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ABSTRACT Accumulating evidence has strengthened a link between dysbiotic gut
microbiota and autism. Fecal microbiota transplant (FMT) is a promising therapy to
repair dysbiotic gut microbiota. We previously performed intensive FMT called mi-
crobiota transfer therapy (MTT) for children with autism spectrum disorders (ASD)
and observed a substantial improvement of gastrointestinal and behavioral symp-
toms. We also reported modulation of the gut microbiome toward a healthy one. In
this study, we report comprehensive metabolite profiles from plasma and fecal sam-
ples of the children who participated in the MTT trial. With 619 plasma metabolites
detected, we found that the autism group had distinctive metabolic profiles at base-
line. Eight metabolites (nicotinamide riboside, IMP, iminodiacetate, methylsuccinate,
galactonate, valylglycine, sarcosine, and leucylglycine) were significantly lower in the
ASD group at baseline, while caprylate and heptanoate were significantly higher in
the ASD group. MTT drove global shifts in plasma profiles across various metabolic
features, including nicotinate/nicotinamide and purine metabolism. In contrast, for
669 fecal metabolites detected, when correcting for multiple hypotheses, no metab-
olite was significantly different at baseline. Although not statistically significant,
p-cresol sulfate was relatively higher in the ASD group at baseline, and after MTT,
the levels decreased and were similar to levels in typically developing (TD) controls.
p-Cresol sulfate levels were inversely correlated with Desulfovibrio, suggesting a po-
tential role of Desulfovibrio on p-cresol sulfate modulation. Further studies of metab-
olites in a larger ASD cohort, before and after MTT, are warranted, as well as clinical
trials of other therapies to address the metabolic changes which MTT was not able
to correct.

IMPORTANCE Despite the prevalence of autism and its extensive impact on our so-
ciety, no U.S. Food and Drug Administration-approved treatment is available for this
complex neurobiological disorder. Based on mounting evidences that support a link
between autism and the gut microbiome, we previously performed a pioneering
open-label clinical trial using intensive fecal microbiota transplant. The therapy
significantly improved gastrointestinal and behavioral symptoms. Comprehensive
metabolomic measurements in this study showed that children with autism spec-
trum disorder (ASD) had different levels of many plasma metabolites at baseline
compared to those in typically developing children. Microbiota transfer therapy
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(MTT) had a systemic effect, resulting in substantial changes in plasma metabolites,
driving a number of metabolites to be more similar to those from typically develop-
ing children. Our results provide evidence that changes in metabolites are one
mechanism of the gut-brain connection mediated by the gut microbiota and offer
plausible clinical evidence for a promising autism treatment and biomarkers.

KEYWORDS autism spectrum disorder (ASD), clinical trial, fecal microbiota transplant
(FMT), gut bacteria, metabolites, microbiome, microbiota transplant therapy (MTT)

In the last decade, the world has seen a substantial increase in the diagnosis of autism
spectrum disorder (ASD) (1, 2). “Autism” is a label given to children with certain

significant impairments in social communication and behavior (3). However, unlike
disorders such as diabetes which have a known biochemical mechanism and biomarker
(abnormal blood sugar), there is no general consensus of the biochemical basis of the
condition(s) known as ASD. One potentially important etiology could be related to the
gut-brain axis and gut microbiome (4). Notably, many children with ASD have chronic
gastrointestinal (GI) problems (constipation and/or diarrhea) (5, 6). Those GI problems
have been associated with a higher severity of ASD (7) and triggered questions on a
possible link between the gut microbiome and ASD. Many studies revealed that
individuals with ASD have different gut microbiome compositions than typically de-
veloping (TD) individuals (8–13), and several studies found higher levels of certain
pathogenic clostridia species or lower levels of potentially beneficial microbes in
children with ASD than in TD children (14–16).

Different studies of the microbiome in children with ASD have sometimes yielded
conflicting results (17). This is partly due to small sample sizes, different measurement
methods, and sometimes inadequate statistical correction for multiple-hypothesis test-
ing. However, part of the reason might be also due to microbes’ diverse repertoires of
metabolic functions. Any particular microbe may be either beneficial or detrimental,
depending on its environment or other community members. For example, Desulfo-
vibrio produces lipopolysaccharides (LPS) and hydrogen sulfide, metabolites that could
be toxic to the integrity of gut epithelial cells of individuals with ASD (18), but it also
consumes hydrogen gas and contributes to energetically efficient fermentation to
generate ATP and produce short-chain fatty acids (19, 20). Furthermore, microbes
respond to changes in their environment and interact with each other by either
competing or collaborating, and in many cases, microbes share the same metabolism;
this is called functional redundancy. Therefore, to better understand the difference in
ASD microbiome function, it is useful to investigate the combined functional reper-
toires of the whole gut microbiota using “metabolomics” rather than rely solely on the
presence or abundances of specific microbial species.

A number of studies have reported that metabolite profiles in fecal, urine, and blood
samples from individuals with ASD are different than the metabolite profiles of typically
developing children without known disorders (8, 21, 22), children without a family
history of autism and unaffected typically developing siblings (21, 23, 24), and healthy
adults (25). The level of an excitatory neurotransmitter, glutamate, has been reported
to be higher in feces and blood from individuals with autism (8, 21). An increased ratio
of glutamate to gamma-aminobutyric acid (GABA) is known to be a signature of
neuroinflammation linked to sensory processing, and the ratio between these two
major neurotransmitters was reported to be different in blood samples from children
with ASD compared to those from TD children (23). Glutathione is an essential metab-
olite for detoxification, and its redox ratio between reduced and oxidized glutathione
has also been reported to be disrupted in individuals with ASD compared with that in
controls (22). Several studies reported significantly higher levels of p-cresol, a tyrosine
derivative, in blood, urine, and feces from children with ASD (8, 24, 25). Experiments
with a maternal immune activation ASD mouse model revealed that 4-ethylphenyl
sulfate (4-EPS) and indolepyruvate, two tyrosine/tryptophan derivatives, were signifi-
cantly higher in mice that had ASD symptoms, and the concentration of 4-EPS de-
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creased with Bacteroides fragilis administration (26). In recent ASD mouse model
experiments, taurine and 5-aminovaleric acid were lower in colon contents from ASD
mice, and when these two GABA receptor agonists were administered to ASD mice,
their ASD-like behaviors improved (27).

Despite a long list of metabolites that are different in children with ASD, there are
few data specific to the subset of children with ASD who have chronic GI symptoms.
Also, there is limited information available on how potentially important metabolites
are modulated after a therapeutic intervention, especially one involving the human gut
microbiome. We performed microbiota transfer therapy (MTT) for children with ASD
and observed significant improvement in GI and ASD symptoms (Fig. 1a) (28, 29).
Intriguingly, microbial diversity increased significantly during MTT and was even higher
2 years later (29). Higher microbial diversity is an approximate barometer of the health
of the gut microbiome (30, 31). We also observed significant increases in levels of
Bifidobacteria, Prevotella, and Desulfovibrio after MTT (28).

We previously published a paper on a multivariate analysis of the plasma data from
children who participated in our MTT study (32). This study reports comprehensive
metabolite measurements from children who participated in our MTT study (28, 29),
focusing on a univariate analysis of plasma and fecal metabolite data. Specifically,
plasma and fecal samples were assessed at baseline in children with ASD with chronic
GI problems (chronic constipation and/or diarrhea) versus TD children without GI issues
to determine which metabolites were different in the ASD group before treatment. In
addition, similar measurements of plasma and fecal metabolites were made at multiple

FIG 1 (Continued)
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time points during and at the end of MTT in the ASD group and compared with those
from the TD group to record changes in metabolites as a consequence of the
microbiome-based treatment.

RESULTS
Plasma metabolite profiles in ASD versus TD changed after MTT. A liquid

chromatography-mass spectrometry (LC-MS) assay identified a total of 619 metabolites
in our plasma samples (see Data Set S1, Tab 1, in the supplemental material). To
evaluate differences in metabolite profiles as a group, we generated a heat map and
performed a principal-component analysis (PCA) using the 73 plasma metabolites
whose levels were relatively different at baseline between the two groups (unadjusted
P � 0.05). Figure 1b displays the results of the PCA for each participant in the ASD
group at 3 time points and for the TD group. The plot shows that the ASD group cluster

FIG 1 (Continued)
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FIG 1 Clinical trial timeline, principal-component analysis (PCA), and heat map profile with dendrogram with plasma and fecal samples at different time points.
(a) The timeline consists of 10-week microbiota transfer therapy (MTT) and an 8-week follow-up observation period. (b and d) Seventy-three plasma metabolites
whose levels were relatively different at baseline between two groups (unadjusted P � 0.05) were included in the PCA and heat map. (c) Distances from the
ASD group to TD group were measured by pairwise PERMANOVA. In heat map profiles, the top line indicates diagnosis, with red for ASD and green for TD.
The second line indicates time (pink, baseline; green, week 3; orange, week 10; blue, week 18). The colors for each point in the heat maps indicate either higher
levels (red) or lower normalized relative intensity (blue). (d) Plasma metabolites in the heat map were clustered when their initial levels at baseline were higher
(clusters 1 and 2) or lower (clusters 3, 4, and 5) at baseline and whether they increased/decreased (clusters 1, 3, and 4) or were maintained (clusters 2 and 5)
after MTT. Clusters 1, 3, and 4 displayed metabolites whose levels generally became more similar to levels in TD samples after MTT at week 10, whereas
metabolites in clusters 2 and 5 did not change significantly after treatment. The plasma metabolites discussed in the text are highlighted (red). (e and f) 26
fecal metabolites whose levels were relatively different at baseline between the two groups (unadjusted P � 0.05) were included in the PCA and heat map.
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at baseline was significantly separated from the TD group cluster at baseline (adjusted
P � 0.01 by permutational multivariate analysis of variance [PERMANOVA]; 12 of 18 ASD
samples in leftmost cluster, whereas the TD group is in the rightmost cluster). After
vancomycin treatment (at 3 weeks), the ASD group shifted toward the TD group (only
4 of 18 in leftmost cluster) and further shifted toward the TD group after MTT at week
10 (0 of 18 in leftmost cluster) (Fig. 1b and c). The heat map presented in Fig. 1d shows
the metabolites’ normalized relative intensities for the ASD group at three different
time points and the normalized relative intensity of the TD group at baseline. As shown
in the heat map with the dendrogram in Fig. 1d, the 73 plasma metabolites were
clustered into two groups, based on whether they were initially higher (clusters 1 and
2) or lower (clusters 3, 4, and 5) at baseline and whether they increased/decreased
(clusters 1, 3, and 4) or were maintained (clusters 2 and 5) after MTT. Cluster 1 (Fig. 1d)
included 23 metabolites which displayed higher levels of normalized relative intensity
in ASD samples at baseline and became more similar to levels in TD samples after MTT
at week 10. Cluster 2 included 12 metabolites that were initially higher in the ASD
samples but did not change significantly after treatment. Clusters 3 and 4 (defined as
identical but placed separately in Fig. 1d) consisted of 25 metabolites which were lower
in the ASD samples at baseline and increased after MTT. Metabolites in cluster 5 were
lower at baseline but unchanged after MTT.

Individual metabolite levels in ASD plasma samples were significantly different
at baseline. To identify potentially important metabolites, we performed Mann-
Whitney U tests for all 619 plasma metabolites and corrected their P values for multiple
hypotheses by using two separate multiple-hypotheses correction tests (Benjamini-
Hochberg and leave-one-out methods). Of 619 metabolites, 9 plasma metabolites were
significantly different at baseline between the ASD and TD groups by both correction
tests (Table 1) (adjusted P � 0.05). Nicotinamide riboside and IMP were the two most
significantly different metabolites at baseline based on Benjamini-Hochberg and leave-
one-out correction, and both were significantly lower in the ASD group than in the TD
group. Amino acid products (sarcosine and methylsuccinate), dipeptides (valylglycine
and leucylglycine), galactonate, and iminodiacetate were significantly lower in ASD
samples, whereas caprylate (medium-chain fatty acids with 8 carbon atoms; C8) was
significantly higher in ASD samples (Table 1) (adjusted P � 0.05).

Notably, most metabolites listed above significantly changed after treatment. Sar-
cosine, methylsuccinate, nicotinamide riboside, IMP, leucylglycine, and iminodiacetate
were significantly lower in ASD samples at baseline and increased significantly after
vancomycin at week 3 and remained increased after MTT at week 10 compared to
baseline (Table 2 and Fig. 1d) (one-tailed Wilcoxon rank test P � 0.05, clusters 3 and 4).
In contrast, caprylate and heptanoate were significantly higher in ASD samples at
baseline and significantly decreased after MTT at week 10 (P � 0.05; cluster 1) (Fig. 1d).

TABLE 1 Normalized plasma metabolites that were significantly different at baseline after correcting for multiple hypotheses (adjusted
P � 0.05)

Super pathway Subpathway Biochemical

Adjusted P valuea Median

BH Leave one out ASD TD

Amino acid Glycine, serine, and threonine metabolism Sarcosine 0.04 0.02 �1.70 0.62
Leucine, isoleucine, and valine metabolism Methylsuccinate 0.02 0.01 �1.16 0.09

Carbohydrate Fructose, mannose, and galactose metabolism Galactonate 0.03 0.01 �0.90 0.46
Cofactors and vitamins Nicotinate and nicotinamide metabolism Nicotinamide riboside 0.02 �0.01 �1.03 0.65
Lipid Medium-chain fatty acid Caprylate (8:0) 0.05 0.05 1.13 �0.54

Heptanoate (7:0) 0.05 0.03 1.66 �0.54
Nucleotide Purine metabolism, (hypo)xanthine/inosine

containing
IMP 0.02 �0.01 �1.00 0.36

Peptide Dipeptide Leucylglycine 0.04 0.02 �1.01 0.38
Valylglycine 0.04 0.05 �0.70 0.31

Xenobiotics Chemical Iminodiacetate 0.03 0.01 �1.54 0.51
aAll P values presented here are smaller than 0.05 by two-tailed Mann-Whitney U test after correcting for multiple hypotheses. BH, Benjamini and Hochberg (a
multiple-hypotheses correction test).
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Only two metabolites (galactonate and valylglycine) in Table 2 did not change signif-
icantly. Galactonate was significantly lower in the ASD group than in the TD group at
baseline but did not increase after MTT. Valylglycine was significantly lower in the ASD
group than in the TD group at baseline, increased at week 3, but returned to its original
level at week 10 (Tables 1 and 2). Overall, 8 of 10 abnormal metabolites shifted
significantly after MTT so that they became closer to the levels in the TD group, and the
other two partially shifted.

Although not significant after multiple-hypotheses correction, several metabolites
that were previously reported as abnormal in either humans or an animal model (8, 26,
33–35) were either relatively higher or lower than in the TD group (see Table S1). We
were interested in neurotransmitters (glutamate, GABA, dopamine, and serotonin),
tyrosine/tryptophan derivatives (such as p-cresol, 4-ethylphenyl sulfate [4-EPS], and
indole), and antioxidants (such as glutathione, biliverdin, and bilirubin). The levels of
normalized relative intensities were relatively higher for glutamate and lower for
indolepropionate, biliverdin, and bilirubin in the ASD group at baseline (two-tailed
unadjusted P � 0.05). After MTT at week 10, glutamate and indole propionate changed
toward that in the TD group (Table S1).

Fecal metabolites: tyrosine/tryptophan derivatives were different at baseline.
In fecal samples, we identified 669 metabolites in total (Data Set S1, Tab 2). To evaluate
differences in metabolite profiles as a group, we first performed PCA and heat map
analysis for the 26 metabolites whose levels were most different at baseline between
the two groups (unadjusted P � 0.05). As shown in Fig. 1e, PCA results showed that the
fecal metabolites of the ASD and TD groups were similar at baseline and remained
similar after MTT. Figure 1f shows that there were no significant differences between
ASD and TD groups at baseline, and no significant change was observed between
baseline and after MTT.

We also investigated individual levels of fecal metabolites, but of 669 metabolites,
no metabolite was significantly different after correcting for multiple hypotheses
(adjusted P � 0.05). Although not statistically significant, three tyrosine derivatives
(p-cresol sulfate, tyramine O-sulfate, and 4-hydroxyphenylacetate) and indole, a sero-
tonin precursor, were relatively different at baseline (unadjusted P � 0.05) (see Ta-
ble S2). p-Cresol sulfate, 4-hydroxyphenylacetate, and indole levels were relatively
higher in feces from the ASD group at baseline, whereas tyramine O-sulfate, a metab-
olite that has similar chemical structure to those of 4-EPS and p-cresol sulfate, was
relatively lower in feces from the ASD group. After MTT, p-cresol sulfate levels were
lowered to levels similar to those of the TD group, and the other metabolites men-
tioned above did not change toward those in the TD group (Table S2).

TABLE 2 Ratios of normalized ASD plasma metabolites to those in TD samples at baseline that were significantly different when
comparing baseline to week 3 and week 10

Super pathway Subpathway Biochemical

Median ratio
(ASD/TDbaseline)

Adjusted P value
vs baselinea

Baseline Week 3 Week 10 Week 3 Week 10

Amino acid Glycine, serine, and threonine metabolism Sarcosine 0.15 1.00 0.97 0.04 0.03
Leucine, isoleucine, and valine metabolism Methylsuccinate 0.58 1.07 1.23 0.03 <0.01

Carbohydrate Fructose, mannose, and galactose metabolism Galactonate 0.05 0.68 0.64 0.12 0.25
Cofactors and

vitamins
Nicotinate and nicotinamide metabolism Nicotinamide riboside 0.42 0.89 0.95 0.03 0.03

Lipid Medium-chain fatty acid Caprylate (8:0) 2.91 1.28 0.90 0.10 0.03
Heptanoate (7:0) 6.67 1.15 0.94 0.13 0.03

Nucleotide Purine metabolism, (hypo)xanthine/inosine
containing

IMP 0.41 0.89 1.02 <0.01 <0.01

Peptide Dipeptide Leucylglycine 0.24 0.77 0.74 0.03 0.03
Valylglycine 0.22 0.76 0.22 0.05 0.09

Xenobiotics Chemical Iminodiacetate 0.54 0.98 0.98 0.03 0.04
aP values are written in bold when they are less than 0.05 by one-tailed Wilcoxon signed-rank test after correcting for multiple hypotheses. To obtain the ratios, each
metabolite was normalized such that the median value was 1 in the TD group at baseline.
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PICRUSt/HUMAnN analyses predicted microbial functions but not significance.
With 16S rRNA gene amplicon sequencing data (28), PICRUSt (phylogenetic investiga-
tion of communities by reconstruction of unobserved state) (36) and HUMAnN (the
HMP unified metabolic analysis network) (37) analyses predicted 116 microbial function
modules in total throughout the samples (Data Set S1, Tab 3). However, none of the
functional modules identified showed statistical significance after correcting for
multiple-hypotheses testing.

Correlation-based networks showed links between metabolites, microbes, and
clinical assessments. Figure 2a displays the plasma metabolites that had the most
significant correlations (Spearman correlation coefficient |r| � 0.5) with clinical assess-
ments of GI and ASD-related symptoms. IMP levels were strongly negatively correlated
with GI assessments via the gastrointestinal symptom rating scale (GSRS) and daily stool
record (DSR) (a black-dotted circle in Fig. 2a and c); in other words, the increase of IMP
levels to normal levels after MTT was strongly associated with improvements in GI
symptoms. Methylsuccinate was strongly correlated with parental global impressions-
revised (PGI-R) (Spearman correlation, |r| � 0.75) (Fig. 2a and d), i.e., the increase of
methylsuccinate to normal levels after MTT was strongly associated with improvements
in ASD-related symptoms. For plasma metabolites and the three gut bacteria (Bifido-
bacterium, Prevotella, and Desulfovibrio), we only found one significant correlation
between Bifidobacterium and 5-(galactosylhydroxy)-L-lysine (r � 0.54, P � 0.01).

Figure 3a shows a correlation-based network analysis between fecal metabolites,
clinical measurements, and three bacteria (Bifidobacterium, Prevotella, and Desulfovib-
rio), which were the three gut microbes which significantly changed in response to MTT
(28). Correlation-based network analyses shows that Bifidobacterium is strongly corre-
lated with many stool metabolites, especially negatively correlated with amino acids/
peptides (arginine, asparagine, isoleucylglycine, and valylleucine) and nucleotides
(adenosine, xanthosine, and inosine) (Fig. 3a). In contrast, sulfate-reducing Desulfovibrio
was not strongly correlated with metabolites of interest, but there was a modest
significant negative correlation with p-cresol sulfate and sulfate (Fig. 3b and c). p-Cresol
sulfate and sulfate levels were strongly and significantly correlated with each other
(Fig. 3d). GI and behavioral symptoms were associated with several metabolites, but
those metabolites were not correlated with any of the three bacteria, suggesting that
other bacteria (or subsets of those bacteria) are affecting the metabolites associated
with GI and ASD symptoms.

DISCUSSION

Participants in the MTT trial (28, 29) experienced major changes in their gut
microbiomes. MTT involved using vancomycin (an antibiotic), a stomach acid suppres-
sant, and a bowel cleanse to reduce the initial microbiome, and adding new microbiota
from very healthy donors by fecal microbiota transplant daily for 7 to 8 weeks. This
study demonstrates that MTT resulted in major changes in plasma metabolite profiles
and modest changes in fecal profiles (summarized in Fig. 4). One reason may be due to
the small sample size and greater statistical noise in fecal samples. Another possible
hypothesis for the major change in plasma but not fecal metabolites is that perhaps
MTT improved epithelial cell integrity and reduced intestinal permeability, resulting in
less diffusion of fecal metabolites into the bloodstream and thus a more normal set of
plasma metabolites. The other hypothesis is that by modifying the microbiota in the
gut, important host interactions that rely on microbial metabolites were also modified,
leading to the overproduction or consumption of systemic metabolites.

Plasma metabolites. For plasma metabolites, when we consider 75 metabolites
whose levels were relatively different at baseline between the two groups (unadjusted
P � 0.05), PCA found that the ASD group cluster (12 of 18 samples) was significantly
separate from the TD group at baseline (adjusted P � 0.01 by PERMANOVA), but after
vancomycin (week 3) and after 10 weeks of MTT, the ASD group was closer (while not
completely similar) to the TD group (Fig. 1b and c). The heat map analysis (Fig. 1d)
shows that many individual metabolites that were initially higher (cluster 1, n � 23) or
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lower (clusters 3 and 4, n � 25) in ASD shifted toward more normal levels after MTT;
however, some metabolites with abnormal levels at baseline did not improve (clusters
2 and 5, n � 25). These individual shifts explain changes in the PCA (Fig. 1b). At
baseline, 6 children with ASD already had similar plasma metabolite profiles to the one
after MTT (Fig. 1b), and those ASD samples (ASD6, ASD9, ASD10, ASD11, ASD12, and

FIG 2 Correlation-based network analysis and correlation tests. Correlation-based network analysis with plasma metabolites associated with
clinical assessment scores (highlighted in green) (a) and metabolite pairs that are significantly correlated with nicotinamide riboside and IMP (b).
Blue and red lines between metabolites indicate positive and negative correlations, respectively (Spearman correlation coefficient |r| � 0.5).
Rank-based plots to show strong correlations between GSRS and IMP (c) and PGI-R and methylsuccinate (d). P and r values are for rank-based
Spearman correlation tests.
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ASD16) had lower levels of nicotinamide riboside, methylsuccinate, iminodiacetate, and
sarcosine at baseline (in cluster 3) and higher levels of caprylate, azelate, heptanoate,
and caproate at baseline (in cluster 1) than the other 12 ASD samples at baseline. At
week 3, 8 children with ASD experienced a shift in their plasma metabolites toward
those of the TD group, reflecting a potential role of antibiotics and a proton pump
inhibitor changing the gut microbiome.

After correcting for multiple hypotheses, we found 10 plasma metabolites that were
significantly different in ASD versus controls at baseline (Table 1). Nicotinamide riboside
was significantly lower in ASD samples, and their levels significantly increased after MTT
(Tables 1 and 2). Nicotinamide riboside is a pyridine nucleoside form of vitamin B3 and
a precursor for NAD (38, 39), a critical molecule involved in hundreds of redox and other
reactions. Typically, tryptophan or aspartate are converted to NAD, but an alternative
path involves the synthesis of NAD from nicotinamide riboside (salvage pathways)
when the normal pathway is blocked. NAD levels were found to be significantly lower
in children with ASD in another study (34) and found to increase significantly after

FIG 3 Correlation-based network analysis and correlation tests between fecal metabolites, clinical measurements, and bacterial components in stool. (a)
Correlation-based network associated with p-cresol sulfate, clinical measurements, and key significant bacteria of Bifidobacterium, Prevotella, and Desulfovibrio.
(b to d) Sulfate-reducing Desulfovibrio, p-cresol sulfate, and sulfate levels were significantly correlated (Spearman correlation, P � 0.005).
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treatment with a vitamin/mineral supplement (22) or by supplementation with NADH
or ribose (40). Nicotinamide riboside supplementation prevented neurological damage
and improved cognitive and physical function in an Alzheimer’s disease model (41).
Intriguingly, nicotinamide riboside in plasma samples is positively correlated with
tryptophan derivatives, indolepropionate (or indole-3-propionate), and methylsucci-
nate (Fig. 2b). Indolepropionate helps maintain mucosal homeostasis and is a neuro-
protective antioxidant, which is consistent with our findings of low levels in the ASD
group before MTT but normal levels after MTT (42). Methylsuccinate is a competitive
inhibitor of succinate dehydrogenase that is involved in the GABA shunt and reactive
oxygen stress (ROS) homeostasis (43). Methylsuccinate was strongly positively corre-
lated with PGI-R and negatively correlated with GSRS (r � �0.51), consistent with
improvements in ASD and GI symptoms after MTT.

IMP and sarcosine levels were significantly lower in the ASD group at baseline and
increased after MTT; that increase was strongly correlated with improvements in GI
symptoms (GSRS and DSR) (Fig. 2c). We did not find significant correlation between IMP
and sarcosine, but these two metabolites together with tyramine O-sulfate were the
most promising combination to distinguish between TD and ASD with GI symptom
groups from a multivariate analysis (32). IMP is involved in NAD-dependent oxidation
that converts IMP and NAD� to xanthosine monophosphate and NADH (IMP dehydro-
genase). IMP dehydrogenase activity was suggested to be related to irritable bowel
disease (44). IMP was significantly and positively correlated with 3-phosphoglycerate
(3PG) and oxidized glutathione (Fig. 2b). We did not find a meaningful metabolic
relation between these three metabolites, but 3PG is linked to energy generation in
mitochondria and folate metabolism (45). Glutathione is an antioxidant which can
neutralize ROS and has many important roles in the body, including detoxification and
immune function (46). In a previous study (47), reduced glutathione (GSH) levels were
lower in plasma samples of children with ASD, and a redox ratio of reduced to oxidized

FIG 4 Possible metabolic features that microbiota transfer therapy (MTT) induced for the improvement on
gastrointestinal and behavioral symptoms in children with ASD.
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glutathione (GSH:GSSG) was lower than that in typically developing children. In our
plasma samples, oxidized glutathione (GSSG) levels were comparable between groups
at baseline. Since reduced glutathione was not measured in our analysis, the redox ratio
of glutathione was not available to compare with the previous study. Sarcosine, also
called N-methylglycine, is converted to glycine that has a vital wide-ranging role in
human physiology, including in nucleic acid synthesis and central nervous system
homeostasis (48). Sarcosine supplementation is beneficial for depression and schizo-
phrenia (49).

Caprylate and heptanoate are medium-chain fatty acids (MCFAs) that were highly
correlated with one another (r � 0.79). The ASD group had average levels of caprylate
and heptanoate at baseline that were 190% and 590% above normal, respectively, and
decreased to normal levels after MTT. They were both significantly correlated with the
PGI-R (r � �0.58 and �0.66), so that their decrease after MTT was correlated with an
improvement in ASD symptoms. Galactonate is formed by oxidation of galactose,
possibly by galactose dehydrogenase (50). At baseline, the level of galactonate was
significantly lower in the ASD group, suggesting impaired production. Another study,
however, found that galactonate was higher in children with ASD (51).

Glutamate levels were relatively higher in ASD plasma samples at baseline. This
observation is consistent with what we expected, because glutamate is a major
excitatory neurotransmitter that has been related to anxiety and excitation, which are
behavioral symptoms that children with ASD experience (52, 53). Bilirubin and its
oxidized form biliverdin possess antioxidant properties (54, 55), and their relative
intensities were relatively lower in plasma samples from the ASD group at baseline (see
Table S1 in the supplemental material), reflecting a deficit for preventing oxidative
stress in children with ASD (56–58). MTT, however, did not change bilirubin and
biliverdin levels toward those in TD group plasma samples (Table S1); therefore, these
may be a useful target for other future therapies.

Fecal metabolites. Although not significant after controlling for multiple-hypotheses
testing, p-cresol sulfate levels were relatively higher in the ASD group and decreased
toward normal levels after MTT (see Table S2), which is in line with what we expected.
Elevated p-cresol sulfate induces oxidative stress (59), and tyrosine metabolism along
with p-cresol has been implicated in the etiology of ASD through human and animal
studies (60, 75). A previous study with an autism mouse model claimed p-ethylphenyl
sulfate (4-EPS) as an important metabolite associated with autism symptoms and
pointed out its similar chemical structure to that of p-cresol sulfate, a uremic toxin (26).
Axial Biotherapeutics has reported elevated concentrations of 4-EPS in children with
ASD (61). We previously reported higher p-cresol concentrations in ASD fecal samples
(8), and in this study, we observed higher but not statistically significant p-cresol levels
in ASD fecal samples (Table S2). Notably, the decrease in p-cresol sulfate after MTT was
modestly but significantly associated with the increase in Desulfovibrio (Fig. 3b). Desul-
fovibrio has not been listed as a beneficial microbe but rather has been accepted as a
detrimental one in the view of the autism phenotype (11, 13, 18, 62); however, we
found it significantly increased after MTT at week 10, suggesting it may have some
beneficial role (28). Significant correlations between Desulfovibrio, p-cresol sulfate, and
sulfate (Fig. 3b to d) support a potential role for sulfate-reducing microbes such as
Desulfovibrio in the metabolism of p-cresol sulfate (63). Regarding 4-EPS, we only
identified 4-EPS in plasma samples, and its levels were marginally lower in ASD samples
(two-tailed Mann-Whitney U test P � 0.09). This observation is not consistent with Hsiao
et al.’s data on mice (26), and we did not see any change after MTT. A larger study is
needed to clarify if 4-EPS is relevant to human ASD.

Overall, it is intriguing that we observed significant changes in metabolic
features in plasma metabolites but not much in fecal metabolites, even though we
had found substantial changes in gut microbiota after MTT. This distinct result
between plasma and fecal samples reflects some of the challenges of working with
complex gut microbiota and their metabolites. This study relied on a small sample
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size with different GI disorder types (e.g., constipation, diarrhea, or abdominal pain),
and a larger cohort may help differentiate subtle but important changes in fecal
metabolites that could be masked in this study. Although we employed rigorous
nonparametric tests for the network analysis, a larger sample size with more time
points would help achieve a more robust correlation network in future studies. At
baseline, p-cresol sulfate was different in our fecal samples. However, gut microbes
produce p-cresol not p-cresol sulfate, and p-cresol produced by gut microbes is
converted to p-cresol sulfate by host sulfation in the liver. Our observation of
p-cresol sulfate may reflect its release from host to the gut, like bile acids (64), or
by the systemic circulation between gut and liver (65). Further studies with multiple
analytical assays are warranted to validate our observation of p-cresol sulfate.

Conclusions. In summary, MTT drove global changes in plasma metabolite profiles
in children with ASD. Vancomycin seems to initiate a shift in the plasma metabolite
profiles, but microbiota transfer resulted in further shifts and seemed to stabilize the
effect of vancomycin. As a result, plasma metabolite profiles in the ASD group were
modulated from being distinctly different from those in the TD group to becoming
similar to those in the TD group. Among plasma metabolites that were significantly
different in ASD at baseline, medium-chain fatty acids (caprylate and heptanoate) were
significantly higher at baseline than in the control and significantly decreased after
MTT. Nicotinamide riboside, IMP, iminodiacetate, methylsuccinate, leucylglycine, and
sarcosine were significantly lower at baseline and increased after MTT. Other metabo-
lites such as galactonate and valylglycine were abnormal at baseline and did not
improve after MTT, and so those are potential targets for other future therapies. Overall,
these data provide some insight into why microbiota transplant therapy appears to be
able to significantly reduce GI and ASD symptoms. It also suggests a biochemical basis
for some ASD symptoms.

In contrast, for fecal metabolites, only a few metabolites were different at baseline,
and none were significantly different after correction for multiple-hypotheses testing.
At baseline, p-cresol sulfate, 4-hydroxyphenylacetate, tyramine O-sulfate, and indole
were relatively different between groups (unadjusted P � 0.05), and only p-cresol
sulfate significantly changed toward that in the TD group after MTT. There were
significant correlations between p-cresol sulfate, sulfate, and Desulfovibrio, suggesting
a potential role of Desulfovibrio in the metabolism of p-cresol sulfate and possible
autism etiology. Further studies of fecal and blood metabolites in ASD, before and after
MTT, are warranted, as well as clinical trials of other therapies, to address the metabolic
changes which MTT was not able to correct.

MATERIALS AND METHODS
Ethics approval and consent to participate. The protocol for the original treatment study was

approved by the Institutional Review Board of Arizona State University (ASU IRB protocol 00001053) and
the U.S. FDA (investigational new drug number 15886), as described by Kang et al. (28). All plasma and
fecal samples were collected from the 20 typically developing children and 18 children with ASD who
participated in the original phase 1 trial study in accordance with the relevant guidelines and regulations,
and no further inclusion or exclusion criteria were employed in addition to what we applied in the
original trial (28). The consent process was initiated by communicating with past participants and their
parents via email, and the study was explained in detail by phone and/or email. For the families who met
the study criteria, we provided families with a copy of a child assent form and a parent permission form.
After the informed consent process, families with children with ASD and typically developing children
agreed to participate and signed written parent permission and assent forms. We deidentified all samples
and documents for the entire study and maintained participants’ confidentiality for the entire analyses.
The trial was registered at ClinicalTrials.gov (NCT02504554) on 30 March 2015.

Study design and MTT. The study protocol was approved by the U.S. Food and Drug Administration
(FDA) (investigational new drug number 15886) and the Institutional Review Board of Arizona State
University (ASU IRB protocols 00001053 and 00004890). The study population and MTT protocol are
described in a previous study (28). In summary, 18 children with ASD and 20 typically developing children
participated in the study. All 18 children with ASD were 7 to 16 years old and completed the 18 weeks
of the open-label trial, consisting of antibiotic (vancomycin) treatment for 2 weeks, a bowel cleanse for
1 day (MoviPrep), a proton pump inhibitor (Prilosec) throughout the trial, and standardized human gut
microbiota (66) of a high dose for 1 or 2 days followed by a maintenance dose for 7 to 8 weeks. We
monitored participants during the 10 weeks of treatment as well as 8 weeks after MTT stopped. There
were no major adverse effects. We observed substantial improvement in their GI and ASD symptoms and
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an increase in microbiome diversity. Further information on the clinical and microbial observations are
available in the study by Kang et al. (28).

Sample collection for metabolomic analysis. For metabolomic analysis, plasma samples were
collected at baseline, week 3 (after the vancomycin and bowel cleanse, and just before the first dose of
microbiota), and week 10 (the end of MTT treatment). Phlebotomists who had experience with children
drew blood samples in the morning from fasting participants, centrifuged them to collect plasma
samples, and froze plasma samples immediately in dry ice. Frozen samples were delivered to the
laboratory and stored in a �80°C freezer until all samples were collected. Plasma samples were collected
from all 18 children with ASD at three time points except for one missing sample at week 3. Plasma
samples were collected from all 20 TD participants at baseline only, since they did not receive MTT. To
be consistent with microbial analysis (28), we used the same fecal samples as those by Kang et al. (28)
collected at baseline, week 3 to 4 (approximately 6 days after the initial high dose of microbiota), week
10, and week 18 (8 weeks after the end of MTT) for children with ASD and baseline for typically
developing children. Fecal samples collected by participants at home were immediately frozen and then
picked up by a student driver and delivered to the laboratory on dry ice to be stored in a �80°C freezer.
Once the clinical trial concluded, the frozen samples were aliquoted and sent overnight with dry ice to
Metabolon (Durham, NC, USA) for metabolomic analysis. To avoid any bias in metabolomics measure-
ment, we randomized and blinded all autism and control samples in a random order before shipping out
to Metabolon.

Metabolomic analysis and sample normalization. At Metabolon, a platform with ultrahigh per-
formance liquid chromatography-tandem mass spectroscopy (UHPLC-MS/MS) instruments was em-
ployed. Metabolomic measurements consisted of sample extraction/preparation, quality assurance/
quality control, and UHPLC-MS/MS at Metabolon, Inc., as described in detail elsewhere (67–70). Briefly,
the samples were processed by mixing with methanol, vigorous strokes, and centrifugation, which
allowed protein precipitation and various metabolite recovery in the supernatant (68, 70). The extracts
were aliquoted, dried, and reconstituted in different solvents depending on the platform for either polar
or nonpolar metabolite analyses (hydrophilic interaction liquid chromatography [HILIC]/UPLC-MS/MS or
reverse-phase [RP]/UPLC-MS/MS, respectively) (69). The organic solvent was then removed by evapora-
tion using a TurboVap (Zymark, Hopkinton, MA). The sample extracts were analyzed by the methods
utilizing a Waters ACQUITY UPLC (Milford, MA) and a Thermo Scientific Q-Exactive high-resolution/
accurate mass spectrometer interfaced with a heated electrospray ionization (HESI-II) source and Orbitrap
mass analyzer (Thermo Scientific, Waltham, MA). Metabolon generated deliverables, including chemical
annotation, the retention time index (RI), mass, and raw area counts after metabolite quantitation.
Metabolite quantitation was performed by peak area integration using the area under the curve, and the
intensity measurements yielded relative intensity of each metabolite. To correct the systematic variation
between measurements, data normalization was conducted at Metabolon Inc. by registering the medians
to equal 1 and normalizing each data point proportionately (called the block correction). Missing values
were imputed with the lowest value of each compound measurement divided by the square root of 2.
With the metabolomics data sets after imputation, we normalized the relative intensity into a Z-score,
which is a dimensionless quantity, to obtain a mean value of 0 and standard deviation of 1 for each
individual metabolite. The Z-score indicates how many standard deviations the observation is above or
below the mean and is useful to compare observations coming from different distributions of individual
metabolites. Throughout the manuscript, we call these values normalized relative intensity and report all
data comparing the two groups as normalized relative intensity. To calculate the ratio of the ASD group
at different sampling points to the TD group at baseline (ASD/TDbaseline), each metabolite value was
normalized such that the median value was set to a value of 1.0 in the TD cohort. In detail, we first
obtained a median value of the TD group for each metabolite and divided all individual values of the ASD
group by the TD median value. Then, we calculated each median value of the ASD group at each time
point (baseline, week 3, and week 10). With those median values, we obtained the ratio between the ASD
and TD groups by dividing each ASD median value by the TD median value (ASDbaseline/TDbaseline,
ASDweek3/TDbaseline, and ASDweek10/TDbaseline).

Bioinformatics and statistical analysis. To elucidate the metabolite profiles as a group, heat map
analysis and principal-component analysis (PCA) were performed using the MetaboAnalyst 4.0 (71). To
determine significant differences between groups, we first measured distances by the weighted Bray-
Curtis matric and then performed a permutation-based nonparametric method, PERMANOVA (permu-
tational multivariate analysis of variance), using QIIME2’s command “beta-group-significance” (72). To
control multiple comparisons, we conducted 999 permutations and adjusted the P values by Benjamini-
Hochberg false-discovery rate correction. For heat map analysis, the dendrogram was generated by using
a hierarchical clustering method with complete linkage and “Euclidean” distance to measure the
dissimilarity. To investigate how metabolites were potentially interrelated with the improvement of GI
and behavioral symptoms, we performed a correlation-based network analysis with ASD samples at
different time points by calculating Spearman correlation tests for ASD plasma metabolites and clinical
measurements. We only considered correlations with adjusted P values of less than 0.1 after correcting
for multiple hypotheses in the correlation-based network. We used Cytoscape to visualize the
correlation-based network (73).

Using 16S rRNA gene amplicon sequencing data from the original study (28), we predicted microbial
functions using PICRUSt v.1.1.3 (36), HUMAnN v0.99 (37), and linear discriminant analysis with effect size
(LEfSe) (74) analyses available in the online Galaxy version of the Huttenhower Lab (v1.0.0). Through
PICRUSt, we first obtained predicted metagenome files containing gene counts, and then we employed
the PICRUSt output to HUMAnN to obtain gene and pathway summaries based on Kyoto Encyclopedia
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of Genes and Genomes (KEGG) modules. To investigate which bacterial functional module is associate
with ASD phenotype, we performed a linear discriminant analysis with effect size (LEfSe), where the
nonparametric factorial Kruskal-Wallis (KW) sum-rank test was used to detect significantly different
genomic features with respect to the class of interest, ASD, and then linear discriminant analysis (LDA)
was used to estimate the effect size of each individually abundant feature.

We assumed the metabolomic and 16S rRNA gene sequencing data were nonnormally distributed
because of a relatively small sample size and employed nonparametric statistical tests with Mann-
Whitney U test, Wilcoxon signed-rank test, Spearman correlation test, and KW sum-rank test. For
metabolites and genomic features, we adjusted P values by correcting for multiple hypotheses with
Benjamini-Hochberg and leave-one-out methods, and adjusted P values smaller than 0.05 were consid-
ered statistically significant. For metabolites that were previously reported and hypothesized as impor-
tant, when unadjusted P values were lower than 0.05 but adjusted P values were higher than 0.05, we
considered them as relatively higher or lower to indicate their relative difference between ASD and TD
groups. For paired data (before and after MTT treatment in the same participants), we used the Wilcoxon
signed-rank test and one-tailed test, since we hypothesized the direction of either increase or decrease
of normalized relative intensity based on the measurements at baseline.

Data availability. The 16S rRNA gene sequence data sets are available in the open-source sequence
data repository NCBI SRA under BioProject identification (ID) PRJNA529598 and “Qiita” with the study ID
number 10532 (https://qiita.ucsd.edu). The clinical data are available in the study by Kang et al. (28).
Metabolomic and PICRUSt data sets are included in tables in the supplemental material.

SUPPLEMENTAL MATERIAL
Supplemental material is available online only.
TABLE S1, XLSX file, 0.02 MB.
TABLE S2, XLSX file, 0.01 MB.
DATA SET S1, XLSX file, 1.4 MB.

ACKNOWLEDGMENTS
We thank all children with ASD and typically developing children for participat-

ing in the study as well as the children’s families for their support on the study. We
also thank Thomas Borody, Alessio Fasano, Alex Khoruts, Michael Sadowsky, and
Sharon McDonough-Means for their support on the treatment portion of the
microbiota transfer therapy study. We thank Devon Coleman and Elena Pollard for
study coordination and ASD behavioral assessment. We thank Tapan Audhya for his
initial contribution to interpreting metabolomic data. We also thank J. Gregory
Caporaso for 16S rRNA gene sequencing analysis and Jay Park for help on network
analysis.

This work was supported by Finch Therapeutics (formerly Crestovo) to obtain the
metabolomics data set.

J.B.A., D.-W.K., and R.K.-B. have pending/approved patents related to the usage of
fecal microbiota transplant and/or probiotics for various conditions, including autism,
and have filed an invention disclosure on the results presented here. J.B.A., R.K.-B., and
D.-W.K. received funding from Crestovo/Finch Therapeutics for FMT research. J.B.A. and
R.K.-B. were part-time consultants for Crestovo. M.S. has shares in Finch Therapeutics.
The other authors do not have any financial conflicts of interest.

REFERENCES
1. Baio J, Wiggins L, Christensen DL, Maenner MJ, Daniels J, Warren Z, Kurzius-

Spencer M, Zahorodny W, Rosenberg CR, White T, Durkin MS, Imm P,
Nikolaou L, Yeargin-Allsopp M, Lee LC, Harrington R, Lopez M, Fitzgerald RT,
Hewitt A, Pettygrove S, Constantino JN, Vehorn A, Shenouda J, Hall-Lande
J, Braun KV, Dowling NF. 2018. Prevalence of autism spectrum disorder
among children aged 8 years - autism and developmental disabilities
monitoring network, 11 sites, United States, 2014. MMWR Surveill Summ
67:1–23. https://doi.org/10.15585/mmwr.ss6706a1.

2. Xu GF, Strathearn L, Liu BY, O’Brien M, Kopelman TG, Zhu J, Snetselaar
LG, Bao W. 2019. Prevalence and treatment patterns of autism spectrum
disorder in the United States, 2016. JAMA Pediatr 173:153–159. https://
doi.org/10.1001/jamapediatrics.2018.4208.

3. Johnson CP, Myers SM, American Academy of Pediatrics Council on
Children With Disabilities. 2007. Identification and evaluation of children
with autism spectrum disorders. Pediatrics 120:1183–1215. https://doi
.org/10.1542/peds.2007-2361.

4. Sharon G, Sampson TR, Geschwind DH, Mazmanian SK. 2016. The central
nervous system and the gut microbiome. Cell 167:915–932. https://doi
.org/10.1016/j.cell.2016.10.027.

5. McElhanon BO, McCracken C, Karpen S, Sharp WG. 2014. Gastrointestinal
symptoms in autism spectrum disorder: a meta-analysis. Pediatrics 133:
872– 883. https://doi.org/10.1542/peds.2013-3995.

6. Vargason T, McGuinness DL, Hahn J. 2019. Gastrointestinal symptoms
and oral antibiotic use in children with autism spectrum disorder: ret-
rospective analysis of a privately insured US population. J Autism Dev
Disord 49:647– 659. https://doi.org/10.1007/s10803-018-3743-2.

7. Adams JB, Johansen LJ, Powell LD, Quig D, Rubin RA. 2011. Gastrointes-
tinal flora and gastrointestinal status in children with autism-
comparisons to typical children and correlation with autism severity.
BMC Gastroenterol 11:22. https://doi.org/10.1186/1471-230X-11-22.

8. Kang DW, Ilhan ZE, Isern NG, Hoyt DW, Howsmon DP, Shaffer M, Lozupone
CA, Hahn J, Adams JB, Krajmalnik-Brown R. 2018. Differences in fecal

Metabolite Changes in ASD by Microbiota Transplant

September/October 2020 Volume 5 Issue 5 e00314-20 msphere.asm.org 15

https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA529598
https://qiita.ucsd.edu
https://doi.org/10.15585/mmwr.ss6706a1
https://doi.org/10.1001/jamapediatrics.2018.4208
https://doi.org/10.1001/jamapediatrics.2018.4208
https://doi.org/10.1542/peds.2007-2361
https://doi.org/10.1542/peds.2007-2361
https://doi.org/10.1016/j.cell.2016.10.027
https://doi.org/10.1016/j.cell.2016.10.027
https://doi.org/10.1542/peds.2013-3995
https://doi.org/10.1007/s10803-018-3743-2
https://doi.org/10.1186/1471-230X-11-22
https://msphere.asm.org


microbial metabolites and microbiota of children with autism spectrum
disorders. Anaerobe 49:121–131. https://doi.org/10.1016/j.anaerobe.2017
.12.007.

9. Wang MB, Wan J, Rong H, He FS, Wang H, Zhou JX, Cai CQ, Wang Y, Xu
RH, Yin ZQ, Zhou WH. 2019. Alterations in gut glutamate metabolism
associated with changes in gut microbiota composition in children with
autism spectrum disorder. mSystems 4:e00321-18. https://doi.org/10
.1128/mSystems.00321-18.

10. Liu FT, Li J, Wu F, Zheng HM, Peng QL, Zhou HW. 2019. Altered
composition and function of intestinal microbiota in autism spectrum
disorders: a systematic review. Transl Psychiatry 9:13. https://doi.org/10
.1038/s41398-019-0389-6.

11. Finegold SM, Dowd SE, Gontcharova V, Liu C, Henley KE, Wolcott RD, Youn
E, Summanen PH, Granpeesheh D, Dixon D, Liu M, Molitoris DR, Green JA.
2010. Pyrosequencing study of fecal microflora of autistic and control
children. Anaerobe 16:444–453. https://doi.org/10.1016/j.anaerobe.2010.06
.008.

12. Strati F, Cavalieri D, Albanese D, De Felice C, Donati C, Hayek J, Jousson
O, Leoncini S, Renzi D, Calabro A, De Filippo C. 2017. New evidences on
the altered gut microbiota in autism spectrum disorders. Microbiome
5:24. https://doi.org/10.1186/s40168-017-0242-1.

13. Tomova A, Husarova V, Lakatosova S, Bakos J, Vlkova B, Babinska K, Ostat-
nikova D. 2015. Gastrointestinal microbiota in children with autism in
Slovakia. Physiol Behav 138:179–187. https://doi.org/10.1016/j.physbeh
.2014.10.033.

14. Kang DW, Park JG, Ilhan ZE, Wallstrom G, Labaer J, Adams JB, Krajmalnik-
Brown R. 2013. Reduced incidence of Prevotella and other fermenters in
intestinal microflora of autistic children. PLoS One 8:e68322. https://doi
.org/10.1371/journal.pone.0068322.

15. Song YL, Liu CX, Finegold SA. 2004. Real-time PCR quantitation of
clostridia in feces of autistic children. Appl Environ Microbiol 70:
6459 – 6465. https://doi.org/10.1128/AEM.70.11.6459-6465.2004.

16. Williams BL, Hornig M, Parekh T, Lipkin WI. 2012. Application of novel
PCR-based methods for detection, quantification, and phylogenetic char-
acterization of Sutterella species in intestinal biopsy samples from children
with autism and gastrointestinal disturbances. mBio 3:e00261-11. https://
doi.org/10.1128/mBio.00261-11.

17. Krajmalnik-Brown R, Lozupone C, Kang DW, Adams JB. 2015. Gut bacteria in
children with autism spectrum disorders: challenges and promise of study-
ing how a complex community influences a complex disease. Microb Ecol
Health Dis 26:26914. https://doi.org/10.3402/mehd.v26.26914.

18. Finegold SM. 2011. Desulfovibrio species are potentially important in regres-
sive autism. Med Hypotheses 77:270–274. https://doi.org/10.1016/j.mehy
.2011.04.032.

19. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR,
Fernandes GR, Tap J, Bruls T, Batto J-M, Bertalan M, Borruel N, Casellas F,
Fernandez L, Gautier L, Hansen T, Hattori M, Hayashi T, Kleerebezem M,
Kurokawa K, Leclerc M, Levenez F, Manichanh C, Nielsen HB, Nielsen T,
Pons N, Poulain J, Qin J, Sicheritz-Ponten T, Tims S, Torrents D, Ugarte E,
Zoetendal EG, Wang J, Guarner F, Pedersen O, de Vos WM, Brunak S,
Doré J, MetaHIT Consortium, Antolín M, Artiguenave F, Blottiere HM,
Almeida M, Brechot C, Cara C, Chervaux C, Cultrone A, Delorme C,
Denariaz G, Dervyn R, et al. 2011. Enterotypes of the human gut micro-
biome. Nature 473:174 –180. https://doi.org/10.1038/nature09944.

20. Krajmalnik-Brown R, Ilhan ZE, Kang DW, DiBaise JK. 2012. Effects of gut
microbes on nutrient absorption and energy regulation. Nutr Clin Pract
27:201–214. https://doi.org/10.1177/0884533611436116.

21. Shinohe A, Hashimoto K, Nakamura K, Tsujii M, Iwata Y, Tsuchiya KJ, Sekine
Y, Suda S, Suzuki K, Sugihara G-i, Matsuzaki H, Minabe Y, Sugiyama T, Kawai
M, Iyo M, Takei N, Mori N. 2006. Increased serum levels of glutamate in adult
patients with autism. ProgNeuropsychopharmacol& Biol Psychiatry 30:
1472–1477. https://doi.org/10.1016/j.pnpbp.2006.06.013.

22. Adams JB, Audhya T, McDonough-Means S, Rubin RA, Quig D, Geis E,
Gehn E, Loresto M, Mitchell J, Atwood S, Barnhouse S, Lee W. 2011. Effect
of a vitamin/mineral supplement on children and adults with autism.
BMC Pediatr 11:111. https://doi.org/10.1186/1471-2431-11-111.

23. El-Ansary A, Al-Ayadhi L. 2014. GABAergic/glutamatergic imbalance rel-
ative to excessive neuroinflammation in autism spectrum disorders. J
Neuroinflammation 11:189. https://doi.org/10.1186/s12974-014-0189-0.

24. De Angelis M, Piccolo M, Vannini L, Siragusa S, De Giacomo A, Serraz-
zanetti DI, Cristofori F, Guerzoni ME, Gobbetti M, Francavilla R. 2013.
Fecal microbiota and metabolome of children with autism and pervasive
developmental disorder not otherwise specified. PLoS One 8:e76993.
https://doi.org/10.1371/journal.pone.0076993.

25. Gabriele S, Sacco R, Cerullo S, Neri C, Urbani A, Tripi G, Malvy J, Barthelemy
C, Bonnet-Brihault F, Persico AM. 2014. Urinary p-cresol is elevated in young
French children with autism spectrum disorder: a replication study. Bio-
markers 19:463–470. https://doi.org/10.3109/1354750X.2014.936911.

26. Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, Codelli JA,
Chow J, Reisman SE, Petrosino JF, Patterson PH, Mazmanian SK. 2013.
Microbiota modulate behavioral and physiological abnormalities asso-
ciated with neurodevelopment disorders. Cell 155:1451–1463. https://
doi.org/10.1016/j.cell.2013.11.024.

27. Sharon G, Cruz NJ, Kang DW, Gandal MJ, Wang B, Kim YM, Zink EM,
Casey CP, Taylor BC, Lane CJ, Bramer LM, Isern NG, Hoyt DW, Noecker C,
Sweredoski MJ, Moradian A, Borenstein E, Jansson JK, Knight R, Metz TO,
Lois C, Geschwind DH, Krajmalnik-Brown R, Mazmanian SK. 2019. Human
gut microbiota from autism spectrum disorder promote behavioral
symptoms in mice. Cell 177:1600.e17–1618.e17. https://doi.org/10.1016/
j.cell.2019.05.004.

28. Kang D-W, Adams JB, Gregory AC, Borody T, Chittick L, Fasano A, Khoruts
A, Geis E, Maldonado J, McDonough-Means S, Pollard EL, Roux S, Sad-
owsky MJ, Lipson KS, Sullivan MB, Caporaso JG, Krajmalnik-Brown R.
2017. Microbiota transfer therapy alters gut ecosystem and improves
gastrointestinal and autism symptoms: an open-label study. Microbiome
5:10. https://doi.org/10.1186/s40168-016-0225-7.

29. Kang DW, Adams JB, Coleman DM, Pollard EL, Maldonado J, McDonough-
Means S, Caporaso JG, Krajmalnik-Brown R. 2019. Long-term benefit of micro-
biota transfer therapy on autism symptoms and gut microbiota. Sci Rep
9:9. https://doi.org/10.1038/s41598-019-42183-0.

30. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons
N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang
H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto J-M, Hansen T, Le
Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T,
Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang
H, Wang J, Brunak S, Doré J, Guarner F, Kristiansen K, Pedersen O, Parkhill J,
Weissenbach J, MetaHIT Consortium, et al. 2010. A human gut microbial
gene catalogue established by metagenomic sequencing. Nature 464:
59–65. https://doi.org/10.1038/nature08821.

31. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. 2012.
Diversity, stability and resilience of the human gut microbiota. Nature
489:220 –230. https://doi.org/10.1038/nature11550.

32. Adams JB, Vargason T, Kang DW, Krajmalnik-Brown R, Hahn J. 2019. Multi-
variate analysis of plasma metabolites in children with autism spectrum
disorder and gastrointestinal symptoms before and after microbiota trans-
fer therapy. Processes 7:806. https://doi.org/10.3390/pr7110806.

33. Yap IKS, Li JV, Saric J, Martin FP, Davies H, Wang YL, Wilson ID, Nicholson
JK, Utzinger J, Marchesi JR, Holmes E. 2008. Metabonomic and microbi-
ological analysis of the dynamic effect of vancomycin-induced gut
microbiota modification in the mouse. J Proteome Res 7:3718 –3728.
https://doi.org/10.1021/pr700864x.

34. Adams JB, Audhya T, McDonough-Means S, Rubin RA, Quig D, Geis E,
Gehn E, Loresto M, Mitchell J, Atwood S, Barnhouse S, Lee W. 2011.
Nutritional and metabolic status of children with autism vs. neurotypical
children, and the association with autism severity. Nutr Metab (London)
8:34. https://doi.org/10.1186/1743-7075-8-34.

35. Ming X, Stein TTP, Barnes V, Rhodes N, Guo LN. 2012. Metabolic pertur-
bance in autism spectrum disorders: a metabolomics study. J Proteome
Res 11:5856 –5862. https://doi.org/10.1021/pr300910n.

36. Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA,
Clemente JC, Burkepile DE, Thurber RLV, Knight R, Beiko RG, Hutten-
hower C. 2013. Predictive functional profiling of microbial communities
using 16S rRNA marker gene sequences. Nat Biotechnol 31:814 – 821.
https://doi.org/10.1038/nbt.2676.

37. Abubucker S, Segata N, Goll J, Schubert AM, Izard J, Cantarel BL,
Rodriguez-Mueller B, Zucker J, Thiagarajan M, Henrissat B, White O,
Kelley ST, Methe B, Schloss PD, Gevers D, Mitreva M, Huttenhower C.
2012. Metabolic reconstruction for metagenomic data and its applica-
tion to the human microbiome. PLoS Comput Biol 8:e1002358. https://
doi.org/10.1371/journal.pcbi.1002358.

38. Bogan KL, Brenner C. 2008. Nicotinic acid nicotinamide and nicotin-
amide riboside: a molecular evaluation of NAD� precursor vitamins in
human nutrition. Annu Rev Nutr 28:115–130. https://doi.org/10.1146/
annurev.nutr.28.061807.155443.

39. Chi YL, Sauve AA. 2013. Nicotinamide riboside, a trace nutrient in foods,
is a Vitamin B3 with effects on energy metabolism and neuroprotection.
Curr Opin Clin Nutr Metab Care 16:657– 661. https://doi.org/10.1097/
MCO.0b013e32836510c0.

Kang et al.

September/October 2020 Volume 5 Issue 5 e00314-20 msphere.asm.org 16

https://doi.org/10.1016/j.anaerobe.2017.12.007
https://doi.org/10.1016/j.anaerobe.2017.12.007
https://doi.org/10.1128/mSystems.00321-18
https://doi.org/10.1128/mSystems.00321-18
https://doi.org/10.1038/s41398-019-0389-6
https://doi.org/10.1038/s41398-019-0389-6
https://doi.org/10.1016/j.anaerobe.2010.06.008
https://doi.org/10.1016/j.anaerobe.2010.06.008
https://doi.org/10.1186/s40168-017-0242-1
https://doi.org/10.1016/j.physbeh.2014.10.033
https://doi.org/10.1016/j.physbeh.2014.10.033
https://doi.org/10.1371/journal.pone.0068322
https://doi.org/10.1371/journal.pone.0068322
https://doi.org/10.1128/AEM.70.11.6459-6465.2004
https://doi.org/10.1128/mBio.00261-11
https://doi.org/10.1128/mBio.00261-11
https://doi.org/10.3402/mehd.v26.26914
https://doi.org/10.1016/j.mehy.2011.04.032
https://doi.org/10.1016/j.mehy.2011.04.032
https://doi.org/10.1038/nature09944
https://doi.org/10.1177/0884533611436116
https://doi.org/10.1016/j.pnpbp.2006.06.013
https://doi.org/10.1186/1471-2431-11-111
https://doi.org/10.1186/s12974-014-0189-0
https://doi.org/10.1371/journal.pone.0076993
https://doi.org/10.3109/1354750X.2014.936911
https://doi.org/10.1016/j.cell.2013.11.024
https://doi.org/10.1016/j.cell.2013.11.024
https://doi.org/10.1016/j.cell.2019.05.004
https://doi.org/10.1016/j.cell.2019.05.004
https://doi.org/10.1186/s40168-016-0225-7
https://doi.org/10.1038/s41598-019-42183-0
https://doi.org/10.1038/nature08821
https://doi.org/10.1038/nature11550
https://doi.org/10.3390/pr7110806
https://doi.org/10.1021/pr700864x
https://doi.org/10.1186/1743-7075-8-34
https://doi.org/10.1021/pr300910n
https://doi.org/10.1038/nbt.2676
https://doi.org/10.1371/journal.pcbi.1002358
https://doi.org/10.1371/journal.pcbi.1002358
https://doi.org/10.1146/annurev.nutr.28.061807.155443
https://doi.org/10.1146/annurev.nutr.28.061807.155443
https://doi.org/10.1097/MCO.0b013e32836510c0
https://doi.org/10.1097/MCO.0b013e32836510c0
https://msphere.asm.org


40. Freedenfeld SH, Hamada K, Audhya T, Adams JB. 2011. Biochemical
effects of ribose and NADH therapy in children with autism. Autism
Insights 2011:3–13.

41. Hou YJ, Lautrup S, Cordonnier S, Wang Y, Croteau DL, Zavala E, Zhang
YQ, Moritoh K, O’Connell JF, Baptiste BA, Stevnsner TV, Mattson MP,
Bohr VA. 2018. NAD� supplementation normalizes key Alzheimer’s
features and DNA damage responses in a new AD mouse model with
introduced DNA repair deficiency. Proc Natl Acad Sci U S A 115:
E1876 –E1885. https://doi.org/10.1073/pnas.1718819115.

42. Zhang LS, Davies SS. 2016. Microbial metabolism of dietary components
to bioactive metabolites: opportunities for new therapeutic interven-
tions. Genome Med 8:46. https://doi.org/10.1186/s13073-016-0296-x.

43. Burke JJ, Siedow JN, Moreland DE. 1982. Succinate-dehydrogenase - a
partial-purification from mung bean hypocotyls and soybean cotyle-
dons. Plant Physiol 70:1577–1581. https://doi.org/10.1104/pp.70.6.1577.

44. Haglund S, Vikingsson S, Soderman J, Hindorf U, Granno C, Danelius M,
Coulthard S, Peterson C, Almer S. 2011. The role of inosine-5’-
monophosphate dehydrogenase in thiopurine metabolism in patients
with inflammatory bowel disease. Ther Drug Monit 33:200 –208. https://
doi.org/10.1097/FTD.0b013e31820b42bb.

45. Ducker GS, Rabinowitz JD. 2017. One-carbon metabolism in health and
disease. Cell Metab 25:27–42. https://doi.org/10.1016/j.cmet.2016.08.009.

46. Droge W, Breitkreutz R. 2000. Glutathione and immune function. Proc
Nutr Soc 59:595– 600. https://doi.org/10.1017/s0029665100000847.

47. James SJ, Melnyk S, Jernigan S, Cleves MA, Halsted CH, Wong DH, Cutler
P, Bock K, Boris M, Bradstreet JJ, Baker SM, Gaylor DW. 2006. Metabolic
endophenotype and related genotypes are associated with oxidative
stress in children with autism. Am J Med Genet B Neuropsychiatr Genet
141B:947–956. https://doi.org/10.1002/ajmg.b.30366.

48. Wang WW, Wu ZL, Dai ZL, Yang Y, Wang JJ, Wu GY. 2013. Glycine
metabolism in animals and humans: implications for nutrition and
health. Amino Acids 45:463– 477. https://doi.org/10.1007/s00726-013
-1493-1.

49. Tsai GC, Lane HY, Yang PC, Chong MY, Lange N. 2004. Glycine trans-
porter I inhibitor, N-methylglycine (Sarcosine), added to antipsychotics
for the treatment of schizophrenia. Biol Psychiatry 55:452– 456. https://
doi.org/10.1016/j.biopsych.2003.09.012.

50. Coelho AI, Rubio-Gozalbo ME, Vicente JB, Rivera I. 2017. Sweet and sour:
an update on classic galactosemia. J Inherit Metab Dis 40:325–342.
https://doi.org/10.1007/s10545-017-0029-3.

51. Mu CL, Corley MJ, Lee RWY, Wong M, Pang A, Arakaki G, Miyamoto R,
Rho JM, Mickiewicz B, Dowlatabadi R, Vogel HJ, Korchemagin Y, Shearer
J. 2020. Metabolic framework for the improvement of autism spectrum
disorders by a modified ketogenic diet: a pilot study. J Proteome Res
19:382–390. https://doi.org/10.1021/acs.jproteome.9b00581.

52. Bak LK, Schousboe A, Waagepetersen HS. 2006. The glutamate/GABA-
glutamine cycle: aspects of transport, neurotransmitter homeostasis and
ammonia transfer. J Neurochem 98:641– 653. https://doi.org/10.1111/j
.1471-4159.2006.03913.x.

53. Brown MS, Singel D, Hepburn S, Rojas DC. 2013. Increased glutamate
concentration in the auditory cortex of persons with autism and first-
degree relatives: a 1H-MRS study. Autism Res 6:1–10. https://doi.org/10
.1002/aur.1260.

54. Stocker R, Glazer AN, Ames BN. 1987. Antioxidant activity of albumin-
bound bilirubin. Proc Natl Acad Sci U S A 84:5918 –5922. https://doi.org/
10.1073/pnas.84.16.5918.

55. Stocker R, McDonagh AF, Glazer AN, Ames BN. 1990. Antioxidant activ-
ities of bile-pigments - biliverdin and bilirubin. Methods Enzymol 186:
301–309. https://doi.org/10.1016/0076-6879(90)86123-d.

56. Frustaci A, Neri M, Cesario A, Adams JB, Domenici E, Dalla Bernardina
B, Bonassi S. 2012. Oxidative stress-related biomarkers in autism:
systematic review and meta-analyses. Free Radic Biol Med 52:
2128 –2141. https://doi.org/10.1016/j.freeradbiomed.2012.03.011.

57. Chauhan A, Chauhan V, Cohen IL, Mehta P, Brown WT, Barshatzky M.
2006. Increased oxidative stress and inflammation in autism, p-PS1C-12.
J Neurochem 98 (Suppl 1):29.

58. Rose S, Melnyk S, Pavliv O, Bai S, Nick TG, Frye RE, James SJ. 2012.
Evidence of oxidative damage and inflammation associated with low
glutathione redox status in the autism brain. Transl Psychiatry 2:e134.
https://doi.org/10.1038/tp.2012.61.

59. Watanabe H, Miyamoto Y, Honda D, Tanaka H, Wu Q, Endo M, Noguchi
T, Kadowaki D, Ishima Y, Kotani S, Nakajima M, Kataoka K, Kim-
Mitsuyama S, Tanaka M, Fukagawa M, Otagiri M, Maruyama T. 2013.
p-Cresyl sulfate causes renal tubular cell damage by inducing oxidative
stress by activation of NADPH oxidase. Kidney Int 83:582–592. https://
doi.org/10.1038/ki.2012.448.

60. Yap IKS, Angley M, Veselkov KA, Holmes E, Lindon JC, Nicholson JK. 2010.
Urinary metabolic phenotyping differentiates children with autism from
their unaffected siblings and age-matched controls. J Proteome Res
9:2996 –3004. https://doi.org/10.1021/pr901188e.

61. Needham B, Mazmanian S, Conrad M, Rao S, Campbell S. 2018. Elevation
of a putative bacterial metabolite in a pediatric ASD population. INSAR
Annual Meeting, Rotterdam, Netherlands, 9 to 12 May 2018.

62. Finegold SM. 2011. State of the art; microbiology in health and disease.
Intestinal bacterial flora in autism. Anaerobe 17:367–368. https://doi.org/
10.1016/j.anaerobe.2011.03.007.

63. Clayton TA, Baker D, Lindon JC, Everett JR, Nicholson JK. 2009. Pharma-
cometabonomic identification of a significant host-microbiome meta-
bolic interaction affecting human drug metabolism. Proc Natl Acad Sci
U S A 106:14728 –14733. https://doi.org/10.1073/pnas.0904489106.

64. Wahlstrom A, Sayin SI, Marschall HU, Backhed F. 2016. Intestinal crosstalk
between bile acids and microbiota and its impact on host metabolism.
Cell Metab 24:41–50. https://doi.org/10.1016/j.cmet.2016.05.005.

65. Tripathi A, Debelius J, Brenner DA, Karin M, Loomba R, Schnabl B, Knight
R. 2018. The gut-liver axis and the intersection with the microbiome. Nat
Rev Gastroenterol Hepatol 15:397– 411. https://doi.org/10.1038/s41575
-018-0011-z.

66. Hamilton MJ, Weingarden AR, Sadowsky MJ, Khoruts A. 2012. Stan-
dardized frozen preparation for transplantation of fecal microbiota
for recurrent Clostridium difficile infection. Am J Gastroenterol 107:
761–767. https://doi.org/10.1038/ajg.2011.482.

67. Long T, Hicks M, Yu HC, Biggs WH, Kirkness EF, Menni C, Zierer J, Small
KS, Mangino M, Messier H, Brewerton S, Turpaz Y, Perkins BA, Evans AM,
Miller LAD, Guo LN, Caskey CT, Schork NJ, Garner C, Spector TD, Venter
JC, Telenti A. 2017. Whole-genome sequencing identifies common-to-
rare variants associated with human blood metabolites. Nat Genet
49:568 –578. https://doi.org/10.1038/ng.3809.

68. Guo LN, Milburn MV, Ryals JA, Lonergan SC, Mitchell MW, Wulff JE,
Alexander DC, Evans AM, Bridgewater B, Miller L, Gonzalez-Garay ML,
Caskey CT. 2015. Plasma metabolomic profiles enhance precision med-
icine for volunteers of normal health. Proc Natl Acad Sci U S A 112:
E4901–E4910. https://doi.org/10.1073/pnas.1508425112.

69. Evans AM, Bridgewater B, Liu Q, Mitchell M, Robinson R, Dai H, Stewart
S, DeHaven C, Miller L. 2014. High resolution mass spectrometry im-
proves data quantity and quality as compared to unit mass resolution
mass spectrometry in high-throughput profiling metabolomics. Metabo-
lomics 4:2.

70. Zierer J, Jackson MA, Kastenmuller G, Mangino M, Long T, Telenti A, Mohney
RP, Small KS, Bell JT, Steves CJ, Valdes AM, Spector TD, Menni C. 2018. The
fecal metabolome as a functional readout of the gut microbiome. Nat Genet
50:790–795. https://doi.org/10.1038/s41588-018-0135-7.

71. Chong J, Soufan O, Li C, Caraus I, Li SZ, Bourque G, Wishart DS, Xia JG.
2018. MetaboAnalyst 4.0: towards more transparent and integrative
metabolomics analysis. Nucleic Acids Res 46:W486 –W494. https://doi
.org/10.1093/nar/gky310.

72. Anderson MJ. 2001. A new method for non-parametric multivariate analysis
of variance. Austral Ecol 26:32–46. https://doi.org/10.1111/j.1442-9993.2001
.01070.pp.x.

73. Lopes CT, Franz M, Kazi F, Donaldson SL, Morris Q, Bader GD. 2010.
Cytoscape Web: an interactive web-based network browser. Bioinfor-
matics 26:2347–2348. https://doi.org/10.1093/bioinformatics/
btq430.

74. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS,
Huttenhower C. 2011. Metagenomic biomarker discovery and explana-
tion. Genome Biol 12:R60. https://doi.org/10.1186/gb-2011-12-6-r60.

75. Pascucci T, Colamartino M, Fiori E, Sacco R, Coviello A, Ventura R, Puglisi-
Allegra S, Turriziani L, Persico AM. 2020. P-cresol alters brain dopamine
metabolism and exacerbates autism-like behaviors in the BTBR mouse.
Brain Sci 10:233. https://doi.org/10.3390/brainsci10040233.

Metabolite Changes in ASD by Microbiota Transplant

September/October 2020 Volume 5 Issue 5 e00314-20 msphere.asm.org 17

https://doi.org/10.1073/pnas.1718819115
https://doi.org/10.1186/s13073-016-0296-x
https://doi.org/10.1104/pp.70.6.1577
https://doi.org/10.1097/FTD.0b013e31820b42bb
https://doi.org/10.1097/FTD.0b013e31820b42bb
https://doi.org/10.1016/j.cmet.2016.08.009
https://doi.org/10.1017/s0029665100000847
https://doi.org/10.1002/ajmg.b.30366
https://doi.org/10.1007/s00726-013-1493-1
https://doi.org/10.1007/s00726-013-1493-1
https://doi.org/10.1016/j.biopsych.2003.09.012
https://doi.org/10.1016/j.biopsych.2003.09.012
https://doi.org/10.1007/s10545-017-0029-3
https://doi.org/10.1021/acs.jproteome.9b00581
https://doi.org/10.1111/j.1471-4159.2006.03913.x
https://doi.org/10.1111/j.1471-4159.2006.03913.x
https://doi.org/10.1002/aur.1260
https://doi.org/10.1002/aur.1260
https://doi.org/10.1073/pnas.84.16.5918
https://doi.org/10.1073/pnas.84.16.5918
https://doi.org/10.1016/0076-6879(90)86123-d
https://doi.org/10.1016/j.freeradbiomed.2012.03.011
https://doi.org/10.1038/tp.2012.61
https://doi.org/10.1038/ki.2012.448
https://doi.org/10.1038/ki.2012.448
https://doi.org/10.1021/pr901188e
https://doi.org/10.1016/j.anaerobe.2011.03.007
https://doi.org/10.1016/j.anaerobe.2011.03.007
https://doi.org/10.1073/pnas.0904489106
https://doi.org/10.1016/j.cmet.2016.05.005
https://doi.org/10.1038/s41575-018-0011-z
https://doi.org/10.1038/s41575-018-0011-z
https://doi.org/10.1038/ajg.2011.482
https://doi.org/10.1038/ng.3809
https://doi.org/10.1073/pnas.1508425112
https://doi.org/10.1038/s41588-018-0135-7
https://doi.org/10.1093/nar/gky310
https://doi.org/10.1093/nar/gky310
https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x
https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x
https://doi.org/10.1093/bioinformatics/btq430
https://doi.org/10.1093/bioinformatics/btq430
https://doi.org/10.1186/gb-2011-12-6-r60
https://doi.org/10.3390/brainsci10040233
https://msphere.asm.org

	RESULTS
	Plasma metabolite profiles in ASD versus TD changed after MTT. 
	Individual metabolite levels in ASD plasma samples were significantly different at baseline. 
	Fecal metabolites: tyrosine/tryptophan derivatives were different at baseline. 
	PICRUSt/HUMAnN analyses predicted microbial functions but not significance. 
	Correlation-based networks showed links between metabolites, microbes, and clinical assessments. 

	DISCUSSION
	Plasma metabolites. 
	Fecal metabolites. 
	Conclusions. 

	MATERIALS AND METHODS
	Ethics approval and consent to participate. 
	Study design and MTT. 
	Sample collection for metabolomic analysis. 
	Metabolomic analysis and sample normalization. 
	Bioinformatics and statistical analysis. 
	Data availability. 

	SUPPLEMENTAL MATERIAL
	ACKNOWLEDGMENTS
	REFERENCES

