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United States

The myeloproliferative neoplasms, polycythemia vera, essential thrombocytosis and
primary myelofibrosis share driver mutations that either activate the thrombopoietin
receptor, MPL, or indirectly activate it through mutations in the gene for JAK2, its
cognate tyrosine kinase. Paradoxically, although the myeloproliferative neoplasms are
classified as neoplasms because they are clonal hematopoietic stem cell disorders, the
mutations affecting MPL or JAK2 are gain-of-function, resulting in increased production of
normal erythrocytes, myeloid cells and platelets. Constitutive JAK2 activation provides the
basis for the shared clinical features of the myeloproliferative neoplasms. A second
molecular abnormality, impaired posttranslational processing of MPL is also shared by
these disorders but has not received the recognition it deserves. This abnormality is
important because MPL is the only hematopoietic growth factor receptor expressed in
hematopoietic stem cells; because MPL is a proto-oncogene; because impaired MPL
processing results in chronic elevation of plasma thrombopoietin, and since these
diseases involve normal hematopoietic stem cells, they have proven resistant to
therapies used in other myeloid neoplasms. We hypothesize that MPL offers a selective
therapeutic target in the myeloproliferative neoplasms since impaired MPL processing is
unique to the involved stem cells, while MPL is required for hematopoietic stem cell
survival and quiescent in their bone marrow niches. In this review, we will discuss
myeloproliferative neoplasm hematopoietic stem cell pathophysiology in the context of
the behavior of MPL and its ligand thrombopoietin and the ability of thrombopoietin gene
deletion to abrogate the disease phenotype in vivo in a JAK2 V617 transgenic mouse
model of PV.

Keywords: myeloproliferative neoplasms, hematopoietic stem cells, thrombopoietin receptor, thrombopoietin,
polycythemia vera, JAK2 V617F, transgenic mice
INTRODUCTION

The myeloproliferative neoplasms (MPNs), polycythemia vera (PV), essential thrombocytosis (ET),
and primary myelofibrosis (PMF), are hematopoietic stem cell (HSC) disorders that express
mutations activating JAK2 (1–4), the cognate tyrosine kinase for the type 1 homodimeric
hematopoietic growth factor receptors for erythropoietin (EPO) and thrombopoietin (THPO)
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(5), and the granulocyte-colony stimulating factor receptor as
well (6). Although these disorders are genetically distinct (7, 8)
(9), have different natural histories (10), different complications
and require different therapies (11), they exhibit significant
clinical phenotypic mimicry, including overproduction of one
or more blood cell types alone or together, extramedullary
hematopoiesis (EMH) and transformation to myelofibrosis or
to acute leukemia (12). Some of these abnormalities can be
directly linked to inappropriate constitutive JAK2 activation,
which results in committed hematopoietic progenitor cell
(HPC) hypersensitivity to hematopoietic growth factors or
complete hematopoietic growth factor-independence,
depending on whether the JAK2 mutation is heterozygous or
homozygous in the HPC (13). Others cannot, including failure of
JAK2 V617F to enhance MPN HSC bone marrow pool size (14),
resistance of MPN HSC to tyrosine kinase inhibitors (15)
premature release of mutated CD34+ HSC from the bone
marrow (16), myelofibrosis or the clinical presentation of PV
and PMF as isolated thrombocytosis, suggesting that pathways
other than constitutive JAK2 activation are involved.

The MPNs are clonal HSC disorders and the thrombopoietin
receptor, MPL, is the only hematopoietic growth factor expressed
in these cells. In addition to its role in signal transduction, JAK2
chaperones MPL cell-surface expression and ensures its stability
there (17). THPO maintains HSC survival (18) and quiescence
within the bone marrow osteoblastic niche (19, 20) and is
required for megakaryocytic progenitor cell proliferation (21),
but not for megakaryocyte maturation or platelet production (22,
23). MPL or THPO knockout mice appear hematologically
normal except for thrombocytopenia but have decreased
marrow HSC (24).In contrast, in human congenital
amegakaryocytic thrombocytopenia (CAMT), MPL mutations,
usually in the MPL distal extracellular cytokine receptor
homology domain (CRHD) (25), cause thrombocytopenia,
elevated plasma THPO, and severe marrow aplasia (26).

Importantly, the retrovirus MPLV, which caused an acute,
fatal PV-like syndrome in mice and in vitro, also immortalized
murine HPC, encodes an MPL gene with a truncated
extracellular domain (27) (28), indicating that MPL is a proto-
oncogene. Murine bone marrow cells expressing ectopic THPO
caused a fatal, transplantable myeloproliferative disorder with
splenomegaly, osteomyelofibrosis, pancytopenia, and leukemic
transformation (29) (30). Conversely, murine marrow cells
expressing ectopic EPO (31) or erythroid progenitor cells
expressing JAK2 V617F caused erythrocytosis without
significant EMH and did not engraft in secondary recipients
(32), supporting a primary role for HSC, MPL, and THPO in
MPN pathophysiology.

In humans, hereditary or somatic mutations that involve the
MPL transmembrane domain or distal CRHD can have an ET or
PMF phenotype (2), (33, 34). In addition, MPL bound by
mutated CALR is inappropriately transported by this protein
chaperone to the cell surface and activated, causing either an ET
or PMF phenotype (35–37). Furthermore, germline single
nucleotide polymorphisms (SNP) in the MPL distal CRHD
that caused a variably penetrant, benign thrombocytosis
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phenotype with an elevated plasma THPO, occurred in specific
ethnic groups (38, 39) and could be recapitulated in the mouse
(40, 41). Hereditary THPO mutations causing uncontrolled
THPO synthesis are associated with isolated thrombocytosis
(42). In one family, however, such a THPO mutation was also
associated with leukemic transformation or myelofibrosis (43).

Differing from MPL mutations, JAK2 V617F causes PV, ET,
and PMF. However, similarly to hereditary or somatic MPL (2)
(38) as well as CALR mutations (35), impaired MPL cell-surface
expression is a feature of JAK2 V617F-positive PV, ET, and PMF
(44, 45). How impaired expression of the hematopoietic growth
factor receptor responsible for HSC survival, expansion and
thrombopoiesis could lead to a myeloproliferative state has
been a puzzle. In this review, we discuss how the unique
dependence of HSC on the MPL–THPO axis together with the
unusual pathophysiology of MPL in the MPN, creates a
therapeutic target of opportunity to suppress MPN HSC while
sparing normal HSC.
HEMATOPOIETIC STEM CELL
PHYSIOLOGY AND PATHOPHYSIOLOGY

Recent developments in HSC biology have reoriented our
understanding of both HSC behavior in the bone marrow and
their progression from an undifferentiated state to the committed
HPC that give rise to erythrocytes, myeloid cells, and platelets.
Importantly, HSCs require both the MPL–THPO axis and
mature megakaryocytes to remain quiescent in their bone
marrow niches (20, 46). The importance of localization of
mature megakaryocytes to HSC bone marrow niches is such
that a subpopulation of marrow HSC expresses the von
Willebrand gene and gives rise directly to self-replicating
megakaryocytic HSC (47). Other HSC-generated but lineage-
restricted, self-replicating HSCs also give rise directly to
megakaryocyte-erythroid and common myeloid repopulating
stem cells, in addition to those progressing down the classical
HSC pathway of commitment and differentiation (48).

The presence of megakaryocyte-primed HSC at the apex of
the HSC hierarchy explains why thrombocytosis is a common
presenting manifestation of an MPN. It also explains the
mechanisms by which some ET patients only express JAK2
V617F in their platelets (49), and why some JAK2 V617F-
posit ive PV patients only have erythrocytosis and
thrombocytosis (50), in addition to those who have a complete
panmyelopathy. Additionally, it provides an explanation for the
transformation of ET to PV and PMF to PV and vice versa
through HSC clonal succession (51).

This behavior must be distinguished from the natural history
of MPN driver mutations to produce marrow fibrosis in PV and
ET, because such behavior does not necessarily confer the same
biologic characteristics as PMF (52). HSC behavior, of course, is
not only MPN driver mutation-related, it is also strongly
influenced by sex and age (53), and in PV, a proclivity to JAK2
V617F homozygosity by uniparental disomy (54). Most
importantly, however, the primacy of the MPL–THPO axis in
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HSC behavior not only under normal circumstances but in the
MPN cannot be ignored from a therapeutic perspective.
MPL PHYSIOLOGY AND
PATHOPHYSIOLOGY

The thrombopoietin receptor, MPL, is a member of the type 1
homodimeric cytokine receptor family together with the EPO,
prolactin, growth hormone, and granulocyte-colony stimulating
factor receptors. Among this receptor family, MPL is unique
because it has a reduplicated extracellular CRHD, of which, the
distal CRHD is the site of THPO binding. The distal CRHD is
also the site of germline SNP causing benign familial
thrombocytosis (38, 39), a hot spot for the mutations causing
CAMT (25) as well as the site of terminal sialylation during
receptor maturation, which is impaired in the MPN (55). Like
the other hematopoietic growth factor receptors, MPL is
responsible for the metabolism of its cognate ligand, but in
contrast to the other hematopoietic growth factors, the
production of which is mainly regulated by demand, THPO is
constitutively produced in the liver (56), and production of a
critical platelet mass is required to maintain a constant platelet
count (57).

The observation that MPL cell-surface expression was
impaired in JAK2 V617F-positive PV, PMF (44) and ET (45)
appeared counterintuitive since MPL is the sole hematopoietic
growth factor receptor expressed in HSC, and the MPNs are
diseases with autonomous myeloproliferation (58). Additionally,
impaired MPL cell-surface expression was universal in the MPN
since it also occurred with MPL (59, 60) and CALR (35)
mutations, and in familial thrombocytosis due to germline
MPL SNP in the MPL distal CRHD as well (38, 39).
Mechanisms for impaired MPL cell-surface expression include
MPL, CALR or JAK2 mutations, increased MPL turnover, or
impaired post-translational processing, and in PMF, reduced
GATA1 expression, impaired megakaryocyte differentiation, an
associated ribosomal deficiency state and impaired
megakaryocyte-specific protein expression (61).

CAMT is due to MPL mutations (25), primarily in the distal
CRHD; all three of the above mechanisms are responsible for
impaired MPN MPL cell-surface expression (2, 33, 55, 62).
Germline SNPs causing impaired MPL cell-surface expression
are also located in the distal CRHD and appear to be due to
impaired post-translational processing (38, 39). MPL is produced
as an incompletely-glycosylated 80 kDa protein, which is fully
glycosylated in the Golgi to a 95 kDa mature protein with JAK2
as its obligate chaperone (17). Normally, both incompletely
glycosylated and mature MPL proteins are expressed at the
cell-surface and both are responsive to THPO-induced
signaling (62, 63). While MPN driver mutations and MPL
germline SNP result in impaired terminal MPL sialylation in
the distal CRHD (55), JAK2 V617F activation adds an additional
defect. JAK2 is responsible for enhancing MPL stability and
recycling (17, 61), but JAK2 V617F also increases MPL
ubiquitination and proteasomal degradation, leading to
Frontiers in Oncology | www.frontiersin.org 3
decreased MPL recycling and half-life, predominantly
involving mature MPL (61).

Importantly, since megakaryocytes do not require THPO for
megakaryocyte maturation or platelet production, impaired MPL
cell-surface expression does not affect these processes (20, 21). It
does , however , impair plasma THPO clearance by
megakaryocytes and platelets (57). This leads to increased
plasma THPO levels in the MPN (64, 65) and a continuous
signal for HPC to proliferate, either collectively (MPL S505N,
MPL W515 K/L, CALR del/+ and JAK2 V617F), or limited to
megakaryopoiesis alone (MPL K39N and MPL P106L), because
adequate cell-surface MPL is still expressed in HCP for this
purpose (66). Importantly, the MPN phenotype partially
emulates that of wild-type mice and humans with unregulated
THPO production (42), which is reversible in mice by inhibition
of THPO synthesis (30).

Mouse hematopoiesis, of course, differs from human
hematopoiesis because in the mouse, the platelet count is
approximately three times the human platelet count. The
mechanism for this appears to be due to the presence of an
asparagine at amino acid residue 39 in the mouse MPL distal
CRHD, which is otherwise highly homologous to the human
MPL distal CRHD. Importantly, in humans with the germline
SNP MPL K39N, where asparagine is substituted for lysine
[(38)], MPL expression is impaired and affected individuals’
phenocopy mouse hematopoiesis with thrombocytosis and an
elevated plasma THPO, suggesting a human biologic model for
MPN pathophysiology.
ROLE OF THROMBOPOIETIN IN
MYELOPROLIFERATIVE NEOPLASM
PATHOPHYSIOLOGY

Because MPL is essential for HSC quiescence and survival in the
marrow osteoblastic niche (22, 23, 67) and is also responsible for
THPO catabolism (57), we hypothesized that impaired MPL cell-
surface expression was essential for MPN phenotypic behavior,
causing unregulated HPC proliferation and, eventually,
myelofibrosis due to increased plasma THPO (30), depending
on the MPN driver mutation allele burden, while also causing
HSC loss from the marrow (22).

To test this, we employed a JAK2 V617F transgenic mouse
model, which mirrors PV natural history, with erythrocytosis,
granulocytosis, thrombocytosis, splenomegaly and eventually
anemia and osteomyelofibrosis (68). Unsurprisingly, when
crossed with an MPL knockout mouse, there was abolition of
the PV histologic phenotype (Figure 1A) and a marked decrease
in marrow HSC (Figure 1B), which could only be partially
alleviated with expression of one MPL allele. This confirmed an
essential role for MPL in this transgenic mouse model of PV (69).

PV transgenic mice differed from human PV because the
plasma THPO level was reduced, not increased, suggesting that
the lower plasma THPO in contrast to wild-type mice was due to
increased THPO utilization by the JAK2 V617F-mediated
increase in the megakaryocyte and platelet pools, a
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characteristic also found in mouse models with MPL (59) or
CALR mutations (70).

To study the role of THPO in the JAK2 V617F transgenic
mouse phenotype, we crossed this mouse with a THPO knockout
mouse. Unexpectedly, the PV phenotype was modified; this involved
both the reversal of splenomegaly and osteomyelofibrosis, and a
reduction in marrow HSC, despite the biallelic expression of
functional MPL expressing JAK2 V617F. Restoration of one
THPO allele completely restored the PV phenotype, in contrast to
the incomplete restoration of the PV phenotype with a single MPL
gene (JAK2 V617/MPL del/+). These results indicate that
constitutive MPL signaling through JAK2 V617F alone was not
sufficient to support the full PV phenotype in this transgenic
mouse model.
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Our observation that THPO gene deletion abrogated the PV
phenotype in a JAK2V617F transgenic mouse model differs from
the observations of Sangkhae et al. (71). Their study employed a
JAK2 V617F transgenic mouse model with an ET phenotype (72)
and only 16 weeks of observation compared to our study, making
their results not comparable with our JAK2 V617F transgenic
mouse model, which recapitulated the natural history of PV, and
required over 33 weeks of observation for full expression of the
disease phenotype. Moreover, although Sangkhae et al. claimed
that THPOwas not necessary for expression of the ET phenotype
in their mouse model, in agreement with our results, in their
JAK2 V617F/THPO knockout transgenic mice, thrombocytosis
was eliminated and in vitro HPC proliferation, megakaryocyte
number and size, and spleen size were also reduced, indicating
A B

FIGURE 1 | (A) MPL and THPO knockout (del/del) genotypes mitigate marrow and spleen histopathology in a JAK2 V617F transgenic mouse model of PV but this
was restored in JAK2 V617F/THPO del/+ mice. Representative marrow and spleen histology at >33 weeks in wild-type mice and JAK2 V617F, JAK2 V617F/MPL
del/del JAK2 V617F/THPO del/del, JAK2 V617F/MPL del/+, and JAK2 V617F/THPO del/+ transgenic mice. All images were taken with Zeiss AX10 Imager
microscope using a Plano-APO 10×, 0.45 NA lens with a tungsten 3,200 K light source. The imaging medium was digital photomicrography using a bright field
microscope and a Pro Res 14 camera with Adobe Photoshop CC acquisition software. Magnification was 40× for all images (69). (B) MPL and THPO knockout
genotypes reduce the LT-HSC (CD150+CD48-) population in a JAK2 V617F transgenic mouse model of PV. Flow cytometry of marrow LT-HSC at >16 weeks in
wild-type (n = 4), MPL knockout (n = 3), and THPO knockout (n = 3) mice and JAK2 V617 (n = 4), JAK2 V617F/MPL knockout (n = 3) and JAK2 V617F/THPO
knockout (n = 3) transgenic mice. The marrow LT-HSC population was 13% of the total LSK population in wild-type mice, 26% of the total LSK population in JAK2
V617F transgenic mice and 0.76 and 1.25% respectively in the MPL knockout and THPO knockout mice and 1.98 and 2.08% respectively of the total LSK
population in JAK2 V617F/MPL knockout and JAK2 V617F/THPO knockout transgenic mice. WT vs JAK2 V617F, P <0.029; MPL knockout vs JAK2V 617F,
P < 0.022; THPO knockout vs JAK2 V617F, P < 0.021; JAK2 V617F vs JAK2 V617F/MPL knockout, P < 0.023; JAK2 V617F vs JAK2 V617F/THPO knockout,
P < 0.034. The number (n) of mice of each genotype studied is in parentheses (69).
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THPO dependence in their JAK2 V617F ET transgenic mouse
model. Importantly, in both transgenic mouse models,
abrogation of THPO production did not reduce blood counts
below the baseline levels of control mice (68, 70).

Our observation that the MPNs are hematopoietic growth
factor-dependent disorders, particularly in the JAK2 V671F
heterozygous state is also supported by in vitro studies. For
instance, human PV BFU-E heterozygous for JAK2 V617F
responded in vitro to erythropoietin like normal BFU-E (13).
Similarly, MPN HPC hematopoietic growth factor-
responsiveness was observed in vitro with MPL (55) and CALR
(4, 37) mutations.

Reduction in marrow HSC in the absence of the MPL or
THPO genes in our study also strongly supports our assertion
that the MPNs are hematopoietic growth factor-dependent-
diseases. Significantly, a small molecule antagonist of MPL
preferentially inhibited JAK2 V617F-positive proliferation of
PV HSC both in vitro and in vivo compared to normal HSC
(73), while in vitro, PV HPC and murine cell lines expressing
MPL (55)] or CALR (4, 37) mutations were still THPO-
responsive despite the presence of constitutively-activated JAK2.

Furthermore, treatment of wild-type mice with an MPL
antagonist antibody allowed non-myeloablative bone marrow
transplantation, verifying the requirement for THPO to maintain
HSC in their marrow niches (23). Importantly, while the absence
of functional MPL causes CAMT in humans, MPL cell-surface
expression is impaired, but not absent in MPN HSC and HPC,
Frontiers in Oncology | www.frontiersin.org 5
which, as demonstrated experimentally (59), should give normal
HSC and HCP a survival advantage when exposed to a
THPO antagonist.
CONTROL OF THROMBOPOIETIN
PRODUCTION AS A TREATMENT FOR
THE MYELOPROLIFERATIVE NEOPLASM

Current models of HSC indicate that they remain quiescent in
their bone marrow niches anchored to osteoblasts by a number
of adhesive molecules as well as by THPO (Figure 2A). Recent
studies, however, suggest that the liver is the primary source of
THPO and that osteoblast THPO is not required. In addition,
while hepatic THPO production is constitutive, recent studies
have identified an important regulatory function of platelet
clearance through the Ashwell–Morrell receptor (AMR) (74)
(Figure 2A). Hepatic THPO is also markedly increased in
inflammatory conditions and is attributed to the direct action
of interleukin-6 on hepatic THPO production (75).

THPO metabolism is markedly altered in the MPN, both due to
reduced clearance and enhanced production (Figure 2B). Loss of
MPL surface expression inmegakaryocytes and platelets, in addition
to untethering HSCs from their niche, results in loss of THPO
clearance and higher THPO levels that feed back to enhance HSC
MPL/JAK/STAT signal transduction in both normal and mutant
FIGURE 2 | (A) THPO metabolism in normal and MPN contexts. (A) In the endosteal niche, HSCs are tethered to osteoblasts (yellow cells) by adhesive proteins and
receptors, including THPO (red ball) and its receptor, MPL (green receptor), and are maintained in a quiescent state. MPL also clears THPO from the circulation by
binding and internalizing THPO in megakaryocytes and platelets. Desialyated platelets bind to the Ashwell–Morell receptor (AMR) in the liver, and induce hepatic
THPO production, in addition to the constitutive hepatic production of THPO. (B) In the MPN, loss of MPL surface expression and increased THPO/MPL/JAK/STAT
signal transduction promote HSC untethering and egress from the endosteal niche to the sinusoidal niche. Mutant, hypersignaling MPN HSCs and megakaryocytes
produce inflammatory cytokines, which alter the marrow cellular microenvironment, suppress normal hematopoietic stem cells and promote myelofibrosis (black
lines). Loss of MPL cell-surface expression in megakaryocytes and platelets results in the inability to clear plasma THPO, further providing a source of THPO for HSC
and megakaryocyte hyperstimulation. MPN platelets are both increased and are more avidly bound to the AMR, which further enhances THPO production.
Interleukin-6, produced by the MPN inflammatory milieu, independently enhances hepatic THPO production.
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clonal contexts and drives pathologic myelofibrosis and
inflammatory cytokine pathways (44, 76, 77) (Figure 2B). The
MPN context is also one of enhanced production of hepatic THPO,
both through increased MPN platelet clearance through the AMR,
and through IL-6 mediated hepatic stimulation associated with high
inflammatory milieu in the MPN (77, 78) (Figure 2B).

Thus, in addition to inhibiting the MPL–THPO interaction at
the level of the HSC, antagonizing hepatic THPO production
could be a feasible, target-specific, non-myelotoxic therapeutic
approach. Gene silencing of hepatic targets can be achieved by
using the AMR as entry for modified RNA inference into
hepatocytes, and is a safe and effective therapy in human blood
diseases (79). Recently, THPO has been effectively silenced in
murine models and is effective in lowering THPO levels and
platelet counts using this basic technology (80, 81).
CONCLUSIONS

Based on our observations, we propose that impaired MPN MPL
cell-surface expression leads to inappropriately high plasma THPO
because of failure of THPO clearance by MPN platelets and
megakaryocytes. Increased plasma THPO enhances activated
JAK2 signaling in HPC, while impaired MPL cell-surface
expression weakens the ability of HSC to remain in the marrow
Frontiers in Oncology | www.frontiersin.org 6
osteoblastic niche. Eventually, marrow HSC loss due to in situ
differentiation or migration from the marrow and sequestration in
the spleen, together with continued megakaryocyte stimulation by
the elevated plasma THPO, produces a PMF phenotype, regardless
of the MPN driver mutation. Viewed from this perspective, the
MPNs are in part hematopoietic growth factor-dependent
disorders, and targeting the MPL–THPO axis by a THPO
antagonist or suppressing hepatic THPO production could be an
effective, non-myelotoxic therapeutic strategy.
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