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Abstract
Background: Anemia is a common complication of chronic 
kidney disease. The hypoxia-inducible factor prolyl hydroxy-
lase inhibitor (HIF-PHI) is a new class of oral drugs for the 
treatment of renal anemia. Summary: Clinical trials have 
consistently shown that HIF-PHIs can effectively increase he-
moglobin in both the dialysis population and the nondialysis 
population. The effects of HIF-PHIs in treating renal anemia 
include promoting endogenous erythropoietin production 
and facilitating iron mobilization. Several studies suggest 
that the erythropoiesis effect of roxadustat is less affected by 
inflammation. Careful monitoring of thromboembolic 
events and tumor before and during HIF-PHI treatment is 
necessary. Key Messages: HIF-PHIs are effective in correct-
ing renal anemia. The long-term safety of HIF-PHIs needs to 
be further studied. © 2022 The Author(s).

Published by S. Karger AG, Basel

Introduction

Anemia is a common complication of chronic kidney 
disease (CKD). CKD anemia is associated with reduced 
quality of life and increased mortality [1–4]. The cause of 
anemia in CKD patients is multifactorial, including eryth-
ropoietin (EPO) deficiency, iron deficiency (absolute de-
ficiency and functional deficiency), resistance to EPO sig-
naling, bone marrow suppression, and shortened red cell 
lifespan [5, 6]. EPO-stimulating agents (ESAs) and iron 
are the main treatments for anemia in patients with CKD. 
However, approximately 10–20% of CKD patients are hy-
poresponsive to ESA therapy, which poses challenges to 
CKD anemia management in these patients [7–9]. Fur-
thermore, ESA use has also raised some safety concerns, 
especially when targeting a “normal” Hb level [10, 11]. 
CKD patients usually have absolute iron deficiency and 
functional iron deficiency, resulting in reduced availabil-
ity of iron for erythropoiesis. Dialysis patients frequently 
need intravenous iron therapy. Although a recent study 
shows proactive intravenous iron was effective and safe, 
long-term safety concerns still exist [12–15].

This is an Open Access article licensed under the Creative Commons 
Attribution-NonCommercial-4.0 International License (CC BY-NC) 
(http://www.karger.com/Services/OpenAccessLicense), applicable to 
the online version of the article only. Usage and distribution for com-
mercial purposes requires written permission.



Li/Haase/HaoKidney Dis 2023;9:1–112
DOI: 10.1159/000527835

The hypoxia-inducible factor prolyl hydroxylase in-
hibitor (HIF-PHI) is a new class of oral drugs for the 
treatment of renal anemia. Roxadustat (a HIF-PHI) was 
first approved for renal anemia in China in 2019. Japan 
then approved 5 HIF-PHIs including roxadustat, dapro-
dustat, vadadustat, molidustat, and enarodustat for renal 
anemia. Recently, European Medicines Agency (EMA) 
also authorized roxadustat for the treatment of adult pa-
tients with symptomatic anemia associated with CKD in 
the European Union. This review provides a concise 
overview of the mechanism that hopefully will help us 
understand the effect of HIF-PHIs on erythropoiesis and 
other potential effects. This review will also address some 
of the potential safety concerns.

Mechanism of Action of HIF-PHIs in Treating Renal 
Anemia

HIF is a key transcription factor that responds to hy-
poxia by activating the expression of a series of genes 
from a variety of cell types in the body. In normoxic con-
ditions, HIFα is hydroxylated on proline residues by pro-
lyl hydroxylase domain (PHD). Prolyl-hydroxylated 
HIFα is recognized and ubiquitylated by the von Hippel-

Lindau (VHL) complex. Polyubiquitylated HIFα is then 
degraded by the proteasomal degradation system. HIF-
PHIs stabilize HIFα by reversibly inhibiting PHD cata-
lytic activity. HIFα translocates to the nucleus and forms 
a heterodimer with HIFβ. The heterodimer binds to hy-
poxia-response elements and induces the transcription of 
oxygen-regulated genes, including genes associated with 
erythropoiesis and iron metabolism (Fig. 1).

In contrast to ESAs that activate the EPO receptor, 
HIF-PHIs may induce multiple target genes in multiple 
cell types in response to hypoxia, including EPO from the 
kidney or/and liver and genes associated with iron ab-
sorption and mobilization. Although hundreds of genes 
are induced by HIF activation, animal and human studies 
show that the genes associated with erythropoiesis are 
more sensitive to HIF activation. Furthermore, clinical 
data show that under the recommended dosing schedule, 
the increase of EPO after HIF-PHI use is intermittent, 
and the blood levels of EPO are lower than those treated 
with exogenous EPO [16, 17]. The pleiotropic effects of 
HIF-PHIs are associated with their effectiveness in cor-
recting anemia but may also raise concerns about un-
wanted effects.

Fig. 1. Prolyl hydroxylase domain (PHD) is a therapeutic target for 
CKD anemia. In normoxic conditions, HIFα is hydroxylated on 
proline residues by PHD. Prolyl-hydroxylated HIFα is recognized 
and ubiquitylated by the von Hippel-Lindau (VHL) complex. 
Polyubiquitylated HIFα is then degraded by the proteasomal deg-
radation system. In hypoxic conditions or during HIF-PHI treat-

ment, HIFα translocates to the nucleus and forms a heterodimer 
with HIFβ. The heterodimer binds to hypoxia-response elements 
and induces the transcription of oxygen-regulated genes, includ-
ing genes associated with erythropoiesis, angiogenesis, glycolysis, 
etc.
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Efficacy of HIF-PHIs in Treating Renal Anemia

Nondialysis-Dependent CKD Patients
Clinical studies examining the efficacy of HIF-PHIs on 

hemoglobin in CKD patients consistently showed that 
HIF-PHIs are effective in correcting CKD anemia. The 
phase 3 study of roxadustat in Chinese nondialysis-de-
pendent patients showed that the patients treated with 
roxadustat had a hemoglobin increase of 1.9 ± 1.2 g/dL 
after 8-week treatment, while the patients in the placebo 
group had a decrease of 0.4 ± 0.8 g/dL in hemoglobin lev-
els from baseline (difference, 2.2 g/dL; 95% confidence 
interval, 1.9–2.6; p < 0.001) [18]. Consistently, roxadustat 
also showed superiority to placebo in increasing hemo-
globin [19, 20]. Roxadustat was noninferior to darbepo-
etin alfa in increasing hemoglobin as shown by the DO-
LOMITES study (a part of the global phase 3 trial) [21]. 
The hemoglobin response was 89.5% (256/286) in the 
roxadustat group and 78% (213/273) in the darbepoetin 
alfa group [21].

The phase 3 studies of vadadustat also showed that 
vadadustat was noninferior to darbepoetin alfa in both 
ESA-untreated and ESA-treated nondialysis-dependent 
CKD patients [22, 23]. In patients who were under ESA 
treatment but whose hemoglobin levels were still less 
than 11.0 g/dL, vadadustat effectively improved hemo-
globin levels to the target range (11.0–13.0 g/dL) [23].

The phase 3 studies of daprodustat also revealed non-
inferiority to ESA in efficacy outcomes [24, 25]. In ESA 
naive patients, daprodustat elevated hemoglobin levels to 
the target range at week 8 and maintained hemoglobin 
levels through week 52 [24]. In ESA-treated patients, 
switching to daprodustat maintained hemoglobin levels 
within the target range (11.0–13.0 g/dL) throughout the 
52-week treatment [24]. Clinical trials on enarodustat, 
molidustat, and desidustat also demonstrated that these 
HIF-PHIs were efficacious for increasing hemoglobin in 
nondialysis-dependent CKD patients [26–29].

Dialysis-Dependent Patients
The phase 3 study of roxadustat in China in patients 

undergoing maintenance dialysis under stable ESA 
showed that after switching to roxadustat, the increase in 
hemoglobin from baseline was 0.7 ± 1.1 g/dL compared 
with 0.5 ± 1.0 g/dL in the epoetin alfa group [30], showing 
a noninferiority to epoetin alfa (95% confidence interval, 
−0.02 to 0.5) [30]. The HIMALAYAS study (a global 
phase 3 trial) that recruited incident dialysis patients 
showed that roxadustat effectively corrected and main-
tained hemoglobin levels compared with epoetin alfa 

[31]. Vadadustat, in a global phase 3 study, also showed 
noninferior to darbepoetin alfa in correcting and main-
taining hemoglobin concentrations in both incident di-
alysis patients and prevalent dialysis patients [32]. Dapro-
dustat was also noninferior to ESA in increasing hemo-
globin levels [33].

Studies with patients on peritoneal dialysis demon-
strated that roxadustat, vadadustat, and daprodustat were 
effective in correcting or maintaining hemoglobin levels 
within the target range [34–36]. Clinical trials also showed 
that enarodustat and molidustat were efficacious for in-
creasing hemoglobin in dialysis patients [28, 37].

Recently, some case reports showed that roxadustat 
was effective in treating anti-EPO antibody-associated 
pure red cell aplasia [38–40]. More studies are required to 
confirm the effectiveness of HIF-PHIs on pure red cell 
aplasia.

CKD Patients with Inflammation
Patients with CKD are frequently in an inflammatory 

state. Numerous studies showed that inflammation im-
pairs erythropoiesis and is one of the most frequent causes 
of ESA resistance in CKD patients [41–43].

In the phase 3 trial in China with nondialysis-depen-
dent patients, among 411 patients with elevated C-reac-
tive protein (CRP) at baseline, roxadustat treatment 
showed an effective hemoglobin response, with an in-
crease of hemoglobin of 1.75 g/dL after 28–52 weeks, 
compared with placebo of 0.62 g/dL (p < 0.001) [20]. In 
dialysis-dependent patients, as in the phase 3 study from 
China, roxadustat had a similar hemoglobin response in 
patients with high CRP compared with those with normal 
CRP, while in the epoetin alfa group, patients with high 
CRP had lower hemoglobin response although higher 
doses of epoetin alfa were used compared with patients 
with normal CRP [30]. In another phase 3 trial from Ja-
pan, in patients with high CRP, no increase of roxadustat 
dose was required to maintain target hemoglobin, while 
higher doses of darbepoetin alfa were required to main-
tain target hemoglobin levels [44]. These studies suggest 
that the erythropoiesis effect of roxadustat is less affected 
by inflammation. The mechanism is incompletely under-
stood but may be associated with the suppression of hep-
cidin and more efficient iron utilization after the HIF-
PHI use. Inflammation and impaired iron mobilization 
are important causes of ESA resistance. More studies are 
required to explore the role of HIF-PHIs in the manage-
ment of ESA-resistant anemia.
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Effects of HIF-PHIs on Iron Mobilization

In the duodenum, Fe3+ is reduced to Fe2+ by duodenal 
cytochrome b reductase 1 (DCYTB), and then Fe2+ enters 
intestinal cells via divalent metal transporter 1 (DMT1). 
Intracellular Fe2+ exits cells through ferroportin (FPN) 
and is immediately oxidized by hephaestin to Fe3+, which 
binds to transferrin. Transferrin carries Fe3+ either to the 
bone marrow where it is used for erythropoiesis or to the 
liver and spleen where it is bound to ferritin for storage 
(Fig. 2).

In CKD, patients may have absolute iron deficiency 
and functional iron deficiency. Absolute iron deficiency 
may be caused by increased blood loss such as chronic 
gastrointestinal bleeding, frequent venipuncture, and 
blood trapping in the dialysis apparatus [45]. Functional 
iron deficiency is characterized by impaired iron release 
from storage (also called reticuloendothelial cell iron 
blockade) due to increased hepcidin levels [45]. De-
creased renal clearance, inflammation, and iron overload 
may contribute to the increased levels of hepcidin [8]. 
Studies demonstrated that in dialysis-dependent patients, 

oral iron is ineffective, suggesting impaired iron absorp-
tion in uremic conditions [46]. Therefore, intravenous 
iron is recommended in dialysis patients.

Dmt1, Dcytb, Fpn, transferrin, and transferrin receptor 
have been demonstrated to be target genes of HIF [47–51] 
(Fig. 2). Stabilizing HIF may promote iron absorption and 
utilization by inducing transcription of these genes. In ad-
dition, HIF-PHIs are associated with reduced levels of 
hepcidin and thus enhance iron absorption and utiliza-
tion, particularly in inflammatory conditions [52, 53]. The 
mechanism by which HIF-PHIs inhibit hepcidin is in-
completely understood. Studies showed that erythroid 
cells during erythropoiesis as stimulated by HIF-PHIs or 
ESA may release erythroferrone that inhibits hepcidin ex-
pression [54, 55]. Studies also suggested that reduced 
diferric transferrin as in iron deficiency or increased trans-
ferrin expression may inhibit hepcidin expression [56].

Some clinical studies demonstrated that HIF-PHIs de-
pend less on intravenous iron in treating CKD anemia. 
Interestingly, a recent study showed that, in hemodialysis 
patients treated with roxadustat, oral iron was as effective 
as intravenous iron [57], in contrast to patients treated 

Fig. 2. Effect of HIF on iron absorption and mobilization. In the 
intestine, Fe3+ is reduced to Fe2+ by duodenal cytochrome b reduc-
tase 1 (DCYTB), and then Fe2+ enters intestinal cells via divalent 
metal transporter 1 (DMT1). Intracellular Fe2+ exits cells through 
ferroportin (FPN), and then Fe3+ is used for erythropoiesis. Dmt1, 

Dcytb, Fpn, transferrin, and transferrin receptor have been dem-
onstrated to be target genes of HIF. Stabilizing HIF is associated 
with reduced levels of hepcidin. Hepcidin suppression increases 
FPN, which enhances iron absorption and utilization.



Updates on HIF-PHIs in the Treatment of 
Renal Anemia

5Kidney Dis 2023;9:1–11
DOI: 10.1159/000527835

with ESA, where oral iron is ineffective [46]. The phase 3 
trials of roxadustat in China in both dialysis-dependent 
and nondialysis-dependent patients allowed only oral 
iron but not intravenous iron, and roxadustat was still ef-
fective in raising or maintaining hemoglobin levels [30]. 
Based on the above results, the Asian Pacific Society of 
Nephrology HIF-PHI Recommendation Committee rec-
ommended oral iron first for patients who require iron 
supplementation and intravenous iron as an alternative 
for those who do not tolerate oral iron or when the physi-
cian considers intravenous iron is necessary [58].

The effect of HIF-PHIs on iron metabolism is also re-
flected in the iron parameters as demonstrated in the clin-
ical trials. Our meta-analysis that included 12 random-
ized controlled trials (RCTs), involving 6 HIF-PHIs and 
1,382 patients, showed that compared with placebo, HIF-
PHIs decreased TSAT, ferritin, and hepcidin, increased 
TIBC, and did not change serum iron levels despite en-
hanced erythropoiesis [59]. These effects have been ob-
served across all HIF-PHIs studies suggesting a class ef-
fect of HIF-PHIs on iron regulation [59]. Both roxadustat 
and epoetin alfa led to a decrease in TSAT [30], but their 
clinical implication is different. The reduction of TSAT 
after roxadustat may be associated with increased trans-
ferrin level, therefore may suggest an increase in iron 
transport capacity [30]. However, the reduced TSAT lev-
els after ESA are driven primarily by reduced serum iron 
level, reflecting an imbalance between iron consumption 
and availability [30].

Other Potential Effects of HIF-PHIs

Effect of HIF-PHIs on blood lipids: phase 3 trials of 
roxadustat showed that roxadustat treatment was associ-
ated with lower LDL cholesterol levels [18, 19, 31, 60, 61]. 
Daprodustat has also been shown to decrease cholesterol 
levels in ASCEND-D study and ASCEND-ND study [25, 
33]. However, no consistent trends were observed for 
cholesterol in vadadustat-treated patients and no changes 
in cholesterol have been observed after molidustat use in 
a phase 3 trial in Japan [62, 63]. The cause for this incon-
sistency of the effect of HIF-PHI on cholesterol is not 
clear. The clinical significance of the effect of certain HIF-
PHIs on blood lipids remains explored.

Effect of HIF-PHI on blood pressure and CKD pro-
gression: pre-clinical studies and early clinical studies 
showed that HIF-PHIs corrected anemia without increas-
ing blood pressure [57, 64]. A recent phase 3 study (AS-
CEND-TD) showed a similar effect of daprodustat on 

blood pressure compared with ESA [65]. There are no 
published clinical studies that specifically examined the 
effect of HIF-PHI on CKD progression. In the phase 3 
trial (ASCEND-ND) of daprodustat examining its effi-
cacy and safety, daprodustat failed to show superiority to 
darbepoetin in CKD progression [25].

Potential Safety Concerns

Tumorigenesis
The mechanism of action of HIF-PHIs may raise theo-

retical concerns about tumorigenesis. It is well docu-
mented that some genes that are induced by HIF activa-
tion are related to tumor formation and progression, in-
cluding vascular endothelial growth factor (VEGF), genes 
associated with glycolysis, etc. [66, 67]. VHL is an E3 li-
gase that causes HIF degradation in response to oxygen. 
The mutation of the VHL gene, which results in HIF ac-
tivation, is associated with the VHL disease that manifests 
as a neoplastic disorder including clear cell renal cell car-
cinoma, retinal and central nervous system hemangio-
blastoma, phaeochromocytoma, and pancreatic neuro-
endocrine tumor [68]. HIF-2α inhibitors are being devel-
oped to treat renal clear cell carcinoma in VHL disease 
[69]. Studies find that most people with VHL disease in-
herit a germline mutation of the VHL gene from the af-
fected parent and a wild-type allele from the unaffected 
parent [70]. Further studies show that the tumor develops 
only when the wild-type VHL allele is also inactivated by 
somatic mutation or epigenetic inactivation (two-hit hy-
pothesis of tumorigenesis). Interestingly, a homozygous 
598C>T (R200W) VHL germline mutation has been 
identified to cause congenital Chuvash polycythemia that 
does not usually develop tumors [71, 72]. The difference 
in tumor risk among these VHL gene mutations may be 
associated with the extent HIF is activated. The R200W 
substitution only partially impairs the interaction of VHL 
with HIF1α, leading to partial HIF activation [71], while 
in VHL disease, loss of VHL leads to greater HIF activa-
tion, and also probably the activation of other tumor-as-
sociated genes such as p53 [70, 73]. EPO-associated poly-
cythemia with or without paraganglioma has also been 
reported in carriers of heterozygous germline mutations 
in the PHD2 genes [74–77]. Loss of heterozygosity or mu-
tations that occur in the catalytic domain of the PHD2 
gene are suggested to be associated with paraganglioma 
development [76, 77]. Similarly, a missense mutation in 
the HIF2A gene that impairs hydroxylation of the HIF-2α 
protein has been reported to cause familial erythrocytosis 
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[78]. Interestingly, in patients with polycythemia and 
paraganglioma, somatic HIF2A gain-of-function muta-
tions have been reported in tumor tissues [79]. These 
studies may suggest that the risk of tumor development 
may depend on the extent that HIF is activated.

VEGF is an angiogenic factor involved in the growth 
and metastasis of some tumors. Several studies examined 
the effect of HIF-PHIs on serum VEGF levels. High doses 
of daprodustat (10 mg or 25 mg per day) were shown to 
only slightly increase serum VEGF in healthy people, 
while the doses of daprodustat to treat CKD anemia in 
RCTs are usually less than 5 mg [80]. Some RCTs showed 
that there is no significant difference in serum VEGF be-
tween the HIF-PHI group and the control group in both 
dialysis patients and nondialysis patients (placebo or 
ESA) [17, 26, 81–84].

So far, most clinical trials did not show an increased 
risk of tumor after HIF-PHI treatment. However, in the 
ASCEND-ND study, cancer-related death and tumor 
progression and recurrence occurred in 72 of 1,937 pa-
tients in the daprodustat group, significantly higher com-
pared with 49 of 1,935 patients in the darbepoetin alfa 
group (relative risk, 1.47; 95% confidence interval, 1.03–
2.10; p, 0.04) [25]. Post hoc analyses that accounted for 
the dosing frequencies showed an attenuation of the im-
balance for cancer events [25]. The study of molidustat 
also reported more treatment-emergent adverse events of 
neoplasms (benign, malignant, and unspecified, includ-
ing cysts and polyps) in the molidustat group (molidustat, 
15/153; darbepoetin, 4/76) [85]. Long-term follow-up 
and careful monitoring of tumor in patients treated with 
HIF-PHIs are warranted.

Retinopathy
VEGF promotes retinal neovascularization and is im-

plicated in the pathogenesis of several retinal diseases, in-
cluding diabetic retinopathy, macular edema, age-related 
macular degeneration, and retinal vein occlusion. An an-
imal study showed that enarodustat did not increase 
mRNA expression of retinal Vegf in rats at 2 h or 4 h after 
the administration of at a dose of 30 mg/kg [86].

In two phase 3 and double-blind studies of daprodus-
tat, patients with diabetic retinopathy or macular edema 
or age-related macular degeneration at baseline were in-
cluded in both groups and the incidence of ocular adverse 
events of special interest was similar throughout the 52-
week treatment in both groups [24, 87]. In two phase 3 
studies of roxadustat in Japan, ophthalmological tests by 
independent blinded central reviewers were conducted 
and revealed the proportion of patients with new or wors-

ening retinal hemorrhages in the roxadustat group was 
slightly lower than that in the darbepoetin alfa group [44, 
88]. In a phase 3 study of vadadustat in nondialysis-de-
pendent CKD patients, 2 patients (1.3%) in the vadadustat 
group and 5 patients (3.3%) in the darbepoetin alfa group 
reported retinal hemorrhage during 52 weeks of treatment 
[23]. However, a phase 3 study of vadadustat in Japanese 
hemodialysis patients showed that retinal hemorrhage oc-
curred more often in the vadadustat group (9.9%) than in 
the darbepoetin alfa group (6.2%) [89]. In the patients 
with retinal hemorrhage, the plasma VEGF levels at base-
line were 44.6 (15.6–80.0) and 55.4 (33.2–329.0) in the 
vadadustat group and the darbepoetin alfa group, respec-
tively; the plasma VEGF levels closest to the time of retinal 
hemorrhage were 47.4 (15.6–70.0) and 50.2 (29.5–92.7) in 
the vadadustat group and the darbepoetin alfa group, re-
spectively [89]. Investigators of this study did not consid-
er retinal hemorrhage is related to vadadustat [89].

The data on retinopathy as an adverse effect of HIF-
PHIs are inconclusive. When a patient reports visual dis-
turbance during HIF-PHI treatment, early ophthalmo-
logical assessment is recommended.

Hyperkalemia
The phase 3 studies of roxadustat in China reported a 

higher incidence rate of hyperkalemia among patients 
treated with roxadustat in both nondialysis patients (roxa-
dustat, 16/101; placebo, 4/51) and dialysis patients (roxadu-
stat, 15/204; epoetin alfa, 1/100) [18, 30]. However, analysis 
of serum potassium measured in the central laboratory did 
not find that patients in the roxadustat group were more 
likely to have hyperkalemia [18, 30]. Two global phase 3 
studies in nondialysis patients also reported more hyperka-
lemia among patients treated with roxadustat. In the 
OLYMPUS study, 118 (8.5%) patients in the roxadustat 
group and 98 (6.9%) patients in the placebo group reported 
hyperkalemia [20]. In the ALPS study, hyperkalemia oc-
curred in 39 (10%) patients assigned to roxadustat and 15 
(7.4%) patients assigned to placebo [19]. Conversely, other 
two phase 3 studies of roxadustat, the DOLOMITES study 
and the HIMALAYAS study, reported higher incidence 
rates of hyperkalemia in the ESA group [21, 31]. Although 
a phase 2 study of vadadustat reported more hyperkalemia 
in the vadadustat group, recent published four long-term 
phase 3 studies of vadadustat did not report more hyperka-
lemia in the vadadustat group [22, 23, 81] [32, 89]. It is still 
not clear whether HIF-PHIs cause hyperkalemia. Consider-
ing that hyperkalemia can be life-threatening, serum potas-
sium monitoring is recommended before and during HIF-
PHI treatment [58].
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Thrombotic Events and Cardiovascular Safety
Previous studies of ESA have found that targeting nor-

mal hemoglobin levels is associated with increased risk of 
cardiovascular events [90]. Cardiovascular safety is also a 
potential concern for HIF-PHIs.

The prespecified pooled analysis of the four global 
phase 3 studies of roxadustat (PYRENEES, SIERRAS, HI-
MALAYAS, and ROCKIES) in dialysis patients showed 
that the hazard ratio for the time to the first major adverse 
cardiovascular event (MACE) was 1.09 (95% confidence 
interval, 0.95–1.26), consistent with noninferiority to pla-
cebo according to the prespecified noninferiority margin 
of 1.3 [91]. The pooled analysis of the three global phase 
3 studies (ANDES, ALPS, and OLYMPUS) in nondialy-
sis-dependent CKD patients showed the hazard ratio for 
the time to the first MACE was 1.10 (95% confidence in-
terval, 0.96–1.27), which met the prespecified noninferi-
ority margin of 1.3 [92]. However, there are some incon-
sistent perspectives [93]. More cardiovascular safety end 
points of roxadustat are in Tables 1 and 2.

In the phase 3 study of daprodustat among dialysis pa-
tients (the ASCEND-D study), the first MACE occurred 
in 374 of 1,487 patients (25.2%) in the daprodustat group 
and in 394 of 1,477 patients (26.7%) in the ESA group 
(hazard ratio, 0.93; 95% confidence interval, 0.81–1.07) 
during a median follow-up of 2.5 years [33]. Among non-
dialysis-dependent patients (the ASCEND-ND study), a 
first MACE occurred in 378 of 1,937 patients (19.5%) in 

the daprodustat group and in 371 of 1,935 patients (19.2%) 
in the darbepoetin alfa group (hazard ratio, 1.03; 95% 
confidence interval, 0.89–1.19) during a median follow-
up of 1.9 years [25]. These results met prespecified non-
inferiority margin of 1.25 [25, 33]. However, analysis of 
the on-treatment MACE, which occurred within 28 days 
after the last drug dose, showed a higher incidence of a 
first MACE in the daprodustat group (14.1%) than in the 
darbepoetin alfa group (10.5%) (hazard ratio, 1.40; 95% 
confidence interval, 1.17–1.68). Further analysis indi-
cates that the different dosing frequencies between da-
produstat and darbepoetin, at least in part, contributed to 
the higher incidence of the first MACE in daprodustat-
treated patients [25]. More cardiovascular safety end 
points of daprodustat are in Tables 1 and 2.

In the phase 3 study of vadadustat among dialysis pa-
tients (the INNO2VATE study), a first MACE occurred 
in 355 of the 1,947 patients (18.2%) in the vadadustat 
group and in 377 of the 1,955 patients (19.3%) in the dar-
bepoetin alfa group (hazard ratio, 0.96; 95% confidence 
interval, 0.83–1.11) [32]. Vadadustat was noninferior to 
darbepoetin alfa with respect to cardiovascular safety in 
dialysis patients [32]. However, vadadustat did not meet 
the prespecified noninferiority criterion for cardiovascu-
lar safety in patients with nondialysis-dependent CKD as 
compared with darbepoetin alfa (the PRO2TECT studies) 
[22]. In the study among nondialysis-dependent patients, 
a first MACE occurred in 382 of 1,739 patients (22.0%) in 

Table 1. Cardiovascular safety end points in patients undergoing dialysis

Cardiovascular safety end points Hazard ratio (95% CI)

Roxadustat compared with ESAs (PYRENEES, SIERRAS, HIMALAYAS and ROCKIES) [91]
MACE (all-cause mortality, myocardial infarction, and stroke) 1.09 (0.95, 1.26)
MACE+ (MACE plus congestive heart failure or unstable angina requiring 
hospitalization)

0.98 (0.86, 1.11)

All-cause mortality 1.13 (0.95, 1.34)

Daprodustat compared with ESAs [33]
MACE (death from any cause, nonfatal myocardial infarction, or nonfatal stroke) 0.93 (0.81, 1.07)
MACE or thromboembolic event 0.88 (0.78, 1.00)
MACE or hospitalization for heart failure 0.97 (0.85, 1.11)
Death from any cause 0.96 (0.82, 1.13)

Vadadustat compared with darbepoetin alfa [32]
MACE (death from any cause, nonfatal myocardial infarction, or nonfatal stroke) 0.96 (0.83, 1.11)
Expanded MACE (MACE plus hospitalization for either heart failure or a 
thromboembolic event, excluding vascular access failure)

0.96 (0.84, 1.10)

Death from cardiovascular causes 0.96 (0.77, 1.20)
Death from any cause 0.95 (0.81, 1.12)
Death from cardiovascular causes, nonfatal myocardial infarction, or nonfatal 
stroke

0.95 (0.80, 1.14)
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the vadadustat group and in 344 of 1,732 patients (19.9%) 
in the darbepoetin alfa group (hazard ratio, 1.17; 95% 
confidence interval, 1.01–1.36) [22]. Noninferiority mar-
gin was an upper boundary of the 95% confidence inter-
val not exceeding 1.25 or 1.3 for the hazard ratio of MACE 
in this study [22]. Prespecified subgroup analyses showed 
that in the non-US regions, the risks of MACE and ex-
panded MACE were considerably higher among patients 
in the vadadustat group than among those in the darbe-
poetin alfa group [22]. Whether this difference between 
regions is causally related to the difference in hemoglobin 
targets or other factors is unclear [22]. More cardiovascu-
lar safety end points of vadadustat are in Tables 1 and 2.

Based on the experience of ESA and the available clin-
ical data about HIF-PHIs, careful monitoring of throm-
boembolic events before and during HIF-PHI treatment 
is necessary. Accordingly, a “warning” about the risk of 
thromboembolism is posted on the product information 
of all HIF-PHIs in Japan. In Europe, EMA has also marked 
roxadustat as being subject to “additional monitoring”.

Conclusion

Studies have consistently shown that HIF-PHIs can ef-
fectively increase hemoglobin in both the dialysis popula-
tion and the nondialysis population. The effects of HIF-
PHIs in treating renal anemia are multifaceted, including 

promoting endogenous EPO production and facilitating 
iron mobilization. In addition, the long-term safety of 
HIF-PHIs, the effectiveness of HIF-PHIs in ESA-resistant 
patients, and the potential pleiotropic effects of HIF-
PHIs, and their clinical significance need to be further 
studied.
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Table 2. Cardiovascular safety end points in nondialysis-dependent CKD patients

Cardiovascular safety end points Hazard ratio (95% CI)

Roxadustat compared with placebo (ANDES, ALPS, OLYMPUS) [92]
MACE (all-cause mortality, myocardial infarction, and stroke) 1.10 (0.96, 1.27)
MACE+ (MACE plus unstable angina and congestive heart failure requiring 
hospitalization)

1.07 (0.94, 1.21)

All-cause mortality 1.08 (0.93, 1.26)

Daprodustat compared with darbepoetin alfa [25]
MACE (death from any cause, nonfatal myocardial infarction, or nonfatal stroke) 1.03 (0.89, 1.19)
MACE or thromboembolic event 1.06 (0.93, 1.22)
MACE or hospitalization for heart failure 1.09 (0.95, 1.24)
Death from any cause 1.03 (0.87, 1.20)

Vadadustat compared with darbepoetin alfa [22]
MACE (death from any cause, nonfatal myocardial infarction, or nonfatal stroke) 1.17 (1.01, 1.36)
Expanded MACE (MACE plus hospitalization for either heart failure or a 
thromboembolic event, excluding vascular access failure)

1.11 (0.97, 1.27)

Death from cardiovascular causes 1.01 (0.79, 1.29)
Death from any cause 1.09 (0.93, 1.27)
Death from cardiovascular causes, nonfatal myocardial infarction, or nonfatal stroke 1.16 (0.95, 1.42)
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