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The dorsolateral prefrontal cortex (DLPFC) has consistently been
implicated in cognitive control of motor behavior. There is, however,
considerable variability in the exact location and extension of these
activations across functional magnetic resonance imaging (fMRI)
experiments. This poses the question of whether this variability re-
flects sampling error and spatial uncertainty in fMRI experiments or
structural and functional heterogeneity of this region. This study
shows that the right DLPFC as observed in 4 different experiments
tapping executive action control may be subdivided into 2 distinct
subregions-an anterior-ventral and a posterior-dorsal one - based on
their whole-brain co-activation patterns across neuroimaging
studies. Investigation of task-dependent and task-independent con-
nectivity revealed both clusters to be involved in distinct neural net-
works. The posterior subregion showed increased connectivity
with bilateral intraparietal sulci, whereas the anterior subregion
showed increased connectivity with the anterior cingulate cortex.
Functional characterization with quantitative forward and reverse
inferences revealed the anterior network to be more strongly
associated with attention and action inhibition processes, whereas
the posterior network was more strongly related to action
execution and working memory. The present data provide evidence
that cognitive action control in the right DLPFC may rely on differ-
entiable neural networks and cognitive functions.
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Introduction

Flexible, adaptive behavior requires cognitive control, which
is the ability to coordinate one’s own thoughts and actions in
accordance with overarching internally represented goals.
Such cognitive control processes become necessary in every-
day life when the environmental context changes and auto-
matic or previously learned behaviors are no longer optimal
to achieve a goal. A brain region that has consistently been
associated with cognitive control processes when complexity
or integration demands during action control increases is the
dorsolateral prefrontal cortex (DLPFC; Miller and Cohen 2001;
Hoshi 2006). Anatomically, the DLPFC encompasses Brod-
mann’s areas (BAs) 9 and 46 (Brodmann 1909), whereas in
the macaque monkeys it lies in and around the principal
sulcus (Walker’s area 46; Walker 1940). The DLPFC is be-
lieved to exert its controlling influences through the top-down
modulation of task-relevant information processing in, for

example, the premotor and posterior parietal associative cor-
tices (MacDonald et al. 2000; Koechlin et al. 2003).

In spite of the well-documented role of the DLPFC in regu-
lating aspects of volitional behavior, studies investigating cog-
nitive control had difficulties in delineating functional
divisions within the DLPFC (Duncan and Owen 2000; Wood
and Grafman 2003). There is, moreover, considerable variabil-
ity in the exact location and extension of DLPFC activations
across functional neuroimaging experiments investigating
cognitive action control. Consequently, it is difficult to
compare activations in the DLPFC across different studies and
draw conclusions about the specific functional role of the
DLPFC in the respective task. One might even ask whether it
is possible at all to define the functional role of the DLPFC
with classic functional magnetic resonance imaging (fMRI),
since this brain region is involved in a variety of cognitive
processes (cf. Yarkoni et al. 2011). As it is known that the
functional role of a region is partly determined by the neural
network it is interacting with, we here used a network-based
approach to try to define the specific role of a part of the
right DLPFC that showed activation in 4 previous fMRI studies
of our group. All 4 studies used different tasks that tapped ex-
ecutive action control and showed activations in the right
DLPFC that were located closely together but only overlapped
to a moderate degree. The question prompting the current
study then was: Does activation of broadly the same region
(DLPFC) by different tasks tapping into cognitive action
control with moderate overlap between individual effects
merely reflect spatial uncertainty of DLPFC activations or may
this observation point to an involvement in different neural
processes and hence a differentiation within the DLPFC?
In this study, we addressed this question by using a DLPFC
subregion-defined by 4 previous fMRI studies-as seed for
connectivity-based parcellation and hence tested whether dis-
tinct subfoci could be identified based on their co-activation
patterns across fMRI experiments in the BrainMap database.
In a next step, we further investigated differences in func-
tional connectivity between those foci by investigating task-
dependent and task-independent connectivity.

A task-dependent approach to investigate connectivity
between brain regions has emerged in the last few years with
meta-analytic connectivity modeling (MACM) (Laird et al.
2009; Eickhoff et al. 2010; Robinson et al. 2010). MACM relies
on defining the brain-wide co-activation patterns of a defined
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seed region across a wide number of neuroimaging exper-
iments. MACM may therefore be used to delineate neural net-
works that are robustly co-activated across many differing
experimental tasks (Eickhoff and Grefkes 2011). Moreover,
MACM can be used to define the co-activation pattern of each
particular seed voxel within a specific volume of interest
(VOI). The seed voxels can then be clustered into distinct
groups based on similarities and differences in their
co-activation profile. MACM can thus be used to generate
hypotheses about cortical modules within a chosen VOI and
its potential involvement in differential neural networks
(Eickhoff, Bzdok et al. 2011).

Moreover, analysis of synchronized spontaneous signal fluc-
tuations (resting-state imaging) has become a widely used tool
to investigate functional connectivity between brain regions in
the absence of an external task (Beckmann et al. 2005; Damoi-
seaux et al. 2006; van den Heuvel and Hulshoff Pol 2010). Im-
portantly, it has been shown that these resting-state networks
seem to comprise brain regions that are known to share a
common behavioral or cognitive function (Biswal et al. 1995;
Damoiseaux et al. 2006; van den Heuvel et al. 2009; Laird
et al. 2011), prompting the view that resting-state correlations
indeed reflect synchronization of intrinsic neuronal activity.

In this context, it should be mentioned that “functional con-
nectivity” has originally been defined in the neuroscience lit-
erature as the temporal coincidence of spatially distant
neurophysiological events (Aertsen et al. 1989; Friston et al.
1993; Biswal et al. 1995; Lowe et al. 2000). In line with the
global definition, MACM allows assessment of task-based
functional connectivity (with the unit of observation being
the particular neuroimaging experiment), whereas resting-
state correlations allow assessment of functional connectivity
in an endogenously controlled, task-free state. Given these
complementary techniques, a combination of both ap-
proaches should yield robust evidence for the “core” of func-
tional connectivity in neural networks.

We used a combination of the 2 methods to define the
functional organization as well as its involvement in (poten-
tially distinct) neural networks of the right DLPFC seed region
that was defined by merging the DLPFC activation sites from
4 previous studies on action control. The whole-brain
co-activation patterns for each voxel within this seed region
were computed by an activation likelihood estimation (ALE)
meta-analysis of all experiments in the BrainMap database
(www.brainmap.org) that reported activation in this location.
Clusters within the DLPFC were identified as groups of seed
voxels whose whole-brain co-activation profiles were similar
to each other and dissimilar to the remaining seed voxels
using hierarchical cluster analysis and spectral reordering of
cross-correlation matrices. In order to assess whether the deli-
neated clusters show robust differences in their functional
connectivity pattern, we performed a conjunction analysis
across the (follow-up) MACM analysis of the identified subre-
gions and a resting-state functional connectivity analysis using
the same subregions as seeds.

Materials and Methods

Definition of Volume of Interest
We defined a VOI by merging the DLPFC activation sites from 4 pre-
vious studies of our group investigating motor control. The first 3

studies (Jakobs et al. 2009; Cieslik et al. 2010; Eickhoff, Pomjanski
et al. 2011) used manual stimulus–response tasks requiring a speeded
response to a visual stimulus by a button press with either the left or
right index finger, whereas the fourth study (Kellermann et al. 2012)
used a manual sequence reproduction task:

In the first study (Jakobs et al. 2009), participants were required to
respond to centrally presented arrows pointing to one side only (uni-
lateral hand condition) or in a randomized order to either side
(random hand condition) by pressing a button with the correspond-
ing index finger. Increased executive control on motor responses was
delineated by contrasting random hand with unilateral hand
conditions.

The second study employed a manual stimulus–response compat-
ibility task (Cieslik et al. 2010). Here, participants were required to
respond to lateralized visual stimuli (dots) with their index finger in a
spatially congruent or incongruent manner. Increased executive
control was assessed by contrasting incongruent with congruent trials
independently of the stimulus or response side.

The third study (Eickhoff, Pomjanski et al. 2011) was a 2-choice
reaction-time task similar to the random hand condition of the first
study described above. This time, however, the direction of arrows
was biased, having a 20%/80% or 80%/20% left/right ratio. Addition-
ally, in some blocks this direction bias was covertly reversed in the
middle of the block. Increased executive motor control was delineated
by testing for activity parametrically related to the acquisition and
adaptation of motor response biases due to changes in the probabilis-
tic structure of the stimuli.

The fourth study was a short-term memory study in which partici-
pants had to memorize a visually presented finger-movement se-
quence consisting of either 4 or 6 items (Kellermann et al. 2012).
After a short delay, subjects had to manually reproduce the memor-
ized sequence after a neutral or affective cue. Increased executive
control was delineated by comparing activity in the cue period follow-
ing the memorization of 6-item sequences relative to that following
the 4-item sequences.

All 4 studies that differed in the specific demands for executive
motor control, showed activation in right DLPFC with partially over-
lapping but slightly different locations. Following thresholding at P <
0.05 (cluster-level family-wise error [FWE]-corrected) of the individual
contrasts, the ensuing 4 DLPFC clusters were combined into a single
VOI (cluster size: 674 voxels). That is, every single voxel in the VOI
region showed activation in at least one of the 4 studies. In a next step,
we assessed whether this seed region could be divided into subre-
gions based on similarities and differences between co-activation pat-
terns of the individual seed voxels across neuroimaging experiments.

Meta-Analytic Connectivity Mapping
Co-activation-based parcellation was performed using the BrainMap
database (Laird et al. 2009, 2011; www.brainmap.org). From this da-
tabase, we only included fMRI and Positron emission tomography
experiments reporting normal mapping experiments in healthy adults.
That is, all experiments involving pathological populations or children
were excluded. Likewise, we did not consider any experiments invol-
ving, for example, pharmacological interventions or reported group
comparisons (e.g. male vs female; left-handed vs right-handed partici-
pants). This selection yielded approximately 6200 eligible functional
mapping experiments providing coordinates in stereotaxic space, on
which all further analyses were based. We here concentrated on exper-
iments reporting activations only and excluded reported deactivations.
The rationale behind this approach was that deactivations are reported
less consistently in the literature, leading to a rather low amount of
available data. Moreover, whereas co-activations between regions may
conceptually be interpreted in an unambiguous manner as shared re-
cruitment by task demands, co-deactivations are conceptually more
difficult to interpret. The selection of experiments for the MACM
analysis and co-activation-based parcellation was only constrained by
the requirement to report at least one focus of activation at the respect-
ive seed, irrespective of the employed task. There are several reasons
for this approach. Apart from undermining the data-driven approach
by enforcing a priori constraints, restricting ourselves to a specific be-
havioral domain (BD) would also entail a conceptual problem. In
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particular, it is not well understood how (if) the organization of
neural network maps onto the taxonomies that are commonly used to
classify mental processes (Poldrack 2006; Laird et al. 2009). In other
words, it is well conceivable that different subregions of the region of
interest sustain different processes and interact with different net-
works, although such distinctions may or may not map onto cognitive
ontologies. Hence, we tried to derive functional networks in a bottom-
up fashion. Therefore, all eligible experiments, that is, all experiments
reporting normal functional mapping studies in healthy adults, were
included in the MACM analysis.

To enable reliable co-activation mapping for each voxel of the seed
region in spite of the variable and usually low number of foci located
precisely at a particular voxel, we first identified the set of exper-
iments in BrainMap which reported closest activation. This was
achieved by calculating the respective Euclidean distances between
the current seed voxel and the individual foci of all experiments. That
is, the experiments associated with each seed voxel were defined by
activation at or in the immediate vicinity of this particular seed voxel.
The brain-wide co-activation pattern for each seed voxel was then
computed by quantitative ALE meta-analysis over the hereby associ-
ated experiments. To increase reliability, this procedure was repeated
then for different degrees of association. In particular, a co-activation
map pertaining to any given seed voxel was computed for each set of
the closest 30 up to the closest 200 associated experiments in steps of
5 (i.e. closest 30, 35, 40,… , 200 experiments). As can be seen in Sup-
plementary Figure S1 spatial topography (across voxels) was hom-
ogenous for different numbers of studies included for spatial
remapping. Brain-wide connectivity profiles were averaged across
these in order to increase robustness against outliers and potentially
confounding effects at a given set-size.

The brain-wide co-activation pattern for each individual seed voxel
was then computed by a meta-analysis over the experiments that were
associated with that particular voxel by the procedure outlined above.
That is, experiments were defined by activation at or close to a par-
ticular seed voxel, and quantitative meta-analysis over all foci re-
ported in these experiments was performed to assess how likely any
other voxel in the brain showed co-activation with that seed voxel.
Meta-analysis was performed using the revised version (Eickhoff et al.
2009, 2012) of the ALE approach. The key idea behind ALE is to treat
the reported foci not as single points, but as centers for 3D Gaussian
probability distributions that reflect the spatial uncertainty associated
with neuroimaging results. For each experiment, the probability dis-
tributions of all reported foci are then combined into a modeled acti-
vation (MA) map (Turkeltaub et al. 2012). The voxel-wise union of
MA-values for all experiments associated with a particular seed voxel
then yielded an ALE score for each voxel that describes the
co-activation probability of that location with the respective seed
voxel. Throughout the different analyses, any test for similarity
between 2 seed voxels’ connectional fingerprints was performed by
calculating a voxel-wise correlation between their whole-brain
co-activation maps. We did not perform any thresholding on the con-
nectivity maps to retain the complete pattern of co-activation likeli-
hood. As thresholding would have altered the seed voxels’
connectional fingerprint, it may have also skewed the measurement
of similarity between them.

Functional Parcellation Based on Co-Activation Patterns
The brain-wide co-activation profiles for all seed voxels were com-
bined into a NS ×NBconnectivity matrix, where NS is the number of
seed voxels (674) and NB the number of target voxels (∼260 000
voxels located within the gray matter) at 2 × 2 × 2 mm3 resolution. Sets
of voxels that feature similar brain-wide co-activation profiles were
identified by hierarchical cluster analysis (Timm 2002; Eickhoff et al.
2007). Each voxel initially formed an individual cluster, and a hierar-
chy was built by progressively merging the least dissimilar cluster to
derive successively larger modules. Correlation between the brain-
wide co-activation profiles of seed voxels was used as a similarity
measure and average linkage criterion for cluster merging (Timm
2002). In sum, the seed voxels were thus merged as a function of cor-
respondence of their co-activation profiles to subdivide the VOI into
clusters of convergent functional connectivity.

We, furthermore, also assessed seed voxel clustering using the spec-
tral reordering approach (Johansen-Berg et al. 2004) which involved
computing the cross-correlation matrix of the whole brain co-activation
profiles obtained for the individual seed voxels and reordering the
matrix to minimize the cross-correlation values off the diagonal. Clus-
ters were then identified in the reordered matrix as sets of seed voxels
showing strongly correlated connectivity patterns with each other and
weakly connectivity patterns with the rest of the matrix (cf. Johansen-
Berg et al. 2004; Kim et al. 2010; Eickhoff, Bzdok et al. 2011).

Task-Based Functional Connectivity: Meta-Analytic
Connectivity Modeling Analysis
Following the co-activation-based parcellation of the seed regions into
subregions, MACM analysis was performed on each of the ensuing
clusters in order to characterize their co-activation profiles. In this
context, “clusters” refer to sets of voxels within the seed region that
were identified by the co-activation-based parcellation outlined above
as having similar co-activation patterns to each other but distinct ones
to the rest of the seed voxels. The co-activation profiles of the differ-
ent clusters were obtained by first identifying all experiments in the
BrainMap database that featured at least one focus of activation in a
particular cluster derived from the co-activation-based hierarchical
cluster analysis. In the MACM analysis of the anterior cluster, 283
experiments (from 220 published studies) were included, with a total
of 3124 participants. In the MACM analysis for the posterior cluster,
447 experiments (from 316 published studies) were included, with a
total of 4279 participants. Details of the experiments in the BrainMap
database showing activity in the anterior (Supplementary Table 1)
and posterior cluster (Supplementary Table 2) can be found in the
Supplementary material.

Next, an ALE meta-analysis was performed on these experiments
as described above. In contrast to the MACM underlying the
co-activation-based parcellation, where ALE maps were not thre-
sholded to retain the complete pattern of co-activation likelihoods,
statistical inference was now performed. To establish which regions
were significantly co-activated with a given cluster, ALE scores for the
MACM analysis of this cluster were compared with a null-distribution
reflecting a random spatial association between experiments with a
fixed within-experiment distribution of foci (Eickhoff et al. 2009,
2012). This random-effects inference assesses above-chance conver-
gence between experiments, not clustering of foci within a particular
experiment. The observed ALE scores from the actual meta-analysis of
experiments activating within a particular cluster were then tested
against the ALE scores obtained under this null-distribution yielding a
P-value based on the proportion of equal or higher random values.
The resulting non-parametric P-values were transformed into Z-scores
and thresholded at an FWE-corrected threshold of P < 0.05.

Differences in co-activation patterns between the respective clusters
were tested by performing MACM separately on the experiments associ-
ated with either cluster and computing the voxel-wise difference
between the ensuing ALE maps. All experiments contributing to either
analysis were then pooled and randomly divided into 2 groups of the
same size as the 2 original sets of experiments defined by activation in
the first or second cluster (Eickhoff, Bzdok et al. 2011). ALE-scores for
these 2 randomly assembled groups were calculated and the difference
between these ALE-scores was recorded for each voxel in the brain. Re-
peating this process 10 000 times then yielded a null-distribution of
differences in ALE scores between the MACM analyses of the 2 clusters.
The ‘true’ difference in ALE scores was then tested against this null-
distribution yielding a P-value for the difference at each voxel based on
the proportion of equal or higher random differences. The resulting
non-parametric P-values were transformed into Z-scores, thresholded at
P < 0.001 and inclusively masked by the respective main effects, that is,
the significant effects in the MACM for the particular cluster.

Task-Independent Functional Connectivity: Resting-State
Correlations
Resting-state fMRI images were acquired in 100 healthy volunteers
(mean age = 45.2, standard deviation [SD] = 14.09, range = 22–71
years) without any record of neurological or psychiatric disorders. All
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subjects gave written informed consent to the study protocol, which
had been approved by the local ethics committee of the University of
Bonn. Before the imaging session, subjects were instructed to keep
their eyes closed and just let their mind wander without thinking of
anything in particular but not to fall asleep (which was confirmed in
post-scan debriefing). For each subject 300 resting-state Echoplanar
imaging (EPI) images were acquired using blood-oxygen-level-depen-
dent (BOLD) contrast [gradient-echo EPI pulse sequence, repetition
time = 2.2 s, echo time (TE) = 30 ms, flip angle = 90°, in-plane resol-
ution = 3.1 × 3.1 mm, 36 axial slices (3.1 mm thickness) covering the
entire brain]. The first 4 scans served as dummy images allowing for
magnetic field saturation and were discarded prior to further proces-
sing using SPM8 (www.fil.ion.ucl.ac.uk/spm). The EPI images were
first corrected for head movement by affine registration using a 2-pass
procedure. The mean EPI image for each subject was then spatially
normalized to the Montreal Neurological Institute (MNI) single-subject
template (Holmes et al. 1998) using the ‘unified segmentation’ ap-
proach (Ashburner and Friston 2005), and the ensuing deformation
was applied to the individual EPI volumes. Finally, images were
smoothed by a 5-mm full width at half maximum Gaussian to
improve signal-to-noise ratio and compensate for residual anatomical
variations. The time-series data of each voxel was processed as
follows: In order to reduce spurious correlations, variance that could
be explained by the following nuisance variables was removed: i) the
6 motion parameters derived from the image realignment; ii) their
first derivatives; iii) mean gray-matter, white-matter, and cerebrosp-
inal fluid signal per time point as obtained by averaging across voxels
attributed to the respective tissue class in the SPM 8 segmentation;
and iv) coherent signal changes across the whole brain as reflected by
the first 5 components of a principal component analysis (PCA)
decomposition of the whole-brain time series (CompCor approach, cf.
Behzadi et al. 2007). All these nuisance variables entered the model
as first-order terms and all but the PCA components also as
second-order terms as previously described by Behzadi et al. (2007).
This procedure was recently shown to increase specificity and sensi-
tivity of the analysis (Chai et al. 2012). Data were then band-pass fil-
tered preserving frequencies between 0.01 and 0.08 Hz, since
meaningful resting-state correlations will predominantly be found in
these frequencies given that the BOLD response acts as a low-pass
filter (Biswal et al. 1995; Greicius et al. 2003; Fox and Raichle 2007).
As for the MACM analysis, seed regions of interest were provided by
the clusters obtained from the co-activation-based parcellation analysis.
Time courses were extracted for all gray-matter voxels within a given
cluster. The time course of the seed region was then expressed as the
first eigenvariate of these voxels. Linear (Pearson) correlation coeffi-
cients between the time series of the seed regions and those of all
other gray-matter voxels in the brain were computed to quantify
resting-state functional connectivity. These voxel-wise correlation coef-
ficients were then transformed into Fisher‘s Z-scores and then fed into
a second-level analysis of variance (ANOVA) including an appropriate
non-sphericity correction as implemented in SPM8. Results were then
thresholded to correct for multiple comparisons at a cluster-level FWE
rate of P < 0.05 (cluster-forming threshold: P < 0.001 at voxel level).

Conjunction Between Meta-Analytic Connectivity
Modeling and Resting State
The main goal of the connectivity analyses was to determine brain
regions that form neural networks for the anterior and posterior
DLPFC cluster, respectively. In particular, we aimed at delineating
regions that showed significantly stronger task-dependent and
task-independent connectivity with the anterior versus posterior
cluster and vice versa. We therefore performed a conjunction analysis
across the results of MACM and resting-state analysis, restricting as-
sessment of resting-state connectivity differences between the clusters
to those voxels showing a significant difference in the co-activation
maps from the MACM analysis.

Functional Characterization of the Derived Clusters
Functional properties of the networks ensuing from our co-activation-
based parcellation and subsequent connectivity analysis were

characterized using the “BD” and “paradigm class (PC)” meta-data cat-
egories in the BrainMap database. BDs include the main categories
cognition, action, perception, emotion, interoception as well as their
related subcategories, whereas the respective PCs classify the specific
task employed (Fox et al. 2005; Turner and Laird 2011). To character-
ize the functional differences between the studies activating the 2
clusters, we performed quantitative “forward inference” and “reverse
inference” (cf. Poldrack 2006; Poldrack 2011) on the 2 networks
(right anterior DLPFC-[anterior cingulate cortex] ACC and right pos-
terior DLPFC-posterior parietal cortex). Forward and reverse infer-
ences has become an increasingly used tool to decode mental states
from brain imaging activations (cf. Poldrack 2011; Yarkoni et al. 2011;
Chang et al. 2012). Whereas “forward inference” is the probability of
observing activity in a brain region given the knowledge of the
psychological process, “reverse inference” reflects the probability of a
psychological process being present given knowledge of activation in
a particular brain region (cf. Poldrack 2006). In these analyses, we re-
stricted ourselves to studies dealing with “action” or “cognition” acti-
vating either of the 2 ensuing networks. Hence, the performed
functional inference is directly contrasting in the networks identified
in the present study. In particular, forward inference denotes the
probability of activating the anterior (vs posterior) cluster given the
respective BD or PC. That is, what is the likelihood that any given
experiment from that BD/PC would activate the “right anterior
DLPFC-ACC” rather than the posterior “right posterior DLPFC-
posterior parietal cortex” network? In contrast, reverse inference de-
scribes the probability for any particular BD (or PC) given activation
in the anterior or posterior network. That is, given that we see acti-
vation of the “right anterior DLPFC-ACC” rather than the “right pos-
terior DLPFC-posterior parietal cortex” network, how likely is a
particular BD/PC present. Base rates for activations in the respective
network as well as base rates for tasks were taken into account in the
latter inference using the Bayesian formulation for deriving P(Task|
Activation) based on P(Activation|Task) as well as P(Task) and
P(Activation).

Results

Cortical Parcellation Based on Co-Activation Patterns
The co-activation maps for each voxel of the DLPFC seed
region were computed by an ALE meta-analysis of those
experiments in the BrainMap database that featured the
closest activation foci to a given seed voxel. In a next step,
ALE values at all voxels in the rest of the brain were combined
into a functional co-activation matrix that reflected how likely
each seed voxel co-activated with any other voxel in the brain
(cf. Eickhoff, Bzdok et al. 2011).

Hierarchical cluster analysis performed on this matrix re-
vealed a separation of the DLPFC seed voxels into 2
co-activation-based clusters: A more anterior-ventral (center of
gravity MNI coordinates: 30, 43, 23) and a more posterior-
dorsal one (center of gravity MNI coordinates: 37, 33, 32)
(Fig. 1).

Anatomically, the 2 clusters laid in the inferior frontal
sulcus (covering amongst others areas ifs1 and ifs2, Amunts
et al. 2010) and extended into the adjacent middle frontal
gyrus (Fig. 2).

At the next lower level of linkage, the more anterior cluster
was further subdivided into a rostral and a caudal part. Spec-
tral reordering of the cross-correlation matrix of co-activation
profiles (see Supplementary Fig. S2) indicated the same par-
cellation of the seed VOI as hierarchical cluster analysis,
namely a distinction between the anterior-ventral and the
posterior-dorsal aspect of the DLPFC and a possible further
separation of the anterior cluster into 2 sub-clusters.
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However, the consecutively performed analysis of task-
dependent and task-independent functional connectivity did
not reveal any significant differences corresponding to the
separation of the anterior region into 2 subregions. That is,
the difference between the clusters formed at the next
(second) level of the hierarchical linkage was not strong and/
or consistent enough to actually result in discernible network
connectivity. The main goal of our co-activation-based parcel-
lation, however, was to test for subregions within the DLPFC
seed that are separable on the basis of their functional con-
nectivity profile, reflecting involvement in differentiable net-
works and functions. Given that only at the level of the
2-cluster solution, the ensuing regions showed significant
differences in task-dependent and task-independent func-
tional connectivity, we focused on this parcellation in the
results and discussion.

Characterization of Derived Clusters: Task-Dependent
and -Independent Connectivity

Task-Dependent Functional Connectivity: Meta-Analytic
Connectivity Modeling Analysis
The anterior DLPFC cluster showed significantly stronger
task-dependent connectivity than the posterior one with its
left homotope (left anterior DLPFC) as well as with the medial
superior parietal lobe (SPL; area 7M, Scheperjans, Eickhoff
et al. 2008; Scheperjans, Hermann et al. 2008), left area 44
(Amunts et al. 1999), right visual cortex (area hOC3v, Rotts-
chy et al. 2007) and the ACC (see Supplementary Fig. S3A).
Conversely, the posterior DLPFC cluster showed significantly
stronger task-dependent connectivity than the anterior one
with its respective left homotope (left posterior DLPFC), bilat-
eral intraparietal sulcus (IPS; areas hIP1, Choi et al. 2006
and hIP3, Scheperjans, Eickhoff et al. 2008; Scheperjans,
Hermann et al. 2008), left dorsal premotor cortex (dPMC; area
6, Geyer 2004), left inferior temporal lobe and bilateral
anterior–dorsal insula (see Supplementary Fig. S3B).

Task-Independent Functional Connectivity: Resting-State
Correlations
The anterior DLPFC cluster featured significantly stronger
task-independent connectivity than the posterior cluster with
its left homotopic region as well as the ACC, the medial SPL
(area 5M), left SPL (including areas 7P, 7M), right inferior par-
ietal cortex (areas PGa, PFm; Caspers et al. 2006, 2008), right
dPMC (area 6) as well as left ventral insula and bilateral
caudate nucleus (see Supplementary Fig. S4A). Conversely,
the posterior DLPFC cluster showed higher task-independent
connectivity than the anterior cluster with a right-hemispheric
frontal network including BA 44 as well as rostrally adjacent
inferior frontal gyrus and dPMC. Moreover, stronger connec-
tivity was observed with its left homotopic region as well as
left inferior frontal gyrus, left area 44, bilateral IPS (hIP1,
hIP2, hIP3), bilateral inferior parietal cortex (PFm, PF, PGa),
bilateral inferior temporal gyrus, bilateral cerebellum, mid-
cingulate cortex, and pre-supplementary motor area (preSMA)
(see Supplementary Fig. S4B).

Conjunction Between Meta-Analytic Connectivity Modeling
and Resting-State Results
The main goal of this analysis was to identify functional con-
nectivity differences between the anterior and posterior
DLPFC clusters that were consistently observed in both types
of connectivity analysis. Convergence of both approaches
should thus reveal connectivity that is consistently observed
across 2 different states of brain function, that is, during the
performance of a specific task versus task-free, unconstrained
cognition. To this end, we used the cluster-specific
co-activation maps from the MACM analysis (as assessed by
the contrast analyses detailed in Section 3.2.1) as inference
mask for the assessment of the cluster-specific resting-state
connectivity (as assessed by the contrast analyses detailed in
Section 3.2.2). That is, we assessed the task-based functional
connectivity patterns that underlay the observed distinction of
our seed into 2 subregions and then tested for common

Figure 1. Hierarchical cluster analysis of the co-activation profile matrix revealed a separation of the seed voxels into 2 distinct clusters—an anterior-ventral (in green) and a
posterior-dorsal (in red).

Figure 2. Anatomically, the 2 clusters resulting from the co-activation based parcellation laid in the inferior frontal sulcus extending into the middle frontal gyrus. The more
anterior cluster is depicted in green and the more posterior one in red.
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differences in connected networks across 2 complementary
methods.

Significantly stronger task-dependent and task-independent
connectivity of the anterior versus the posterior cluster was
observed for its left homotope region (MNI-coordinates: −30,
53, 12) and the ACC (MNI-coordinates: 9, 33, 18) (Fig. 3).

Conversely, significantly stronger task-dependent and
task-independent connectivity of the posterior versus anterior
cluster was again found for its left homotope region (MNI-
coordinates: −42, 29, 23) as well as for a bilateral region in
the IPS (MNI-coordinates: 36, −53, 44/−42, 29, 23; areas hIP1
and hIP3) (Fig. 4).

We furthermore calculated Pearson correlations as a
measure of association between the MACM and resting-state
connectivity maps of the anterior and posterior clusters,
respectively. This revealed correlations of r = 0.57 between
the 2 connectivity maps for either cluster.

In contrast, maps from opposite networks showed significant
anti-correlation. In this analysis, we used the thresholded maps
as we specifically wanted to test for the (spatial) correlation of
the brain regions significantly connected with either the anterior
or posterior cluster. Using the MACM connectivity as the hypoth-
esis-generation dataset and the resting-state for hypothesis-
testing, we then showed that those regions where we found
significant task-based co-activation for the anterior and posterior
networks, respectively, were spatially anti-correlated with the
resting-state connectivity pattern of the respective other cluster.
That is, the pattern of significant co-activation with the anterior
cluster was spatially anti-correlated with the pattern of signifi-
cant resting-state connectivity with the posterior cluster
(r =−0.30) and vice versa (r =−0.45).

Functional Characterization of Clusters
To characterize the functional differences between the
anterior DLPFC-ACC and posterior DLPFC-posterior parietal

network in a quantitative manner, we performed forward and
reverse inferences (Poldrack 2006; Poldrack 2011) (Fig. 5).
Only those BDs and PCs showing significant differences
between the 2 networks are depicted. Forward inference de-
scribes the probability of observing activity in a brain region
given the knowledge of the psychological process, while
reverse inference reflects the probability of a psychological
process given the knowledge of activation in a specific brain
region (cf. Poldrack 2006). The performed forward and
reverse inferences revealed that activation in the posterior
DLPFC-posterior parietal network (depicted in red) is more
related to execution of movement as well as working memory
processes such as the n-back and Sternberg task. In contrast,
the anterior network (depicted in green) is more related to
attentional processes and action inhibition as well as tasks re-
quiring conflict resolution like the Go/No-Go and Stroop
tasks. That is, reverse inference indeed revealed differences in
the functional involvement of the networks characterized by
task-dependent and task-independent functional connectivity.

Discussion

We showed that the right DLPFC as observed in 4 different
experiments tapping executive action control may be subdi-
vided into 2 distinct subregions based on their whole-brain
co-activation patterns across a broad range of neuroimaging
studies. Hierarchical cluster analysis revealed a separation of
the seed voxels into 2 main clusters: An anterior-ventral and a
posterior-dorsal one (Fig. 1). In order to assess whether the 2
delineated clusters show robust differences in their functional
connectivity pattern, we performed a conjunction analysis
across the (follow-up) MACM analysis of the identified sub-
regions and a resting-state functional connectivity analysis
using the same subregions as seeds. This revealed consistent
differences in the functional connectivity of the 2 subregions

Figure 3. Significantly stronger task-dependent and task-independent connectivity of the anterior versus posterior cluster was observed for its left homotope region and the
anterior cingulate cortex.

Figure 4. Significantly stronger task-dependent and task-independent connectivity of the posterior versus anterior cluster was observed for its left homotope region and bilateral
posterior parietal cortex.
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that are found in both task-dependent and task-independent
states. In particular, the anterior cluster showed increased
functional connectivity with its left homotopic region and the
ACC (Fig. 3), while the posterior cluster showed increased
functional connectivity with its left homotopic region and
bilateral IPS (Fig. 4). As can be seen in Supplementary
Figures S3 and S4, there were also regions showing either
only task-dependent or task-independent functional connec-
tivity with the specific cluster. However, as we here focused
on networks showing increased functional coupling inde-
pendently of the current mental state, in the following we
will constrain our discussion to the results obtained from
the conjunction analysis over MACM and resting state. That
is, we will focus on the fundamental distinction between
the brain-wide connectivity patterns of the 2 identified clus-
ters, which should be evident in both the task-driven and
resting state.

Potential Subregions of the Dorsolateral Prefrontal
Cortex and Their Functional Relevance
The DLPFC has been proposed to be involved in the executive
“top-down” control of behavior such as when we need to
adapt our behavior to a changing environment, override
habitual responses or shift between different tasks (Miller and
Cohen 2001; Passingham and Sakai 2004; Hoshi 2006;
Mansouri et al. 2009). The DLPFC is well positioned to exert
control via its rich connections with proximal and distant
brain regions. Anatomic connection studies in non-human pri-
mates have shown the DLPFC to receive input from distinct
regions within the parietal lobes (Petrides and Pandya 1984;

Cavada and Goldman-Rakic 1989; Andersen et al. 1990;
Petrides and Pandya 1999). Furthermore, the DLPFC is reci-
procally interconnected with motor areas in the medial frontal
lobe such as the SMA and preSMA, the rostral cingulate
cortex, the premotor cortices as well as the cerebellum and
the superior colliculus (Goldman and Nauta 1976; Bates and
Goldman-Rakic 1993; Lu et al. 1994; Schmahmann and
Pandya 1997; Petrides and Pandya 1999). Moreover, the
DLPFC is well interconnected with other parts of the prefron-
tal cortex (PFC; Barbas and Pandya 1989; Miller and Cohen
2001) and is able to represent many types of information,
reaching from object and spatial information to response and
reward outcomes as well as action strategies (Hoshi 2006).
Therefore, the DLPFC is considered as a key area for the inte-
gration of sensory information with behavioral intentions,
rules and rewards. This information integration is thought to
result in the facilitation of the currently most relevant action
by exerting cognitive control over motor behavior.

Even though the involvement of the DLPFC in behavioral
control is well established, the exact location and extent
of activation sites vary across fMRI studies (e.g. Cole and
Schneider 2007; Nee et al. 2007; Vogt et al. 2007; Yamaguchi
et al. 2008). This variability raises the question if it reflects
functional heterogeneity in this region or simply is a result of
small sample sizes and spatial uncertainty in fMRI exper-
iments. We here used a network-based approach to investi-
gate this question. A seed region was defined by merging
activations from 4 fMRI studies lying in the right DLPFC. We
tested for a possible parcellation of this seed region based on
co-activation patterns across studies in the BrainMap database.
The results of our study argue for the functional heterogeneity

Figure 5. Functional properties were characterized using the “Behavioral Domain” (A and C) and “Paradigm Class” (B and D) meta-categories in the BrainMap database.
Quantitative forward (A and B) and reverse (C and D) inferences revealed functional differences between the anterior (green) and posterior (red) networks.
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of this right DLPFC seed region. Moreover, investigating task-
dependent as well as task-independent functional brain
networks pointed towards differential functional roles of the
resulting clusters.

We observed increased connectivity between the posterior
(vs anterior) portion of the DLPFC and the posterior parietal
cortex. This part of the parietal lobe, especially the IPS, is a
multimodal region computing space- and object-related infor-
mation (see, e.g. Corbetta and Shulman 2002; Grefkes and
Fink 2005; Caspers et al. 2011). Moreover, activity in IPS is
modulated by various behavioral factors such as expected
reward, behavioral context, and goals, as well as memory for
past events (Thompson and Bichot 2005; Gottlieb 2007). As
the IPS shows anatomical connections with the DLPFC (Pet-
rides and Pandya 1984), the IPS has been proposed to act as a
salience-specific behavioral integrator, binding visual-spatial,
motor, and memory information under the influence of
DLPFC top-down control (Gottlieb 2007). We here now
showed that especially a posterior portion of the DLPFC
shows increased functional connectivity with the parietal
cortex, thereby most possibly reflecting a network for cogni-
tive control related to stimulus processing and the selection of
relevant information for behavior.

In contrast, for the anterior (vs posterior) DLPFC cluster,
increased functional connectivity was found with the ACC.
This resonates well with the results from a diverse range of
fMRI studies investigating cognitive control, which indicate
that the DLPFC and the ACC (BAs 24 and 32) are specifically
activated when the demands for cognitive control and moni-
toring increase due to conflict in information processing and
competing response plans (Duncan and Owen 2000; Gehring
and Knight 2000; MacDonald et al. 2000; Bunge et al. 2002;
Liston et al. 2006; Cole and Schneider 2007; Sohn et al. 2007).
According to the error likelihood model (Brown and Braver
2005) ACC activity predicts the probability of making a
response error in a given behavioral context. Depending on
this probability, the ACC then recruits the DLPFC and both
structures may act together, modulating activity in other struc-
tures according to the task demands (see also Johnston et al.
2007). Moreover, Dosenbach et al. (2006) analyzed data from
10 different tasks and found the ACC—together with the
anterior insula—to show reliable start-cue and sustained acti-
vations across the tasks. As these regions furthermore carried
error-related signals, they were proposed as a core system for
the implementation of task sets related to processes necessary
for the selection, implementation, and maintenance of action
sets (Dosenbach et al. 2006). According to another hypoth-
esis, the ACC, and anterior insula have been discussed to
form a so-called saliency network (SN; cf. Menon and Uddin
2010). Thereafter, the SN shows involvement not only in cog-
nitively demanding tasks such as attentional and response-
selection paradigms (Menon et al. 2001; Ridderinkhof et al.
2004) but also responds to uncertainty and emotional salience
(Peyron et al. 2000; Grinband et al. 2006). Therefore, it has
been proposed that this network is not task-specific but
saliency-driven, playing a role in recruiting relevant brain
regions for the processing of information.

This study found that the anterior portion of the DLPFC
showed increased functional connectivity with the ACC.
Hence, it appears that this subregion is especially involved in
higher cognitive processes of action control. That is, the

anterior portion of the DLPFC identified by co-activation-
based parcellation should most likely be involved in a
network for higher-level action control in situations in which
increased performance monitoring and control adjustments
are needed.

It should be kept in mind that the neural networks ident-
ified here were based on using only the right DLPFC as a seed
region, since all but one seed-defining studies showed acti-
vation of exclusively the right DLPFC and not the left. Even
though lateralization of the PFC is not well understood yet,
there is evidence supporting the notion of a dominance of
right DLPFC in monitoring operations (Shallice 2004; Vogt
et al. 2007) and resolution of conflict during motor response
execution (Aron et al. 2003; Aron et al. 2004; Nee et al. 2007),
which may underlie this observation. As supporting evidence
for the notion of a right lateralization for cognitive action
control in the PFC, we tested for a possible lateralization of
studies investigating “action” and “cognition” in the BrainMap
database. Therefore, the right DLPFC VOI was flipped to the
left side and subsequently tested which studies in the Brain-
Map database investigating “action” and “cognition” showed
activation in the left and right DLPFC seed region respectively.
This analysis revealed that when testing for studies investi-
gating “action” or “cognition” 594 studies were found to acti-
vate in the right DLPFC seed region but only 177 of that
studies also showed activation in the left DLPFC. That is, a
right-only activation pattern was seen in 71% of these studies.
When looking for studies investigating “action” and “cogni-
tion”, we found 61 studies activating in the right DLPFC seed
region but only 15 of these studies also showed activation in
the left DLPFC. The proportion of studies showing activation
only on the right side (76%) is very similar to that seen for all
studies investigating action or cognition as well as to that seen
in our sample of 4 fMRI studies. This analysis hence provides
further evidence for a right lateralization in the PFC for cogni-
tive action control. From this starting point, restricting the
analysis to the right DLPFC was the most natural choice. In
that context, however, it is interesting to note that the 2 ident-
ified subregions showed distinct locations of contralateral
connectivity, which raises further questions about the
relationship of hemispheric specialization and transcallosal
connections between left and right DLPFC, which need to be
addressed in future studies. A possible interpretation for the
finding that both DLPFC-clusters showed increased connec-
tivity with its respective homotope region in the left hemi-
sphere can be found in the literature of task difficulty. Here,
fMRI as well as near-infrared spectroscopy studies have
shown that simple task usually show more lateralized acti-
vation. However, when the complexity of a task increases acti-
vation becomes more bilateral (Klingberg et al. 1997; Helton
et al. 2010). In line with this Nebel et al. (2005), investigating
the neural substrates of focused and divided attention, found
that the network components associated with attention pro-
cesses (in particular, prefrontal and parietal areas) become
more bilaterally active depending on task complexity. Under
less demanding conditions the authors found mainly right-
sided activation. However, when the task difficulty increased,
right-sided structures not only increased their activity but
were also accompanied by left lateralized homolog areas. We
would hence argue that our finding of increased connectivity
of the anterior and posterior clusters with their respective left
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homotope region reflect an increased interhemispheric infor-
mation transfer that may be particularly relevant in the
context of increased executive demands.

Allocation of Original fMRI-Activations to the Clusters
It is important to note the 4 original fMRI studies were not
evenly distributed across the 2 clusters (see Supplementary
Fig. S5). The more anterior cluster encompassed almost all of
the activation found in the first fMRI study (Jakobs et al. 2009;
see Supplementary Fig. S5A) and large parts of the activation
found in the second study (Cieslik et al. 2010; see Supplemen-
tary Fig. S5B). In the first study, the DLPFC activation was iso-
lated when contrasting conditions in which the participants
did not know the side of the required movement direction
compared with conditions in which the participants had to
respond to one side only. In the second study, the DLPFC
showed increased activations for conditions in which the par-
ticipants had to respond to a visual stimulus in an incongruent
manner compared with conditions in which they had to
respond in a congruent manner. Behavioral data showed
more errors in the uncertain condition compared with the
unilateral hand condition (first study) as well as in the incon-
gruent compared with the congruent condition (second
study). Hence, it seems that in both studies the demand of
motor control was increased due to competing response plans
between the 2 hands. This interpretation would fit well with
the observation that the 2 studies majorly overlapped with the
anterior cluster that we here have proposed to be part of an
anterior-DLPFC-ACC network associated with performance
and error monitoring.

The more posterior cluster, in contrast, encompassed
most part of the activation found in the third (Eickhoff, Pom-
janski et al. 2011; see Supplementary Fig. S5C) and fourth
(Kellermann et al. 2012; see Supplementary Fig. S5D) studies
as well as a smaller portion of the activation found in the
second study. In particular, the third study laid in the rostral
portion of the posterior cluster, whereas the activation found
in the fourth study was much broader and encompassed
almost all parts of the posterior cluster.

In the third study, activity in the DLPFC was parametrically
related to the acquisition and adaptation of motor response
biases due to changes in the probabilistic structure of the
stimuli. That is, activation in the DLPFC increased when the
direction bias of the stimulus was covertly reversed in the
middle of the block. In contrast, in the fourth study, the
DLPFC showed increased activation when participants had to
memorize a 6-item sequence compared with a 4-item se-
quence, that is, the DLPFC activity was related to an increase
in the complexity of finger sequence retrieval. The DLPFC
activation in those 2 studies hence seemed to be more related
to stimulus processing and acquisition of motor plans invol-
ving working memory functions. These results go well along
with our finding of the DLPFC activations in these 2 studies to
be localized in the posterior cluster that we proposed to build
a posterior-DLPFC-posterior parietal network associated with
stimulus processing and representation of motor plans.

Quantitative Forward and Reverse Inferences
Forward and reverse inferences revealed that the 2 networks
characterized by consistencies across task-dependent as well
as task-independent functional connectivity were related to

differentiable functional processes. In particular, activation in
the anterior network was more related to attentional pro-
cesses and action inhibition as well as tasks requiring conflict
resolution like the Go/No-Go task and the Stroop task. In con-
trast, the posterior DLPFC-posterior parietal network was
more related to the execution of movement as well as
working memory processes such as the n-back task. These
results go well along with the allocation of the 4 original fMRI
studies to the 2 clusters. The anterior cluster encompassed pri-
marily the activation in the 2 studies featuring higher demand
of action control due to competing response plans between
both hands (Cieslik et al. 2010; Jakobs et al. 2009). In these 2
studies subjects showed an increased error rate in the more
complex task condition and hence a tendency to respond
with the wrong hand. In contrast, the posterior cluster encom-
passed activation from those 2 studies more related to stimu-
lus processing and acquisition of motor plans involving
working memory functions (Eickhoff, Bzdok et al. 2011;
Kellermann et al. 2012). In these 2 studies, DLPFC activity
was associated with adaptation of motor response biases and
with an increase in complexity of motor sequence retrieval.

In summary, quantitative forward and reverse inferences
provides further evidence for an involvement of the 2 net-
works in differentiable functional processes. Whereas the
anterior network is more related to attentional processes and
processes of action inhibition, the posterior network is more
related to action control processes involving working memory
functions.

Functional Gradient in Dorsolateral Prefrontal Cortex
Evidence from functional neuroimaging studies has prompted
the proposal of models featuring a topographical organization
along an anterior-posterior axis in the PFC (e.g. Koechlin
et al. 2003; Koechlin and Summerfield 2007; Badre and
D’Esposito 2009; Taren et al. 2011). In all of these models,
action control is implemented in the PFC along a posterior-
to-anterior hierarchy, with progressively anterior regions sup-
porting increasingly abstract representations and complex
actions. For instance, the Cascade model of PFC (Koechlin
et al. 2003) tries to explain how executive control might be
implemented within a hierarchy in the PFC. The model relies
on the assumption that competition arises when bottom-up
input produces alternative action representations. It further-
more assumes that this competition is resolved in the PFC
which maintains overarching contextual information to bias
selection of relevant representations over competitors. At the
lower level, action selection is based on sensory input and
environmental contextual cues, supported by dPMC and pos-
terior DLPFC, respectively. At the higher level, supported by
anterior DLPFC, action selection is based on episodic control,
taking into account the ongoing temporal context. At the
highest level, branching control supported by the frontopolar
cortex selects actions based on a pending temporal context.
That is, the more posterior parts of the PFC monitors com-
paratively simple control processes, such as mapping of
stimuli to actions, whereas the anterior parts are involved in
higher-order processes such as integrating relationships
among behavioral rules (cf. Taren et al. 2011). This assump-
tion is well in line with the results obtained from our connec-
tivity analysis showing that subregions of the DLPFC are
involved in different functional networks suggesting different
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functions in the cognitive control of behavior. While a
posterior-DLPFC-posterior-parietal network would accord-
ingly be involved in more basic processes of cognitive
control, an anterior-DLPFC-ACC network would be involved
in more abstract processes such as the monitoring of perform-
ance and adjusting behavior when necessary.

Most studies investigating the topographical organization
in the PFC have considered the whole PFC, reaching from the
premotor cortices to the frontopolar cortex. The present data
demonstrate that even a relatively small region of the DLPFC
can be functionally differentiated based on its co-activation
pattern (Fig. 1) and that the resulting subdivisions show dis-
tinct functional connectivity (Figs. 3 and 4). Moreover, our
connectivity analysis mirrors the cascade model predicting a
posterior to anterior axis in the PFC with progressively
anterior regions involved in increasingly abstract components
of action selection (Koechlin et al. 2003).

Analytic Approach and Functional Implication
We used a combination of 2 analytic approaches, that is,
analysis of task-dependent as well as task-independent
(resting state) connectivity to delineate brain areas function-
ally coupled with the 2 identified subregions in the DLPFC.
MACM allows the delineation of consistently co-activated
neural networks across a wide variety of neuroimaging exper-
iments (Eickhoff, Bzdok et al. 2011). Even though MACM
does not allow any inference on connectivity in individual
participants as the unit of observation is a specific contrast in
neuroimaging experiments, it allows us to identify potentially
interacting cortical modules based on the co-activation
pattern of voxels in a particular seed region. Thereby, MACM
can be used to form hypotheses about the differential connec-
tivity between resulting clusters. Task-independent analysis,
in contrast, relies on measuring the level of co-activation of
spontaneous BOLD signal time series in the absence of an ex-
ternally structured task (van den Heuvel and Hulshoff Pol
2010). Moreover, analyses of task-independent activity have
shown that most resting-state networks represent well-known
networks that share common functions (Biswal et al. 1995;
Damoiseaux et al. 2006; van den Heuvel et al. 2009). The
functional relevance of synchronized neuronal activity has
been shown for cognitive processes such as memory for-
mation (Axmacher et al. 2006) as well as selective attention
(Womelsdorf and Fries 2007). As neurons show high spon-
taneous firing activity even in the absence of a specific task, it
has been proposed that task-independent connectivity con-
tributes to keeping functional systems in an active state,
thereby improving performance and control whenever func-
tional connectivity is needed (cf. van den Heuvel and Hulsh-
off Pol 2010).

Here, conjunction analysis between task-dependent and
task-independent connectivity results revealed 2 networks, an
anterior-DLPFC-ACC and a posterior-DLPFC-posterior-parietal
network, which showed increased functional coupling inde-
pendently of the current mental state. That is, the 2 networks
are not only differentially co-activated across neuroimaging
experiments, as supported by our MACM analysis, but also
show differentiated synchronized neuronal coupling in the
absence of an externally structured task. As the conjunction
analysis highlights regions that have a fundamental functional
connectivity with the DLPFC, we would propose that the

networks identified here most likely represent networks
critical for the functions subserved by the 2 identified DLPFC
subregions.

Limitations
It is important to note that the aim of this study was not to
define the exact number of subregions within the entire
DLPFC. Such an analysis strongly depends on the definition
of the brain area used as the region of interest (cf. Mars et al.
2011). As the size of the DLPFC and especially its borders to
adjacent brain regions such as the ventrolateral PFC and pre-
motor areas are controversially discussed in the literature
(cf. Miller and Cohen 2001; Hoshi 2006; Taren et al. 2011;
Tsujimoto et al. 2011) a parcellation of the DLPFC as a whole
is challenging. Our aim was thus to investigate, whether the
various, partially overlapping fMRI activations we observed in
the right posterior DLPFC may point to an underlying differ-
entiation in this region. This specific aim should be highly
important from a conceptual point of view, as it demonstrates
how co-activation based parcellation may be used to clarify
partially overlapping and potentially conflicting findings from
previous studies. The aim of this study was thus to show, in a
proof-of-principle manner, that closely neighboring and par-
tially overlapping activations in the DLPFC may represent
different underlying cortical modules or areas. Importantly,
analysis of task-dependent and task-independent functional
connectivity analysis also implicated these differentiable net-
works. Moreover, quantitative reverse inference (Poldrack
2006) provided further evidence for an involvement of these
networks in differentiable functional processes (Fig. 5) which
should carefully be taken into account when interpreting acti-
vations lying in the DLPFC.

However, it has to be noted that we here investigated the
functional organization of only a small proportion of the right
DLPFC thereby limiting the generalizability of the results
towards the DLPFC as a whole. Even though we would
assume that the DLPFC as a whole would show an even more
diverse differentiation in functional networks, our results
relied on the basis of a rather small portion on the DLPFC.
Moreover, we used a functional definition of the seed region
on the basis of 4 fMRI studies on tapping executive action
control. Hence, the subsequent analysis and results strongly
depend on the activations found in the previous fMRI studies
thereby constraining the robustness of the results to a certain
degree.

Conclusion

This study illustrates that closely neighboring activation in be-
havioral similar task may actually reflect 2 distinct functional
modules questioning the common practice of interpreting
“near-by” activation in a uniform manner. In particular, we
showed that the right DLPFC seed region as obtained from 4
fMRI studies tapping cognitive action control could be subdi-
vided into 2 distinct parts based on their co-activation profile
and provided evidence for an anterior-DLPFC-ACC and a
posterior-DLPFC-posterior-parietal network. Together with
further evidence from quantitative forward and reverse infer-
ences, we propose this region to be organized in a hierarchi-
cal fashion. In particular, the more posterior cluster may be
involved in action control processes that are more dependent
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on the interaction with stimulus processing and working
memory. In contrast, the more anterior portion of the DLPFC
is most likely involved in higher-order control processes of
motor behavior such as the monitoring of motor responses
and subsequent behavioral adjustments. In summary, the
present data indicate that the executive control of behavior
does not engage a single homogenous right DLPFC region
but may rely on at least 2 distinct subregions involved in dif-
ferentiable neural networks and cognitive functions.
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