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Abstract: Skeletal muscle myogenesis and injury-induced muscle regeneration contribute to muscle
formation and maintenance. As myogenic stem cells, skeletal muscle satellite cells have the ability
to proliferate, differentiate and self-renew, and are involved in muscle formation and muscle injury
repair. Accumulating evidence suggests that non-coding RNAs (ncRNAs), including microRNAs
(miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), are widely involved in
the regulation of gene expression during skeletal muscle myogenesis, and their abnormal expression
is associated with a variety of muscle diseases. From the perspective of the molecular mechanism
and mode of action of ncRNAs in myogenesis, this review aims to summarize the role of ncRNAs
in skeletal muscle satellite cells’ myogenic differentiation and in muscle disease, and systematically
analyze the mechanism of ncRNAs in skeletal muscle development. This work will systematically
summarize the role of ncRNAs in myogenesis and provide reference targets for the treatment of
various muscle diseases, such as muscle dystrophy, atrophy and aberrant hypertrophy.
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1. Introduction

As one of the vertebrate striated muscles, skeletal muscle is constituted of myofibers, which have
giant multinuclear cells. By partially reproducing embryonic development processes, adult skeletal
muscle is endowed with regenerative potential, which mainly relies on skeletal muscle satellite cells [1].
As the stem cells of skeletal muscle, skeletal muscle satellite cells are located between the skeletal
muscle myofiber membrane and the basal lamina membrane [2–4]. Under normal physiological
conditions, satellite cells are in a quiescent state. In the context of physiological stimuli (physical
exercise, acute muscle injury or pathological conditions), quiescent satellite cells are activated and give
rise to myogenic progenitors, which then proliferate, migrate, align, differentiate and fuse to form
new multinucleated myotubes and restore tissue functionality [5–8]. Besides, a part of the activated
satellite cells is returned to quiescence to replenish the stem cell pool by self-renewing [1,9]. These
characteristics of satellite cells are a prerequisite for muscle formation and maintenance. The enormous
myogenic potential of skeletal muscle satellite cells is attributed to the expression of paired box families
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(Pax3 and Pax7), myocyte enhancer factor 2 (MEF2) family proteins and many myogenic regulatory
factors, such as MyoD, Myf5, Myogenin and MRF4 [10,11].

Accumulating evidence suggests that non-coding RNAs (ncRNAs), including microRNAs
(miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), are widely involved in a
series of subsequent myogenesis processes such as satellite cell activation, proliferation, differentiation
and self-renewal [12–15] (Tables 1 and 2). These ncRNAs are emerging as integral components of the
gene regulatory networks in a variety of biological processes. miRNAs are a class of endogenous,
conserved small non-coding RNAs (~18 to 22 nt), which are transcribed by RNA polymerase II [16,17].
Functionally, miRNAs negatively regulate the expression of their target genes at the post-transcriptional
level by inducing target mRNAs’ degradation and/or repressing translation [18,19]. Due to the fact that
they are misregulated in pathophysiological conditions, miRNAs are often regarded as biomarkers and
potential therapeutic targets [20]. With weak or no protein-coding potential, lncRNAs are a class of
RNA transcripts (>200 nt), which have poor evolutionary conservation compared with miRNAs [21].
LncRNAs have complex spatial structures and diverse functions. However, in summary, lncRNAs
play a crucial role at three levels. At the epigenetic level, lncRNAs mediate chromatin remodeling and
modification to exert an epigenetic regulatory role [22,23]. Furthermore, lncRNAs can interact with
transcription factors to affect transcriptional regulation [24,25]. In addition, lncRNAs can also bind to
mRNAs to form double strands, which specifically regulate the various post-transcriptional processes of
mRNAs, including splicing, transport, translation and degradation [26,27]. CircRNAs are another class
of endogenously expressed non-coding RNAs with a closed continuous loop in which the 5’ and 3’ ends
are joined together [28–30]. Compared with miRNAs and lncRNAs, circRNAs have greater stability
and higher conservation in mammalian cells [30]. While circRNAs were discovered decades ago, their
function is only now beginning to be understood. Up to now, it has been discovered that circRNAs
regulate gene expression by acting as a sponge for miRNAs and RNA-binding proteins to play a role
as competing endogenous RNAs (ceRNAs), and circRNAs can also be translated into proteins [31–34].
Further study has demonstrated that circRNAs also are involved in diseases, suggesting that circRNAs
could be used as a potential target for diagnosis and therapeutics [35,36].

An increasing number of studies have identified many ncRNAs and shed light on their mechanisms.
However, certain mysterious functions of these ncRNAs have not been completely unveiled, especially
their functions in skeletal muscle myogenesis. Here, we will discuss the current understanding of the
molecular mechanisms and mode of action through which ncRNAs regulate satellite cells’ function.
This review aims to expand the understanding of skeletal muscle biology and provide reference targets
for the treatment of various muscle diseases, such as muscle dystrophy, atrophy, aberrant hypertrophy
and cachexia.

2. ncRNAs and Myogenesis

Many ncRNAs can not only maintain the static state of skeletal muscle satellite cells, but also
participate in the processes of proliferation, differentiation and self-renewal. However, the regulatory
effects of different ncRNAs are different. Here, we will systematically review the ncRNAs that play a
role in multiple processes and those that are important in specific processes. The transcription factor
paired box-protein-7 (Pax7) and the transcription factor paired box-protein-3 (Pax3) are essential for
the establishment and maintenance of adult satellite cells’ status [37–39]. Studies have shown that
transcription factors Pax3 and Pax7 are regulated by miR-1 and miR-206 at the post-transcriptional
level. In quiescent satellite cells, an experiment in mice without TNF receptor-associated factor 6
(TRAF6) suggested that the expression of miR-1 and miR-206 is repressed by TRAF6/c-JUN signaling,
which increases the expression of Pax7 and further maintains satellite cells’ quiescence [40]. During
satellite cells’ differentiation, miR-1 and miR-206, which are involved in the post-transcriptional
regulation of Pax7, are sharply up-regulated, while they are strikingly decreased during skeletal
muscle regeneration [41]. This suggests that miR-1 and miR-206 restrict the proliferative potential
of satellite cells and promote cell differentiation. However, another study demonstrated that there
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was no significant difference in the fraction of satellite cells between WT and miR-206 KO mice at
3 days after cardiotoxin (CTX) injury [42]. In addition, histone deacetylase 4 (HDAC4) is considered as
an inhibitor to repress cell differentiation, which plays its role by inhibiting members of the myocyte
enhancer factor-2 (MEF2) transcriptional activity to suppress the myogenic regulators Myf5, MRF4
and Myogenin [43]. Here, miR-1 and miR-206 can suppress the post-transcriptional expression
of HDAC4 to promote satellite cells’ differentiation and muscle development in vivo [44,45]. In a
hypoxic environment, down-regulating the expression of miR-1 and miR-206 can activate the Notch
signaling pathway, further up-regulate the expression of Pax7, participate in the regulation of satellite
cell proliferation and promote the self-renewal of satellite cells [46]. Therefore, miR-1 and miR-206
participate in the whole process of satellite cell development and are indispensable micoRNAs for
regulating satellite cell development. It has been verified that MiR-27b directly targets the 3’-UTR
of Pax3 mRNA. Further, its interference with miR-27b function results in the continuation of Pax3
expression, leading to more proliferation and a delay in the onset of differentiation. The introduction
of miR-27b antagomir at a site of muscle injury affects Pax3 expression and regeneration in vivo [47].
In recent studies on satellite cells in goats, miR-27b was also found to target the 3’-UTR of Pax3, and
the expression of miR-27b decreased gradually during the proliferation of satellite cells but increased
during cell differentiation [48]. In addition, a recent study showed that miR-27b also inhibits the
proliferation and promotes the differentiation of pig muscle satellite cells by targeting the MyoD family
inhibitor (MDFI) [49].

LncRNA H19 was one of the earliest lncRNAs to be identified as being highly expressed in animal
skeletal muscle [50]. It has been reported that the imprinted gene encoding lncRNA H19 is highly
expressed in satellite cells, and the satellite cells decreased by 50% in adult muscle of H19-deleted
mice [51]. This evidence suggests that lncRNA H19 might be involved in the maintenance of quiescent
satellite cell pools. A previous study showed that maternal-specific H19-DMR deletion results in the
activation of the IGF2-IGF1R pathway, activating hematopoietic stem cells [52]. Interestingly, the IGF2
transcript levels were increased in H19-deleted adult tibialis muscle, but IGF1R was not regulated [51].
Whether lncRNA H19 protects the skeletal muscle satellite cells from activation through IGF2-IGF1R
signaling remains a mysterious question. During both human and mouse satellite cell differentiation,
H19 was up-regulated, and down-regulated H19 suppressed satellite cells’ differentiation by reducing
the mRNA level of myogenin and MyHC. In the same way, H19 knockout mouse satellite cells decreased
differentiation and displayed abnormal skeletal muscle regeneration after injury. However, this injury
was treated to some extent by the reintroduction of miR-675-3p and miR-675-5p, which target Smad1,
Smad5 and Cdc6 [53]. In addition, H19 can also promote satellite cells’ differentiation by suppressing
the myoblast inhibitory genes Sirt1 and FoxO1. In detail, H19 induced the down-regulation of Sirtuin 1
(Sirt1), and Forkhead box class O transcription factor-1 (FoxO1) can increase the expression levels of
MyoG and MyHC [54].

Except for ncRNAs that play a regulatory role in a variety of processes, many ncRNAs play
important roles in the processes of quiescence and activation. Further research reveals that miR-489
maintains satellite cells’ quiescence by targeting and repressing oncogene Dek, the protein product
of which alternatively localizes to the more differentiated daughter cells [55]. Similarly, the cell cycle
exit of quiescent satellite cells is also regulated by miR-195 and miR-497. In detail, miR-195 and
miR-497 target and inhibit the expression of cyclin D2 (Ccnd2) and cell division cycle 25a/b (Cdc25a/b),
then further induce cell cycle withdrawal to maintain quiescence [56]. In addition, the lncRNA
Uc.283+A controls the processing of pri-miR-195 by complementing with the immature pri-miR-195
and preventing its cleavage by Drosha, which is required for the formation of functionally mature
miR-195 [57]. While the mechanism of the lncRNA Uc.283+A in the quiescence and activation of
skeletal muscle satellite cells has not yet been reported, the lncRNA Uc.283+A can rapidly destroy the
functional miR-195 by blocking its formation, which is needed to maintain satellite cells’ quiescence, so
it may be a potentially key regulator. Recent research has shown that Notch induces the transcription
of the quiescence-specific mirtron miR-708, which represses Tensin3 to inhibit the activation of focal
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adhesion kinase (FAK), which further stabilizes satellite cells within their niche [58]. This suggests that
Notch signaling can regulate the transition between quiescence and activation of satellite cells via the
Notch-miR-708-Tensin3 axis (Figure 1). Regarding the mechanisms, miR-31 can bind to Myf5 and form
messenger ribonucleoprotein (mRNP) granules, which inhibit the translation of Myf5, so that satellite
cells can be maintained in quiescence. After the activation of satellite cells, the down-regulated miR-31
leads to the dissociation of mRNP granules, which rapidly releases Myf5 mRNA and promotes the
translation and accumulation of Myf5 protein [59]. TRAF6 facilitates the expression of Pax7 in satellite
cells by inhibiting the expression of mir-1 and mir-206. Meanwhile, the lncRNA 1/2-sbsRNA(B2) may
target TRAF6 mRNA and reduce the half-life of TRAF6 mRNA, which further represses the protein
expression of TRAF6 in C2C12 cells [60].

Figure 1. Non-coding RNA (ncRNA)-mediated regulatory networks in the myogenesis of skeletal
muscle satellite cells.

In addition, ncRNAs that regulate proliferation and differentiation should not be ignored. Exposing
inhibited satellite cells to the stimulatory Wnt signaling pathway restores their proliferation rate [61].
Recently, it has been reported that the Gtl2-Dio3 miRNA mega-cluster regulated by MEF2A inhibits
the myoblast Wnt signaling pathway [62], suggesting that the Gtl2-Dio3-miRNA axis is a potential
guarder for the proliferation of satellite cells, though this process occur in myoblasts. In addition,
miR-133b is a key component of the canonical Wnt pathway and is an inhibitor of Pax7 expression; it
acts via a site adjacent to the miR 206 binding site in the Pax7 3 UTR, which allows differentiation to
proceed by relieving Pax7-mediated repression of the myogenic program [63]. Linc-MD1 is localized
in the cytoplasm, is polyadenylated and acts as a natural decoy for miRNAs to be involved in the
timing of muscle differentiation [64]. After the differentiation of mouse satellite cells, linc-MD1 is
activated and then the expression of transcription factors mastermind-like 1 (MAML1) and MEF2C,
which activate muscle-specific gene expression, is regulated by sponging miR-133 and miR-135 [64].
In primary bovine skeletal muscle-derived satellite cells, miR-17 can up-regulate the transcription of
MYH3, MyoD1 and MyoG to accelerate the differentiation process. Bovine skeletal muscle satellite cells
which over-express with miR-17 and miR-19 can differentiate more myotubes and have a higher fusion
efficiency than miR-17 alone, suggesting that miR-17 and miR-19 jointly promote skeletal muscle cell
differentiation [65]. Similarly, miR-139 can target DHFR mRNA to inhibit satellite cell differentiation in
bovine skeletal muscle satellite cells [66]. Besides, miR-34c inhibits the proliferation and promotes the
differentiation of porcine muscle satellite cells by inhibiting Notch1 expression [67].
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Table 1. microRNAs (miRNAs) and targets in the myogenesis of skeletal muscle satellite cells.

miRNA Function Target Reference

miR-1
Maintains cell quiescence

Promotes satellite cell self-renewal
Promotes cell differentiation

Pax7
HDAC4 [37–42]

miR-206
Maintains cell quiescence

and satellite cell self-renewal
Promotes cell differentiation

Pax7
HDAC4 [37–42]

miR-27 Activates satellite cells Pax3 [47]

miR-27b Promotes cell differentiation MDFI [49]

miR-31 Maintains cell quiescence Myf5 [59]

miR-489 Maintains cell quiescence
Regulates satellite cell self-renewal Dek [55]

miR-195 Maintains cell quiescence Ccnd2Cdc25a/b [56]

miR-497 Maintains cell quiescence Ccnd2Cdc25a/b [56]

miR-708 Activates satellite cells
Regulates satellite cell self-renewal Tensin3 [58]

miR-17/miR-19 Promotes cell differentiation MRFs [65]

miR-139 Inhibits cell differentiation DHFR [66]

miR-34c Inhibits cell proliferation
Promotes cell differentiation Notch1 [67]

miR-133b Promotes cell differentiation Pax7 [63]

LncMyoD is directly activated by MyoD during myoblast differentiation, and has been proved
to have a positive regulatory effect on myogenic differentiation. Regarding its mechanism, lncMyoD
directly binds to IGF2-mRNA-binding protein 2 (IMP2) and results in decreased translation levels of
proliferation genes such as N-Ras and c-Myc [68]. Lnc-mg has been shown to be a molecular sponge
of miR-125b in vitro, and insulin-like growth factor 2 (IGF2) is a direct target of miR-125b in muscle
stem cells. Therefore, lnc-mg is a key myogenesis enhancer as a miR-125b ceRNA that regulates the
abundance of IGF2 protein [69]. Myogenic differentiation is also regulated by linc-YY1 in muscle
satellite cells. Linc-YY1, which is also induced by MyoD, interacts with YY1 protein to expel YY1/PRC2
from the target promoter, thereby activating gene expression to promote myogenic differentiation and
muscle regeneration [70]. Furthermore, the treatment of regenerating muscles with si-linc-YY1 led to
decreases in Pax7, MyoD, Myogenin and e-MyHC [70]. It can be determined that the process of muscle
regeneration is affected by the increase or decrease in the linc-YY1 function in the injured muscle.

3. ncRNAs, Muscle Injury Repair and Diseases

The activation, proliferation, differentiation and self-renewal of skeletal muscle satellite cells are
closely related to biological processes such as skeletal muscle growth and development, regeneration,
injury repair, muscular dystrophy, muscular atrophy and aberrant muscle hypertrophy, and the
disorder of any link can lead to the occurrence of muscle diseases. Undoubtedly, a large number of
ncRNAs are involved in the biological processes of the above-mentioned skeletal muscle satellite cells,
which play a crucial role in the occurrence and development of muscle diseases. This suggests that
ncRNAs may serve as a potential therapeutic target for the treatment of skeletal muscle disease. Here,
we mainly review the role of ncRNAs in muscle injury repair and diseases (Figure 2).
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Figure 2. ncRNAs regulate muscle diseases such as dystrophy, atrophy and hypertrophy.

3.1. ncRNAs in Muscle Dystrophy

Muscle dystrophy is a genetic disease; Duchenne muscular dystrophy (DMD), caused by the
mutation of the dystrophin gene on the X chromosome, is the most common and severe type of
muscle dystrophy.

As a structural protein, dystrophin can link the cytoskeleton and form a large membrane-associated
multi-protein complex (dystrophin-associated protein complex, DAPC) to stabilize the sarcolemma [71].
In DMD, the absence of dystrophin at the sarcolemma delocalizes and down-regulates nitric oxide
synthase (nNOS), which alters the status of the nitrosilation of Histone Deacetilases (HDACs) and
its chromatin association [43,72]. The loss of dystrophin in DMD patients and mdx mice leads to a
decrease in DAPC and a corresponding injury of NO production [73]. Cacchiarelli et al. found that the
expression of a specific subset of miRNAs was deregulated by the differential HDAC2 nitrosylation
state in Duchenne and wild-type conditions [74]. Further study demonstrated that the activation of
miR-1 and miR-29 was closely linked to HDAC2 release from their respective promoters in humans
and mice [74].

It has been reported that the myomiRs (miR-1, miR-206 and miR-133) are highly expressed in
the serum of DMD patients [75,76]. Furthermore, their levels were correlated with the severity of
DMD disease, suggesting that myomiRs are novel biomarkers for the diagnosis of DMD [77]. The
deletion of miR-206 in mice delayed the muscle regeneration induced by cardiotoxin injury, suggesting
that miR-206 can promote skeletal muscle regeneration and is involved in muscle injury repair [42].
Interestingly, the absence of miR-206 accelerated and aggravated the dystrophic phenotype in a DMD
mouse model by weakening the suppression by miR-206 of myogenesis inhibitors Pax7, Notch3 and
IGFBP5 [42]. Compared with other myomiRs, the expression level of miR-206 is elevated in distrophic
mdx muscle due to the fact that it activates skeletal muscle satellite cells’ differentiation by inhibiting
the expression of Pax7 and HDAC4 [74]. Furthermore, miR-206 can target Utrophin, a systrophin
protein homolog involved in a compensatory mechanism in DMD pathology [78]. Using miR-127
transgenic model mice, Zhai et al. found that miR-127 can promote satellite cells’ differentiation to
accelerate muscle regeneration by targeting the Sphingosine 1 Phosphate Receptor 3 (S1PR3) gene.
Further study indicated that the over-expression of miR-127 can significantly improve the disease
phenotype of muscular dystrophy model mdx mice [79]. A recent study demonstrated that miR-200c
plays an important role in skeletal muscle regeneration in mdx mice with muscular dystrophy. In detail,
miR-200c might increase reactive oxygen species (ROS) production and induce the phosphorylation
of p66Shc in Ser-36 to cause muscle dystrophy and wasting [80]. The latest research showed that
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the synthetic preimplantation factor (sPIF) can promote DMD myoblasts’ differentiation, increase
the expression of utrophin, and reduce muscle fibrosis, possibly via the up-regulation of miR-675
and inhibition of miR-21 expression [81]. In addition, the lncRNA linc-MD1 is expressed in newly
regenerating fibers and is abundant in dystrophic conditions, suggesting that linc-MD1 might also be
involved in the regulation of muscle dystrophy [64]. Recently, RNA sequencing demonstrated that
the expression of circRNAs had a unique feature between normal and dystrophic human myoblasts
derived from DMD patients. In the differentiation of two types of myoblasts, circ-QKI and circ-BNC2
were up-regulated in normal myoblasts, but were down-regulated in DMD conditions [82]. Overall,
this evidence suggests that lncRNAs and circRNAs may play a functional role in DMD.

Myotonic dystrophy (DM) is a progressive muscular dystrophy with two types, i.e., type-1 and
type-2. DM1 is a multisystemic disorder disease caused by abnormal mRNA splicing, which is induced
by the expanded CTG repeat in dystrophic myotonic protein kinase (DMPK), while DM2 is caused by
CCTG repeat expansion in the first intron of the CCHC-type zinc finger nucleic acid binding protein
(CNBP) [83]. An analysis of DM1 biopsies obtained from 15 patients showed that the expression of
miR-1 and miR-335 were up-regulated, whereas the expression of miR-29b, miR-29c and miR-33 were
down-regulated compared with normal muscles [84,85]. It is reported that the alternative splicing factor
muscle blind-like (MBNL) was down-regulated by miR-23b and miR-218, which further accelerated the
pathogenic misplacing events in the myoblasts with the neuromuscular disease myotonic dystrophy
type-1 [86]. A recent study showed that the expression of circRNA (RTN4_03 and ZNF609) was
increased in differentiated myogenic cell lines derived from DM1 patients, suggesting the crucial role
of circRNA in DM1 patients [87].

3.2. ncRNAs in Muscle Atrophy

With the typical symptom of muscle quality loss, muscle atrophy is a disease caused by increased
protein degradation or decreased protein synthesis in skeletal muscle [88]. Evidence from numerous
studies indicates that ncRNAs play an important role in the regulation of muscle atrophy. Muscle
atrophy can be divided into primary and secondary muscular disease. Primary muscle atrophy is
directly caused by muscle diseases such as DMD and DM1 [75,89]. Meanwhile, secondary muscular
disease is usually a complication of other diseases [76,90].

The processing of miRNAs from precursor to mature and their exportation to the nucleus depends
on many proteins, such as the DROSHA/DGCR8 complex, Exportin-5 and Dicer enzyme [91]. These
proteins involved in miRNAs biogenesis and production have been shown to be important in regulating
muscle atrophy. The loss of Dicer activity during embryogenesis reduced muscle-specific miRNAs,
which further resulted in decreased muscle mass and abnormal myofiber morphology [92]. In addition,
miRNA machinery protein Argonaute2 (Ago2) is also important for skeletal muscle atrophy [93]. After
the endonuclease activity of Ago2 was significantly repressed by the loss of Crystallin-B in mice, the
body weight and myofiber cross-sectional area were obviously reduced [93]. This evidence further
indicates the relationship between miRNAs and muscle atrophy. The serum levels of muscle-specific
miRNAs, such as miR-1, miR-23a, miR-206, miR-208b and miR-499, were all significantly increased
after hindlimb unloading for seven days in mice and was able to induce severe muscle atrophy [94].
Furthermore, the expression levels of miR-23a, miR-206 and miR-499 were positively correlated with
the ratio of soleus volume loss [94], suggesting that circulating miR-23a, miR-206 and miR-499 might be
used as candidate biomarkers for the diagnosis of muscle atrophy. In multiple models of skeletal muscle
atrophy, the E3-ubiquitin ligases Atrogin and muscle-specific RING finger protein 1 (MuRF1) are crucial
for accelerating the degradation of muscle sarcomeric proteins [95]. miR-23a can target Atrogin-1
and MuRF1 and inhibit their translation, and the ectopic expression of miR-23a protects muscles
from atrophy in vitro and in vivo, indicating that miR-23a is a critical regulator in muscular atrophy.
Moreover, FoxO1 can regulate the expression of E3-ubiquitin ligases Atrogin-1/MAFbx and MuRF1,
and miR-486 inactivates atrophy signaling in skeletal muscle by coordinately inhibiting its targets
pentaerythritol tetranitrate (PTEN) and FoxO1 [96]. Furthermore, up-regulated miR-1 also promoted
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skeletal muscle atrophy through targeting HSP70, which led to a decreased phosphorylation of AKT,
an elevated activation of FoxO3 and the up-regulation of MuRF1 and Atrogin-1 [97]. Li et al. found
that miR-29b was elevated in multiple in vivo and in vitro atrophy models, that the over-expression
of miR-29b contributes to muscle atrophy by targeting IGF-1 and PI3K (p85α) and that its inhibition
attenuates muscle atrophy [98]. As mentioned above, Notch signaling can regulate the maintenance of
quiescent satellite cells and their differentiation. Here, miR-199b targets JAGGED1 (JAG1) to activate
the Notch1 signaling pathway and further promotes the proliferation of porcine muscle satellite cells,
suggesting that miR-199b is a potential therapeutic target for muscle atrophy [99].

Amyotrophic lateral sclerosis (ALS) is a heterogeneous neurodegenerative disease. MiR-206 was
increased in the muscles of four early-stage ALS patients, and was considered as a potential biomarker
of ALS [100,101]. In mice, the loss of miR-206 accelerated the ALS process and induced severe skeletal
muscle atrophy by targeting HDAC4 [102]. A miRNA profiling analysis demonstrated that a number
of differentially expressed miRNAs were identified in ALS patients and healthy controls. Compared
with control, the expression levels of miR-206 and miR-143-3p were increased and miR-374b-5p was
decreased [101]. This suggested that miRNAs also play an important role in ALS. Spinal muscular
atrophy (SMA) is an autosomal recessive neuromuscular disease, which is caused by deletions or
mutations in the survival motor neuron (SMN1) gene [103]. The lncRNA SMN-AS1 is transcribed
from the antisense strand of SMN and is highly enriched in neurons [104]. SMN-AS1 accelerates
muscle atrophy via recruiting PRC2 to the SMN promoter and transcriptionally repressing SMN
expression [105]. In addition, the selective disruption of SMN-AS1-mediated PRC2 recruitment resulted
in active SMN and better SMA phenotypes in mice [105].

Single cell analysis revealed that the lncRNA Pvt1, which is activated in early muscle atrophy,
is involved in the regulation of muscle atrophy and the mitochondrial network. In detail, the
down-regulation of the lncRNA Pvt1 results in the destabilization of c-Myc and mediates the increase in
Bcl-2, which is a central node in the regulation of apoptosis and atrophy [106]. A transcriptomic analysis
between hypertrophic broilers and leaner broilers demonstrated that a novel lncRNA lncIRS1 sponges
miR-15a/miR-15b-5p/miR-15c-5p and activates the IGF1-PI3K/Akt signaling pathway to control muscle
atrophy [107]. In addition, mechanical unloading induces obvious skeletal muscle atrophy. A study
proved that lncMUMA is a muscle-enriched lncRNA, which decreased most in hindlimb suspension
mice [108]. Further research revealed that lncMUMA, as a sponge of miR-762, can promote myogenic
differentiation, regulate the core myogenic regulator MyoD in vitro and reverse the established muscle
atrophy in hindlimb suspension mice to prevent muscle atrophy development [108].

3.3. ncRNAs in Aberrant Muscle Hypertrophy

Healthy muscles enlarge through exercise. However, there also exist patients who have muscle
enlargement secondary to neuromuscular diseases [109]. Muscle atrophy always accompanies
neurogenic disorders, but muscle enlargement, both hypertrophy and pseudohypertrophy, has also
been found in neurogenic disorders [109]. In these neurogenic diseases, intact type II myofibers
in partially denervated muscle probably experience hypertrophy due to the increased workload;
stretching also results in the hypertrophy of type I myofibers, even when denervated [109,110].
However, this aberrant hypertrophy does not completely compensate for denervated atrophic muscle
fibers in the same muscle. Hence, such enlarged muscles are paradoxically weak and are regarded as a
pathological overgrowth.

Undoubtedly, the PI3K/Akt/mTOR signaling pathway has emerged as a pivotal regulator of
glycolytic muscle growth and metabolism, and the over-expression of Akt accelerates skeletal
muscle hypertrophy [111]. Highly expressed miR-199a-3p in skeletal muscle can target and inhibit
IGF-1, mTOR and RPS6KA6 to activate the Akt/mTOR signaling pathway and partially block
myoblast differentiation [112]. On the contrary, down-regulated miR-199a-3p can promote myoblast
differentiation and myotube hypertrophy [112]. Similarly, miR-125b also regulates muscle hypertrophy
by targeting IGF-2 to activate kinase-independent mTOR signaling in vitro and in vivo [113]. In
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addition, the myogenesis-associated lncRNA lnc-mg promotes myogenesis by functioning as a ceRNA
for miR-125b to regulate IGF-2 [69]. Phenotypically, the knockout of lnc-mg in skeletal muscle leads to
muscle atrophy and the loss of muscle endurance during exercise, while the over-expression of lnc-mg
accelerates muscle hypertrophy [69]. In addition, an aging-related lncRNA Chronos was identified as
an Akt inhibitor to suppress muscle hypertrophy [114].

Table 2. Long non-coding RNAs (lncRNAs) in the myogenesis of skeletal muscle satellite cells.

lncRNA Function Partner Reference

Sirt1 AS Inhibits muscle formation Sirt1; miR-34a [27]

1/2-sbsRNA(B2) Promotes cell activation TRAF6 [60]

Uc.283+A Promotes cell activation pri-miR-195 [57]

H19 Maintains cell quiescence - [51]

Promotes cell differentiation MyHC; miR-675-3p;
miR-675-5p [53]

Promotes cell differentiation Sirt1; FoxO1 [54]

linc-MD1 Promotes cell differentiation miR-133; miR-135 [64]

LncMyoD Inhibits cell proliferation IMP2 [68]

lnc-mg Promotes cell differentiation miR-125b [69]

linc-YY1 Promotes cell differentiation YY1 [70]

SMN-AS1 Promotes muscle atrophy SMN; PRC2 [104]

Pvt1 Promotes muscle atrophy c-Myc [106]

lncISR1 Inhibits muscle atrophy miR-15a/15b-5p/15c-5p [107]

MUMA Inhibits muscle atrophy miR-762 [108]

Chronos Inhibits muscle hypertrophy Akt [114]

4. Concluding Remarks

Here, we systematically summarized ncRNAs’ regulatory networks in the proliferation,
differentiation and self-renewal of skeletal muscle satellite cells. Meanwhile, we also reviewed
ncRNAs’ roles in muscle formation and muscle injury repair. With the unveiling of the mysterious
functions of ncRNAs in skeletal muscles, research into their functions has become more and more
in-depth, the mechanism and mode of action have gradually become more complex and the regulatory
network tends to be clearer and more perfect, revealing that ncRNAs are an important part of satellite
cells’ regulatory networks. While much progress has been made in identifying and verifying specific
ncRNAs in skeletal muscle satellite cells, the relationship between ncRNAs and various muscle diseases
has yet to be fully understood. Furthermore, ncRNAs’ function in myogenesis has provided important
contributions for artificial organs in vitro and a new reference target for the treatment of muscle
diseases [115,116], but how to harness these ncRNAs to develop effective and economic diagnostic and
therapeutic tools is still a question to be further addressed in the future.
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