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Abstract

IQ-TREE (http://www.iqtree.org, last accessed February 6, 2020) is a user-friendly and widely used software package for
phylogenetic inference using maximum likelihood. Since the release of version 1 in 2014, we have continuously expanded
IQ-TREE to integrate a plethora of new models of sequence evolution and efficient computational approaches of phy-
logenetic inference to deal with genomic data. Here, we describe notable features of IQ-TREE version 2 and highlight the
key advantages over other software.
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IQ-TREE is a widely used and open-source software package
for phylogenetic inference using the maximum likelihood
(ML) criterion. The high performance of IQ-TREE results
from the efficient integration of novel phylogenetic methods
that improve the three key steps in phylogenetic analysis: fast
model selection via ModelFinder (Kalyaanamoorthy et al.
2017), an effective tree search algorithm (Nguyen et al.
2015), and a novel ultrafast bootstrap approximation (Minh
et al. 2013; Hoang et al. 2018). Zhou et al. (2018) indepen-
dently showed that the tree search algorithm in IQ-TREE
exhibits good performance in terms of both computing times
and likelihood maximization when compared with other
popular ML phylogenetics software such as RAxML
(Stamatakis 2014) and PhyML (Guindon et al. 2010). IQ-
TREE also plays a vital role in the software ecosystem for
biomedical research. For instance, it is an integral component
of many popular open-source applications such as Galaxy
(Afgan et al. 2018), Nextstrain (Hadfield et al. 2018),
OrthoFinder (Emms and Kelly 2015), and QIIME 2 (Bolyen
et al. 2019).

Since the release of IQ-TREE version 1.0 in 2014, we have
continuously developed IQ-TREE to integrate a plethora of
new evolutionary models and efficient methods for analyzing
large phylogenomic data sets. Here, we present IQ-TREE ver-
sion 2 and highlight the key new features and improvements.
To demonstrate its performance and compare it with other
software, we used a 2-GHz CPU server to analyze 2 large
sequence alignments: a DNA alignment of 110 vertebrate

species and 25,919 sites (Fong et al. 2012) which we call the
DNA-data set, and an amino acid alignment of 76 metazoan
species and 49,388 sites (Whelan et al. 2017) which we call the
AA-data set.

Time-Reversible Models of Sequence
Evolution
IQ-TREE 2 supports more than 200 time-reversible evolution-
ary models, including all standard substitution models for
DNA, protein, codon, binary, and multistate-morphological
data (Felsenstein 2004; Lemey et al. 2009). Rate heterogeneity
across sites can be accommodated either by the discrete C
distribution (Yang 1994b) with invariant sites (Gu et al. 1995)
or by a distribution-free rate model (Kalyaanamoorthy et al.
2017). Site-specific rates can be estimated by the empirical
Bayesian method via the –rate option or by ML (Mayrose
et al. 2004) via the –mlrate option. These estimated site-
specific rates can be useful for downstream analysis such as
quantification of phylogenetic informativeness, signal, and
noise (Dornburg et al. 2016). For single nucleotide polymor-
phism or morphological data, the absence of invariant sites
can be accounted for by an ascertainment bias correction
(Lewis 2001).

Moreover, IQ-TREE 2 offers a number of advanced
models for phylogenomic data including partitioned models
(Lanfear et al. 2012; Chernomor et al. 2016), mixture models
(Le et al. 2008, 2012; Le and Gascuel 2010), posterior-mean
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site frequency models (Wang et al. 2018), and heterotachy
models (Crotty et al. 2019). For allele-frequency data, IQ-TREE
2 implements polymorphism-aware models (Schrempf et al.
2016, 2019). With partitioned models, one can specify either a
partition file (as in IQ-TREE 1) or a directory of single-locus
alignments (a new feature in IQ-TREE 2). In the latter case, IQ-
TREE 2 will load and concatenate all alignments within the
directory, eliminating the need for users to manually perform
this step. In addition to implementing existing mixture mod-
els, IQ-TREE 2 goes beyond the mixture models employed in
PhyML-mixtures (Le et al. 2008) and RAxML-NG software
(Kozlov et al. 2019), by allowing for user-defined mixture
models using the “MIXfmodel1,. . .,modelkg” syntax. IQ-
TREE 2 is also substantially faster than PhyML-mixtures. For
example, optimization of the model parameters for the LG4X
model on the AA-data set took 1.9 min in IQ-TREE 2, 3 min in
RAxML-NG, and 17.6 min in PhyML-mixtures.

Because the aforementioned substitution models assume
time reversibility, IQ-TREE 1 only enabled inference of
unrooted trees (Felsenstein 1981). In IQ-TREE 2, we included
non-time-reversible models (e.g., Norris 1997), meaning that
IQ-TREE 2 enables inference of rooted trees.

Nonreversible Substitution Models
IQ-TREE 2 allows users to reconstruct rooted trees using non-
reversible models, a feature not available in most ML packages
due to numerical and computational expense. We substan-
tially revised the IQ-TREE code to overcome these obstacles.
First, due to nonreversibility of the rate matrix Q, the naı̈ve
computation of the transition probability matrix P tð Þ ¼ eQt,
where t is the branch length, is unstable due to complex
eigenvalues of Q (Moler and Loan 1978). Eigen-
decomposition and scaling-squaring techniques, for example,
as provided in the Eigen3 library (Guennebaud et al. 2010)
remove the numerical problems. IQ-TREE 2 employs eigen-
decomposition to diagonalize Q into its (complex) eigenval-
ues, eigenvectors and inverse eigenvectors, which are used to
compute P tð Þ. If Q is not diagonalizable, then IQ-TREE 2
switches to the scaling-squaring technique to compute
P tð Þ. The eigen-decomposition is fast but sometimes unsta-
ble, whereas the scaling-squaring is slow but stable. Second,
IQ-TREE 2 uses a rooted tree data structure and an adjusted
pruning algorithm for computing likelihoods of nonreversible
models on rooted trees (Boussau and Gouy 2006). Third, we
adapted the hill climbing nearest neighbor interchange, part
of the tree search heuristic in IQ-TREE to account for rooted
trees. Fourth, we introduced a root search operation that
moves the root to the neighboring branches (by default up
to 2 branches away from the current root branch) and retains
the rooting position with the highest likelihood. Users can
increase this parameter (–root-dist option) to test for the
position of the root across more or all branches.

Based on these improvements, we could efficiently imple-
ment 99 nonreversible DNA models known as Lie Markov
models (Woodhams et al. 2015), the unrestricted model
(UNREST) for DNA (Yang 1994a) and—for the first time—

the general nonreversible model for amino acid sequences
that we call NONREV. For the DNA-data set (Fong et al.
2012), tree search under the general time-reversible model
took 2.8 min using 4 CPU cores, whereas the UNREST model
took 10.7 min. For the AA-data set (Whelan et al. 2017) tree
search under the protein general time-reversible model took
2.52 h, whereas the NONREV model took 5.8 h. The imple-
mentation of nonreversible models in IQ-TREE 2 opens new
avenues of evolutionary research.

Fast Likelihood Mapping Analysis
IQ-TREE 2 provides a fast and parallel implementation of the
quartet likelihood mapping (Strimmer and von Haeseler
1997) to visualize phylogenetic information in alignments
or to study the relationships of taxon-groups in large data
sets. To this end, IQ-TREE 2 evaluates the exact ML value of all
relevant quartets. Application of the original implementation
of quartet likelihood mapping in TREE-PUZZLE (Schmidt
et al. 2002) (i.e., with 10,000 random quartets and exact ML
quartet evaluation) to the DNA-data set took 282 min,
whereas the improved implementation in IQ-TREE 2 required
only 1 min using one CPU core and 21 s using four cores.
Similarly, analysis of the AA-data set took 99.5 h in TREE-
PUZZLE, 17 min in IQ-TREE 2 with one CPU core, and
4.5 min using four cores. Together with the extended reper-
toire of sequence evolution models, likelihood mapping facil-
itates a thorough investigation of much larger sequence
alignments.

New Options for Tree Search
IQ-TREE 2 allows users to perform a constrained tree search (-
g option), such that the resulting ML tree will respect a set of
user-defined splits, which may also contain polytomies. This
option is helpful to enforce the monophyly of certain groups.
A tree test (see below) can be performed to ensure that the
constrained tree is not significantly worse than the uncon-
strained tree.

IQ-TREE 2 also provides a fast tree search (-fast option)
using an algorithm resembling that implemented in
FastTree2 (Price et al. 2010). Here, IQ-TREE 2 computes two
starting trees using Maximum Parsimony and Neighbor-
Joining (Gascuel 1997), which are then optimized by the hill
climbing nearest neighbor interchange moves. For our exam-
ple DNA-data set, the default tree search took 27 min,
whereas the fast IQ-TREE search and FastTree2 needed 82
and 85 s, respectively. For the AA-data set, the default tree
search took 5.7 h, whereas the fast IQ-TREE search and the
FastTree2 search took 13.9 and 4.3 min, respectively. The
speed of FastTree2 was accomplished at the cost of producing
substantially worse trees than RAxML, PhyML, and IQ-TREE
(Zhou et al. 2018).

IQ-TREE 2 also provides a –runs option, which conducts
multiple independent tree searches, summarizes the resulting
trees, and reports the tree(s) with the highest log-likelihood.
This option is recommended for difficult data sets, for
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example, with many taxa and/or limited phylogenetic signal,
to increase the probability that the true ML tree is found.

Systematically Accounting for Missing Data
Missing data—when some loci or sites are absent for some
species—are almost unavoidable in phylogenomic data sets.
In the presence of missing data, each species tree can be
associated with a corresponding set of induced single-locus
trees. For each locus, an induced tree is obtained from the
species tree by removing species with unavailable sequences
for that locus. Missing data can create phylogenetic terraces
(Sanderson et al. 2011), where for two or more species trees
the associated sets of induced single-locus trees are identical,
leading to identical likelihoods under an edge-unlinked par-
titioned model.

IQ-TREE 2 employs the terraphast library (Biczok et al.
2018) to automatically report the inferred ML trees that re-
side on a terrace. If so, users are advised to gather more data
or filter out gappy taxa/loci. Moreover, IQ-TREE 2 generalizes
the terrace concept to partial terraces (Chernomor et al.
2015), where a subset of the induced single-locus trees is
identical. IQ-TREE 2 exploits partial terraces to improve tree
search under partitioned models and achieves up to 4.5- and
8-fold speedups compared with IQ-TREE 1 and RAxML, re-
spectively (Chernomor et al. 2016).

Single-Locus Tree Inference
IQ-TREE 2 enables users to infer individual locus trees (-S
option), which can be used for subsequent coalescent (e.g.,
Mirarab et al. 2014) or concordance analyses (e.g., Minh et al.
2018). Users need to specify either a partition file that delin-
eates the borders between loci or a directory containing the
individual locus alignments in individual files. In both cases,
IQ-TREE 2 will perform separate model selection and tree
searches for each locus, which are automatically scheduled
on the k CPU cores. The loci are ranked according to their
expected computational costs, where the costs are estimated
as a product of the number of sequences, distinct site pat-
terns, and character states (4 for DNA and 20 for protein).
The k loci with highest costs will be assigned to one of the k
cores. When a core has finished computation the next locus
in the ranked list will be assigned to that core. This process
continues until all computations are complete.

We compared our scheduling approach with the program
ParGenes version 1.0.1 (Morel et al. 2019), which uses RAxML-
NG for tree search and a more sophisticated scheduling al-
gorithm. For the DNA-data set, IQ-TREE 2 inferred 168 locus
trees in 18.6 and 9.2 min using 2 and 4 CPU cores, respectively;
whereas the same analysis in ParGenes took 9.17 and
5.98 min. For the AA-data set with 127 loci, IQ-TREE 2 took
2.05 and 1.05 h using 2 and 4 cores, respectively; whereas
ParGenes needed 1.53 and 0.81 h. Therefore, IQ-TREE 2 shows
a higher parallel efficiency (DNA: 101% and AA: 97.6%)
(Grama et al. 2003) than ParGenes (DNA: 76.7% and AA:
94.4%), but ParGenes needs less computational time. The
upshot of this is that both programs are likely to perform
similarly on very large data sets.

Fast Branch Tests
IQ-TREE 2 provides fast and parallel implementations for sev-
eral existing branch tests including the approximate likeli-
hood ratio test (aLRT) (Anisimova and Gascuel 2006), the
Shimodaira–Hasegawa-like aLRT (SH-aLRT) (Guindon et al.
2010), and the aBayes test (Anisimova et al. 2011). The SH-
aLRT is parallelized over the bootstrap samples to maximize
load balance and efficiency. These tests can be performed on
the reconstructed ML tree or a user-defined tree. For the
DNA-data set, PhyML version 3.3.20190321 (Guindon et al.
2010) took 33.9 h to perform the SH-aLRT, whereas IQ-TREE 2
needed only 1.5 min (1,300-fold speedup). On the AA-data
set, PhyML took 173.5 h to perform the SH-aLRT tests,
whereas IQ-TREE 2 needed just 1.6 min (a greater than
2,000-fold speedup).

Fast Topology Tests
IQ-TREE 2 also provides fast and parallel implementations of
existing tree topology tests including the Shimodaira–
Hasegawa test (Shimodaira and Hasegawa 1999), the approx-
imately unbiased test (Shimodaira 2002), and the expected
likelihood weight (Strimmer and Rambaut 2002). Moreover,
IQ-TREE 2 is well suited for partitioned models because it
provides the site, gene, and gene-site bootstrap resampling
schemes (Hoang et al. 2018).

For the DNA-data set CONSEL (Shimodaira and Hasegawa
2001), the original and unparallelized implementation of the
approximately unbiased test, took 5 min to test 100 tree to-
pologies, whereas IQ-TREE 2 took 1.8 min with one CPU core
and 1.1 min with four CPU cores. For the AA-data set,
CONSEL took 9.4 min and IQ-TREE 2 took 8.7 min with one
CPU core and 2.4 min with four CPU cores. IQ-TREE provides
added convenience by calculating site log-likelihoods itself,
rather than relying on site log-likelihood output provided
by other software.

Scalability with Large Data Sets
IQ-TREE 2 implements several features to facilitate the anal-
ysis of large data sets. It uses multithreading to speed up
computations in a range of areas and can automatically de-
termine the best number of threads for the computer at
hand. IQ-TREE 2 also parallelizes the computation across clus-
ter nodes using Message Passing Interface (Snir et al. 1998).
IQ-TREE 2 periodically writes a compressed checkpoint file
that enables resumption of an interrupted analysis. IQ-TREE 2
also provides a memory-saving mode (Izquierdo-Carrasco
et al. 2012), that is automatically invoked when the memory
requirement exceeds the RAM size, and a safe mode (-safe
option) to avoid numerical underflow for taxon-rich align-
ments (automatically invoked for data sets with >2,000
sequences).

We benchmarked the memory-saving mode, where the
RAM consumption is reduced by half (-mem 0.5). For the
DNA-data set, IQ-TREE 2 took 27 and 32.8 m (21% increase)
under the full- and half-memory mode, respectively, whereas
the same analysis needed 5.7 and 6.2 h (9% increase) for the
AA-data set. This increase in computing times is insignificant
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compared with 50% saving in memory, which could other-
wise be a bottleneck for very large data sets and mixture
models requiring hundreds of GB of RAM.

Documentation, User Support, and
Workshop Materials
An extensive user manual, quick start guide, tutorials, and
command reference are available (http://www.iqtree.org/doc,
last accessed February 6, 2020). We actively maintain a forum
(https://groups.google.com/d/forum/iqtree, last accessed
February 6, 2020) for user support, bug reports, and feature
requests. We regularly teach IQ-TREE at the Workshop on
Molecular Evolution (https://molevolworkshop.github.io, last
accessed February 6, 2020), the Workshop on Virus Evolution
and Molecular Epidemiology (https://rega.kuleuven.be/cev/
veme-workshop/, last accessed February 6, 2020), and the
Workshop on Phylogenomics (http://evomics.org, last
accessed February 6, 2020). Most workshop materials are
freely available at http://www.iqtree.org/workshop/ (last
accessed February 6, 2020).

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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