the four reference
databases, so we discourage its use for classification of com-
plex community samples. As our simulated datasets were gener-
ated from close representatives containing full-length 16S rRNA
genes, it is reasonable to assume that our analysis of the V1-
V2 sub-region was not significantly hampered by this reduced
number of reference sequences. Kozich et al. [25] have argued in
favour of standardizing the use of the V4 sub-region for Illumina
MiSeq sequencing, because it allows complete overlap of paired-
end sequences, mitigating sequence errors introduced during
PCR amplification or sequencing. Phylogenetic studies have also
showed that the V4 sub-region is the closest representative of
the phylogenetic signal of the whole 16S rRNA locus [24]. Here,
we analysed the performance of some of the most commonly
used sub-regions under a purely computational perspective and
conclude that amplification of the V3-V4 sub-region is most fre-
quently the best option for a reliable taxonomic inference.

In summary, we have identified the major benefits and draw-
backs of the most recent and popular taxonomic classification
methods. Importantly, we show that the choice of software,
database, and sub-region significantly affects the quality of the
classification results. Given the impact of each of these vari-
ables, it is imperative to strive for consistency in the analysis
of samples not only within individual studies, but across dif-
ferent projects as well. Services like the EBI Metagenomics [7]
and MG-RAST [37] help provide a basis for standardization, but
additional factors relating to the experimental design are up to
individual users to decide. Some attempts have been made to
find recommended best practices for 16S microbiome studies
among the myriad of options and issues that can arise at each
analysis stage [38]. We believe our work presented here further
complements these efforts by helping the microbiome research

community make more informed decisions about the most ap-
propriate methodological approach to take in their own analysis
pipeline.

Methods
Generating simulated datasets

Twelve sets of synthetic communities were generated for evalu-
ating the accuracy of the taxonomic assignment pipelines: four
each for human gut, ocean, and soil environments. First, the 80
most abundant genera across publicly deposited samples from
these biomes were retrieved using the EBI Metagenomics API
[7, 39]. This list was then used to randomly select either 100
(datasets A100 and B100) or 500 species (datasets A500 and B500)
belonging to these genera, allowing a maximum of 20 and 50
species per genus, respectively. 16S rRNA gene sequences were
obtained from the European Nucleotide Archive, and an in silico
PCR was carried out with a python script [40] to extract com-
monly used regions for 16S rRNA profiling [26, 27, 33-35] (Addi-
tional file: Table S1), allowing a maximum of three mismatches
per primer sequence. Subsequently, 2% of the positions in each
variable region were randomly mutated to create nucleotide di-
versity using a custom python script [41]. Sequencing reads were
simulated from these amplicon sequences in duplicate using the
MiSeq v3 error profile with ART (ART, RRID:SCR 006538) [42], gen-
erating ∼ 10,000 and ∼ 200,000 paired-end reads of 250 bp per
region to have samples representing both low and high levels of
sequencing depth.

Sequence classification

Initial pre-processing and quality control was performed fol-
lowing the mothur standard operating procedure (SOP) [25] ac-
cessed on November 2017. Briefly, the make.contigs command
was used to align, filter, and merge the paired-end reads into
contigs. Subsequently, we used the screen.seqs command to fil-
ter out any sequences with ambiguous base calls. This final set
of quality-controlled sequences was then assigned into taxo-
nomic lineages with MAPseq v1.2.2 [17], mothur v1.39.5 (mothur,
RRID:SCR 011947) [9], QIIME 1.9.1 (QIIME, RRID:SCR 008249) [10],
and QIIME 2 v2017.11 [18]. For each software, we evaluated
the settings and databases most frequently used and recom-
mended for optimal taxonomic classification (Additional file:
Fig. S3). With MAPseq, we tested the default NCBI database
(mapref 2.2) as well as Greengenes 13 8 and the SILVA 128
database re-mapped to an eight-level taxonomy (available in
[44]). Each set of reference sequences was analysed following
the internal clustering by MAPseq. Options -tophits 80 and -
topotus 40 were used in combination with the -outfmt simple op-
tion. For QIIME 1.9.1, the pick closed reference otus.py script was
used with the default Greengenes database (13 8) and with SILVA
128, both clustered at 97% identity. Taxonomic assignment with
mothur was carried out according to the MiSeq SOP [25], exclud-
ing the chimera detection and removal steps, using the avail-
able pre-formatted SILVA 128 database for alignment and ei-
ther the RDP version 16 or SILVA 128 for sequence classifica-
tion. We did not use the Greengenes alignment database as per
the mothur SOP [45]. Lastly, for QIIME 2 we first dereplicated the
query sequences using the vsearch dereplicate-sequences function
and then assigned them to the Greengenes (13 8) or SILVA 128
(99% identity clusters) databases using the feature-classifier
classify-sklearn function [19].

https://scicrunch.org/resolver/RRID:SCR_006538
https://scicrunch.org/resolver/RRID:SCR_011947
https://scicrunch.org/resolver/RRID:SCR_008249
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Figure 4: DS calculated for each genus included in the simulated datasets. Lower (brighter) values indicate a closer prediction to the true composition of the original
sample. The black outline indicates the overall best scoring analysis pipeline for each environment. Taxa are ordered by decreasing abundance from left to right based
on their composition in the simulated sample.

Analysis and visualization

TSV and BIOM files were generated from the MAPseq and QI-
IME 2 outputs and combined with the output BIOM files created
by QIIME and mothur (make.biom command). Taxonomy names
obtained from each individual reference database were normal-
ized so that each genus and family would be assigned to the
same lineage. Results were visualized and analysed with the
phyloseq (phyloseq, RRID:SCR 013080) [46] and vegan R packages
(vegan, RRID:SCR 011950). The recall rate (sensitivity) for each
tool and database was estimated as the percentage of sequences
assigned to the expected taxa for each biome, while precision
(specificity) was calculated as the fraction of sequences from
these predicted taxa out of all those from the taxa observed. Fi-
nally, the F-score was calculated as follows:

F-score = 2 × precision × recall
precision + recall

Distance estimates were calculated with either the Bray-Curtis
or Jaccard dissimilarity indices after grouping the taxonomic
lineages at the genus level. PCoA were performed with the
Bray-Curtis distance method. Dissimilarity scores on the rela-
tive abundance (rel.ab) of each expected genus were calculated
as:

DS =
∣
∣rel.ab. (Observed) − rel.ab. (Expected)

∣
∣

rel.ab. (Expected)

Memory usage and CPU time were estimated as the total
amount required for the processing and assignment of all com-
bined sequences against the SILVA 128 database (clustered at
99%), following the protocols described above.

https://scicrunch.org/resolver/RRID:SCR_013080
https://scicrunch.org/resolver/RRID:SCR_011950
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Figure 5: PCoA between all samples analysed in relation to the true, expected dataset, using the Bray-Curtis distance method.

Availability of supporting source code and
requirements

Project name: Taxonomy benchmarking
Project home page: https://github.com/Finn-Lab/Tax-Benchmar
king
Operating system: Platform independent
Programming languages: Python 2.7, R 3.4.1
Other requirements: BioPython module, R libraries (ggplot2,
phyloseq, vegan, scales, grid, ape, RColorBrewer, data.table)
License: MIT

Availability of supporting data

The datasets supporting the conclusions of this article are avail-
able in the GigaDB repository [47].

Additional files

Figure S1. Composition of the synthetic communities per se-
lected environment. Samples A100 and B100 were randomly
generated sets of 100 species, while A500 and B500 were sim-
ulated from 500 different species.

Figure S2. Percentage of sequences retrieved from the Green-
genes, NCBI, RDP, and SILVA databases with an in silico PCR tar-
geting different 16S rRNA gene sub-regions.
Figure S3. Tools and databases benchmarked in our study. We
tested at least two databases per software tool. The reference
databases used were either readily supported by the specific
tool and/or recommended by their developers. SILVA was com-
pared across all tools; MAPseq was specifically assessed with the
NCBI database, its default reference; mothur was not paired with
Greengenes due to its poor-quality alignment [45] and was anal-
ysed with RDP instead.
Figure S4. Number of genera misassigned in each analysis
pipeline and their overall relative abundance. Names and abun-
dance values of each misclassified taxon are included as addi-
tional files (Additional files: Tables S5–S7).
Figure S5. Recall, precision, and F-score estimates at the family
level for each tool and database tested.
Table S1. Primer pairs used in the in silico PCR.
Table S2. Global metrics across the analyses of simulated sam-
ples from human gut.
Table S3. Global metrics across the analyses of simulated sam-
ples from ocean environments.

https://github.com/Finn-Lab/Tax-Benchmarking
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Table S4. Global metrics across the analyses of simulated sam-
ples from soil.
Table S5. Relative abundances (%) of the genera miscalled using
simulated human gut samples.
Table S6. Relative abundances (%) of the genera miscalled using
simulated oceanic samples.
Table S7. Relative abundances (%) of the genera miscalled using
simulated soil samples.
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